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a b s t r a c t

Dimensionality reduction aims at representing high-dimensional data in low-dimensional spaces, in
order to facilitate their visual interpretation. Many techniques exist, ranging from simple linear projec-
tions to more complex nonlinear transformations. The large variety of methods emphasizes the need
of quality criteria that allow for fair comparisons between them. This paper extends previous work about
rank-based quality criteria and proposes to circumvent their scale dependency. Most dimensionality
reduction techniques indeed rely on a scale parameter that distinguish between local and global data
properties. Such a scale dependency can be similarly found in usual quality criteria: they assess the
embedding quality on a certain scale. Experiments with various dimensionality reduction techniques
eventually show the strengths and weaknesses of the proposed scale-independent criteria.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The interpretation of high-dimensional data remains a difficult
task, mainly because human vision is not used to deal with spaces
whose dimensionality is higher than three. Part of this inability
stems from the curse of dimensionality, a convenient expression
that encompasses all weird and unexpected properties of high-
dimensional spaces. If visualization is difficult in high-dimensional
space, perhaps an (almost) equivalent representation in a lower-
dimensional space could improve the readability of data. This is
precisely the idea that lies underneath the field of dimensionality
reduction (DR in short). This domain includes various techniques
that are able to construct meaningful data representations in a
space of given dimensionality. Linear DR is well known, with tech-
niques such as principal component analysis (Jolliffe, 1986) and
classical metric multidimensional scaling (Young and Householder,
1938; Torgerson, 1952). On the other hand, nonlinear dimensional-
ity reduction (Lee and Verleysen, 2007) (NLDR) emerged later, with
nonlinear variants of multidimensional scaling (Shepard, 1962;
Kruskal, 1964; Takane et al., 1977), such as Sammon’s nonlinear
mapping (Sammon, 1969). For the past 25 years, research around
NLDR has deeply evolved and after some interest in neural ap-
proaches (Kohonen, 1982; Kramer, 1991; Oja, 1991; Demartines
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and Hérault, 1993; Mao et al., 1995), the community has recently
focused on spectral techniques (Schölkopf et al., 1998; Tenenbaum
et al., 2000; Roweis and Saul, 2000; Belkin and Niyogi, 2003; Don-
oho and Grimes, 2003; Weinberger and Saul, 2006). Modern NLDR
is sometimes referred to as manifold learning; it is also tightly con-
nected with graph embedding (Di Battista et al., 1999) and spectral
clustering (Bengio et al., 2003; Saerens et al., 2004; Nadler et al.,
2006; Brand and Huang, 2003).

In the most general setting, DR transforms a set of N high-
dimensional vectors, denoted by N = [ni]16i 6N, into N low-dimen-
sional vectors, denoted by X = [xi]16i6N. Of course, the low-dimen-
sional representation has to be meaningful in some sense. Usually,
the general idea is to embed close neighbors next to each other,
while maintaining large distances between faraway data items.
In practice, the goal of DR is then to preserve as well as possible
simple properties such as soft or hard neighborhoods (Kohonen,
1982), proximities, similarities, or ranks (Shepard, 1962; Kruskal,
1964). A straighter way to construct an embedding is to preserve
pairwise distances (Sammon, 1969; Demartines and Hérault,
1993, 1997) measured in N, with some appropriate metric. These
approaches remain valid if the coordinates in N are unknown, that
is, when the data set consists of pairwise distances. If not all dis-
tances are specified, then the problem can elegantly be modeled
using a graph, in which edges are present for known entries of
the pairwise distance matrix. The edge weights can be binary- or
real-valued, depending on the data nature. Some NLDR techniques
also involve a graph even if all pairwise distance are available. For
instance, a graph can be used to focus on small neighborhoods
(Roweis and Saul, 2000) or to approximate geodesic distances
(Tenenbaum et al., 2000; Lee and Verleysen, 2004) with weighted
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shortest paths. This illustrates the close relationship between
NLDR and graph embedding.

As to manifold learning, one commonly assumes that the vec-
tors in N are sampled from a smooth manifold. Under this hypoth-
esis, one seeks to re-embed the manifold in a space of the lowest
possible dimensionality, without modifying its topological proper-
ties. As these properties cannot easily be identified starting from a
set of Cartesian coordinates, the above-mentioned approaches
based on distances, neighborhoods, etc. are followed as well.

As a matter of fact, the scientific community has been mainly
focusing on the design of new NLDR methods and the question of
quality assessment remains mostly unanswered. As most NLDR
methods optimize a given objective function, a simplistic way to
assess quality is to look at the value of the objective function after
convergence. Obviously, this allows us to compare several runs
with e.g. different parameter values, but makes the comparison
of different methods unfair. Still, objective functions that assess
the preservation of pairwise distances, such as the stress or strain
used in various versions of MDS, have been very popular (Venna,
2007).

Another obvious quality criterion is the reconstruction error. If a
NLDR technique provides us with a mapping M such that
x ¼MðnÞ, then this error can be written as the expectation
Erec ¼ Efðn�M�1ðMðnÞÞÞ2g. The reconstruction error is a universal
quality criterion, but it requires the availability of M and M�1 in
closed form, whereas most NLDR methods are nonparametric (they
merely provide values ofM for the known vectors ni). The minimi-
zation of the reconstruction error is the approach that is followed
by PCA and nonlinear auto-encoders (Kramer, 1991; Oja, 1991).
Fig. 1. Procedure to compute co-ranking matrix Q, starting from the matrices of
pairwise distances in the high- and low-dimensional spaces (HDS and LDS in short).
These matrices are defined by D = [dij]16i,j6N and D = [dij]16i,j6N). Symbols dj and dj

denote the jth column of D and D, respectively. Function (v, p) sort (u) sorts the
elements of vector u. Output vector v is a permutation of u such that it is sorted in
ascending order. Output vector p results from the application of the same
permutation to vector [1, . . . ,N]T. The most expensive step in the procedure is the
sorting of each column of D and D. The time complexity of the whole procedure is
thus OðN2 log NÞ.
Still another approach mentioned in the literature consists in using
an indirect performance index, such as a classification error (see for
instance (Saul et al., 2003; Weinberger et al., 2004) and other ref-
erences in (Venna, 2007)). Obviously, such an index can be used
only with labeled data.

Eventually, a last possibility consists in sticking to the intrinsic
goal of DR, by trying to assess the preservation of proximity rela-
tionships: are close neighbors embedded near each other and are
dissimilar items lying far from each other? As our goal is quality
assessment, we can translate this idea into a quantitative criterion
without caring about typical constraints that come with the design
of an objective function, such as continuity and differentiability.
This opens to way to potentially complex quality criteria that more
faithfully assess the preservation of the data set structure. First at-
tempts in this direction can be found in the particular case of self-
organizing maps (Kohonen, 1982), such as the topographic product
(Bauer and Pawelzik, 1992) and the topographic function (Vill-
mann et al., 1997). More recently, new criteria for quality assess-
ment have been proposed, with a broader applicability, such as
the trustworthiness and continuity measures (Venna and Kaski,
2001; Venna, 2007), the local continuity metacriterion (Chen,
2006; Chen and Buja, 2009), the mean relative rank errors (Lee
and Verleysen, 2007), and the quality/behavior curves (Lee and
Verleysen, 2008a; Lee and Verleysen, 2009). All these criteria in-
volve ranks of sorted distances and analyze K-ary neighborhoods
before and after dimensionality reduction, for a varying value of
K. This is a major improvement over a measurement of distance
preservation, as the use of ranks allows distances to grow or to
shrink, provided their order does not change. In the case of mani-
fold learning, such distance scalings are often necessary in order to
unfold and flatten the manifold.

A unifying framework for quality criteria relying on ranks and
K-ary neighborhoods has been proposed in (Lee and Verleysen,
2008a; Lee and Verleysen, 2009), along with a pair of new criteria.
As a main advantage, they avoid any scale-dependent weighting
that is present in almost all other criteria and that inevitably turns
out to be somewhat arbitrary. On the other hand, these criteria
keep being functions of K, the neighborhood size, and therefore
yield curves that must be scrutinized on several scales. Within this
framework, this paper aims at summarizing each curve into a sin-
gle scalar value, thus enabling simple and direct comparisons of DR
methods. An experimental section illustrates the use of the scalar
criteria and compares various NLDR techniques applied to several
data sets.

This paper is organized as follows. Section 2 introduces the
notations for distances, ranks, and neighborhoods. Section 3 re-
views existing rank-based criteria. Section 4 describes scalar qual-
ity criteria that are scale independent. Section 5 illustrates them in
experiments with various DR methods and data sets. Finally, Sec-
tion 6 draws the conclusions.
Fig. 2. Block division of the co-ranking matrix, showing the different types of
intrusions and extrusions, and their relationship with the rank error.
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Fig. 3. Criteria QNX(K) and BNX(K) for two embeddings of a hollow sphere (1000 points). The embeddings are computed with NLM and CCA. The NLM produces an intrusive
embedding of average quality, whereas CCA’s ability to yield an extrusive embedding leads to a better result. The bold markers on the QNX(K) curves correspond to the points
[Kmax,QNX(Kmax)]T (see Section 4).

Table 1
Scalar quality criteria corresponding to the curves in Fig. 3. The average values of
QNX(K) and BNX(K) are denoted by Qavg and Bavg. The ‘localness’ is given by L, whereas
Qlocal and Qglobal are the average values of QNX(K) below and above Kmax.

Qavg Bavg L Qglobal Qlocal

NLM 0.7895 0.2505 0.9149 0.8134 0.5341
CCA 0.8440 �0.2112 1.0000 0.8440 0.9750
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Fig. 4. Performance diagram summarizing the curves in Fig. 3. Each embedding of the ho
[(2N � 1)/(N � 1)�L, (N + 1)/(N � 1)�L]T/2, respectively. For each embedding, the coordin
a random embedding with the same value of Kmax. In this toy example, CCA clearly out
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2. Distances, ranks, and neighborhoods

Most NLDR techniques involve distances in some way. Symbol
dij denotes the distance from ni to nj in the high-dimensional space.
Similarly, dij is the distance from xi to xj in the low-dimensional
space. Notice that we assume that dij = dji and dij = dji, although this
hypothesis is not always required. For instance, it does not hold
true if dij and dji stem from distinct experimental measurements.
Starting from distances, we can compute ranks.
0.75 0.8 0.85 0.9 0.95 1

global −> Good

  NLM
  CCA

llow sphere is associated with two markers. Their coordinates are [Qglobal,Qlocal]T and
ates of the second marker corresponds to the values of Qglobal and Qlocal in the case of
performs NLM.
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The rank of nj with respect to ni in the high-dimensional space is
written as qij = j{k: dik < dij or (dik = dij and 1 6 k < j 6 N)}j, where jAj
denotes the cardinality of set A. Similarly, the rank of xj with re-
spect to xi in the low-dimensional space is rij = j{k: dik < dij or (dik =
dij and 1 6 k < j 6 N)}j. Hence, reflexive ranks are set to zero (qii =
rii = 0) and ranks are unique, i.e. there are no ex aequo ranks:
qij – qik for k – j, even if dij = dik. This means that nonreflexive
ranks belong to {1, . . . ,N � 1}. The nonreflexive K-ary neighbor-
hoods of ni and xi are denoted by mK

i ¼ fj : 1 6 qij 6 Kg and
nK

i ¼ fj : 1 6 rij 6 Kg, respectively.
The co-ranking matrix (Lee and Verleysen, 2008b) can then be

defined as

Q ¼ ½qkl�16k;l6N�1 with qkl ¼ jfði; jÞ : qij ¼ k and rij ¼ lgj: ð1Þ

In practice, the procedure given in Fig. 1 computes Q in the most
efficient way. The co-ranking matrix is the joint histogram of the
ranks and is actually a sum of N permutation matrices of size
N � 1. With an appropriate gray scale, the co-ranking matrix can
also be displayed and interpreted in a similar way as a Shepard dia-
gram (Shepard, 1962). Historically, this scatterplot has often been
used to assess results of multidimensional scaling and related
methods (Demartines and Hérault, 1997); it shows the distances
dij with respect to the corresponding distances dij, for all pairs
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Fig. 5. Quality and behavior curves for embeddin
(i, j), with i – j. The analogy between the co-ranking matrix and
Shepard’s diagram suggests that meaningful criteria should focus
on the upper and lower triangle of the co-ranking matrix Q. Follow-
ing this line, we define the rank error to be the difference qij � rij.
We call an intrusion the event of a positive rank error for some pair
(i, j). Similarly, an extrusion denotes the event of a negative rank er-
ror. The amplitude of an intrusion or extrusion is the absolute value
of the corresponding rank error.

In order to focus on K-ary neighborhoods, we also define a K-
intrusion (resp. K-extrusion) to be the conjunction of an intrusion
(resp. extrusion) for some pair (i, j) with the event rij < K (resp.
qij < K). We can further distinguish mild and hard K-intrusions.
The former correspond to the event rij < qij 6 K, whereas the latter
is associated with the event rij 6 K < qij. Similar definitions for mild
and hard K-extrusions can be deduced. Intuitively, mild K-intru-
sions and mild K-extrusions correspond to vectors that are respec-
tively ‘‘promoted” and ‘‘downgraded”, but still remain in both mK

i

and nK
i .

The various types of intrusions and extrusions can be associated
with different blocks of the co-ranking matrix, as illustrated in
Fig. 2. The idea is to concentrate on K-ary neighborhoods and thus
on the four blocks that separate the first K rows and columns.
Therefore, if we define FK ¼ f1; . . . ;Kg (index set for the K first ele-
500 600 700 800 900
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gs of the noisy Swiss roll in six dimensions.



Table 2
Scalar quality criteria derived from the curves in Fig. 5, for the noisy Swiss roll in six
dimensions. Methods are ranked according to Qlocal (ranks are between parentheses).

Qavg Bavg L Qglobal Qlocal

CMDS Eucl. 0.8627 0.2132 0.8468 0.9131 0.5851 (9)
CMDS geod. 0.8428 0.0713 0.9269 0.8645 0.5686 (12)
NLM Eucl. 0.8654 0.1650 0.8559 0.9122 0.5881 (8)
NLM geod. 0.8467 0.0493 0.9459 0.8626 0.5697 (11)
CCA Eucl. 0.8283 �0.1540 0.9429 0.8382 0.6669 (5)
CCA geod. 0.8112 �0.2178 0.9489 0.8158 0.7270 (1)
SNE Eucl. 0.8510 0.0658 0.9710 0.8591 0.5827 (10)
SNE geod. 0.8385 �0.0339 0.9690 0.8454 0.6248 (7)
tSNE Eucl. 0.7174 �0.1236 0.9700 0.7179 0.7040 (2)
tSNE geod. 0.7164 �0.1234 0.9840 0.7177 0.6411 (6)
tSNE Eucl. PCI 0.8079 �0.1151 0.9730 0.8111 0.6978 (3)
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ments) and SK ¼ fK þ 1; . . . ;N � 1g (index set for the subsequent
ones), the index sets of the upper-left, upper-right, lower-left,
and lower-right blocks are given by ULK ¼ FK � FK ,
URK ¼ FK � SK ; LLK ¼ SK � FK , and LRK ¼ SK � SK . In addition,
the block covered by ULK can be split into its main diagonal
DK ¼ fði; iÞ : 1 6 i 6 Kg and lower and upper triangles
LTK ¼ fði; jÞ : 1 6 j < i 6 Kg and UTK ¼ fði; jÞ : 1 6 i < j 6 Kg.
According to this splitting, K-intrusions and K-extrusions are lo-
cated in the lower and upper trapezes, respectively (i.e.
LTK [ LLK and UTK [URK ). Hard K-intrusions and K-extrusions
are found in LLK and URK , respectively. In a similar way, mild K-
intrusions and K-extrusions are counted in the triangles LTK and
UTK , respectively.
tSNE geod. PCI 0.8078 �0.1358 0.9710 0.8117 0.6803 (4)
3. Weighted and non-weighted rank-based quality criteria

The co-ranking matrix contains all the necessary information
about how ranks are preserved in a given low-dimensional repre-
sentation, but its readability is rather poor. To overcome this issue,
most existing rank-based criteria summarize the information by
considering the various blocks mentioned in the previous section.
The general approach consists in computing weighted sums over
some blocks, for a given value of K. Criteria usually come by pair,
in order to account for what happens on both sides of Q’s main
diagonal. For instance, the trustworthiness and continuity (Venna
and Kaski, 2001; Venna, 2007) (T&C) focus on the blocks LLK and
URK , respectively, whereas the mean relative rank errors (Lee
and Verleysen, 2007) (MRREs) cover the overlapping blocks
ULK [ LLK and ULK [URK , respectively (Lee and Verleysen, 2009).
The T&C as well as the MRREs rely on a weighting that raises nor-
malization issues (Lee and Verleysen, 2008a). For criteria that in-
volve blocks LLK and URK , a weighting turns out to be necessary
because the co-ranking matrix is such that
X

ðk;lÞ2ULK[LLK

qkl ¼
X

ðk;lÞ2ULK[URK

qkl ¼ KN ð2Þ

and
X

ðk;lÞ2LLK

qkl ¼
X

ðk;lÞ2URK

qkl: ð3Þ

Formally, this can also be demonstrated by observing that Q is a
sum of N permutation matrices, whose row-wise as well as col-
umn-wise sums are all equal to one (Lee and Verleysen, 2008a).
Hence, without an appropriate weighting of the terms in the left
and right sums in (3), defining a pair of criteria makes no sense:
their values over blocks LL and UR are equal. On the other hand,
any weighting scheme turns out to involve a somewhat arbitrary
choice.

In contrast to the above-mentioned criteria, the LCMC covers a
single block of Q, namely ULK . This eliminates the need for any
weighting, at the expense of loosing the other criteria’s ability to
distinguish between intrusions and extrusions. Such drawback is
easily overcome by the pair of criteria proposed in (Lee and Verley-
sen, 2008a, 2009). They are defined as

Q NXðKÞ ¼
1

KN

X
ðk;lÞ2ULK

qkl ð4Þ

and

BNXðKÞ ¼
1

KN

X
ðk;lÞ2UTK

qkl �
X

ðk;lÞ2LTK

qkl

0
@

1
A: ð5Þ

The first criterion assesses the overall quality of the embedding, it
varies between 0 and 1, and measures the preservation of K-ary
neighborhoods in a straightforward way. There is a close relation-
ship with the LCMC, which can be written as

LCMCðKÞ ¼ Q NXðKÞ �
K

N � 1
; ð6Þ

where the second term is a baseline that accounts for the expected
overlap between the initial K-ary neighborhoods and those in a ran-
dom embedding (Chen, 2006; Lee and Verleysen, 2008a). The sec-
ond proposed criterion is the difference between the rates of mild
K-intrusions and mild K-extrusions. By virtue of equality (3), it also
corresponds to the difference between all (hard and mild) K-intru-
sions and K-extrusions. Hence, the sign of BNX(K) indicates the
‘behavior’ of the considered embedding, that is, it indicates whether
the embedding is rather intrusive or extrusive.

Fig. 3 shows a simple example of how the proposed quality cri-
teria can be used. The data set consists of 1000 points uniformly
sampled from a (hollow) unit sphere. As this manifold is intrinsi-
cally two-dimensional, we attempt to embed it in a plane with
two different methods, namely Sammon’s nonlinear mapping
(Sammon, 1969) and curvilinear component analysis (Demartines
and Hérault, 1997). The plot shows QNX(K) and BNX(K) with respect
to K. Baselines are given for both criteria (zero for BNX(K) and K/
(N � 1) for QNX(K)). Looking at the curves for QNX(K) shows that
CCA better succeeds than NLM in embedding the sphere in a
two-dimensional space (CCA’s curve is noticibly higher). This bet-
ter result stems from the ability of CCA to ‘tear’ the sphere and
to embed two adjacent half spheres. In contrast, NML crushes
and superimposes the two hemispheres. The opposite signs of
BNX(K) account for this fundamental behavior difference.
4. Scalar quality criteria

Interpreting the quality criteria such as those described in Eqs.
(4) and (5) and illustrated in Fig. 3 raises two questions:

� How can the user easily figure out which embedding among the
compared ones is performing the best?
� Which is the optimal value of K to be looked at?

These two questions turn out to be closely related to the scale
issue that underlies the field of dimensionality reduction. As most
manifolds cannot be embedded in a low-dimensional space with-
out being somewhat distorted, we have to decide which properties
are local and which are global (Saul et al., 2003; Roweis et al.,
2002). This distinction allows the DR methods to give a higher pri-
ority to the preservation of local properties and to relax the
requirements about the global ones. For that purpose, most DR
methods have a scale parameter that can be for instance:
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Fig. 6. Quality and behavior curves for embeddings of 1000 images taken from the MNIST database of handwritten digits.
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� a number of neighbors (in methods such as Isomap or LLE,
which involve K-ary neighborhoods),
� a neighborhood width or radius (such as in CCA and SOMs), or
� a more complex parameterization (such as the perplexity in

tSNE).

If local properties are more important than global ones, we de-
duce that the left part of the curve representing QNX(K) is likely to
be more important than the right part. A good DR method should
thus yield a high QNX(K) for low values of K. Of course, the same
method will perform even better if it keeps the curve as high as
possible for all values of K. For this reason, quality criteria QNX(K)
and BNX(K) can be summarized in an obvious way by looking at
their average values

Q avg ¼
1

N � 1

XN�1

K¼1

Q NXðKÞ ð7Þ

and

Bavg ¼
1

N � 1

XN�1

K¼1

BNXðKÞ: ð8Þ

These quantities range from 0 to 1, and from �1 to 1, respectively.
They indicate how well a DR method perform, regardless of the
scale. For a perfect embedding, we would have Qavg = 1 and Bavg = 0.
Undoubtedly these quantities convey an interesting piece of infor-
mation but they give the same importance to all points of the
curves. Hence, they fail to reflect the emphasis that should be put
on the preservation of small ranks, which corresponds to the left
part of the curves. In the case of QNX(K), we can split the curve into
left and right parts by looking at

Kmax ¼ arg max
K

LCMCðKÞ ¼ arg max
K

QNXðKÞ �
K

N � 1

� �
; ð9Þ

which gives the neighborhood size for which some method or
embedding performs best as compared to a random embedding.
Since QNX(K) trivially attains its maximum for K = N � 1, baseline
K/(N � 1) corresponding to neighborhood overlap in a random
embedding must be subtracted from QNX(K). Starting from Kmax,
we can consider a ‘localness’ indicator defined as

L ¼ N � Kmax

N � 1
; ð10Þ

which assesses how local the best performance is; L varies between
1/(N � 1) (nonlocal at all) and 1 (fully local). Two other quantities of
interest are the average values of QNX(K) below and above of Kmax,
which are written as



Table 3
Scalar quality criteria derived from the curves in Fig. 6, for the MNIST database of
handwritten digits. Methods are ranked according to Qlocal (ranks are between
parentheses).

Qavg Bavg L Qglobal Qlocal

CMDS Eucl. 0.7486 0.0939 0.7828 0.8332 0.4446 (10)
CMDS geod. 0.7672 0.0801 0.8158 0.8351 0.4675 (8)
NLM Eucl. 0.5593 �0.0294 0.8408 0.6324 0.1740 (12)
NLM geod. 0.7774 0.0767 0.8248 0.8417 0.4756 (5)
CCA Eucl. 0.7815 0.0389 0.8138 0.8475 0.4936 (4)
CCA geod. 0.7515 0.0051 0.8639 0.7960 0.4698 (7)
SNE Eucl. 0.7774 0.0820 0.8278 0.8356 0.4981 (3)
SNE geod. 0.7688 0.0709 0.8478 0.8225 0.4709 (6)
tSNE Eucl. 0.7445 �0.0046 1.0000 0.7445 0.6060 (1)
tSNE geod. 0.7358 �0.0026 0.9950 0.7373 0.4419 (11)
tSNE Eucl. PCI 0.7594 0.0048 1.0000 0.7594 0.5690 (2)
tSNE geod. PCI 0.7513 0.0075 0.9950 0.7529 0.4472 (9)

2 As tSNE involves nonscaled Student’s t distributions in the embedding space, it is
aling invariant, meaning that scaled data always lead to the same embedding. For
is reason, the initialization must rely on whitened (that is, nonscaled) components
stead of principal components. An additional scaling factor (1e�4) ensures that the

mbedded data points are not initialized too far away from each other (this prevents
e gradient descent to get stuck in poor local minima).
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Q local ¼
1

Kmax

XKmax

K¼1

Q NXðKÞ ð11Þ

and

Q global ¼
1

N � Kmax

XN�1

K¼Kmax

Q NXðKÞ; ð12Þ

respectively. Like L, Qlocal and Qglobal range from 0 (worst) to 1 (best).
They also own the advantage of being scalar without relying on a
value of K (arbitrarily) fixed by the user. The value of K is automat-
ically determined by Kmax. In the case of the hollow sphere mani-
fold, the values corresponding to the curves in Fig. 3 are reported
in Table 1.

We suggest that any method or embedding be assessed as fol-
lows. First, we advise looking at Qlocal. The preservation of small
neighborhoods emerges as a consensus in the domain of dimen-
sionality reduction (Lee and Verleysen, 2007; Saul et al., 2003;
Roweis et al., 2002; Venna and Kaski, 2006) and is thus of prime
importance indeed. In case of a tie, the embedding with the highest
value of Qglobal wins. Eventually, L gives a clue about the relative
size for which K-ary neighborhoods are best preserved. The last
three criteria can be summarized in a simple diagram where
markers are plotted for each embedding, with coordinates
[Qglobal,Qlocal]T. Such a diagram is shown in Fig. 4 in the case of
the hollow sphere. In order to visualize L within the same diagram,
we consider the line that corresponds to random embeddings for a
varying value of Kmax. In this particular case, the ordinate is given
by

Q local ¼
1
2

1
N � 1

þ Kmax

N � 1

� �
¼ N þ 1

2ðN � 1Þ �
L
2
; ð13Þ

whereas the corresponding abscissa is

Q global ¼
1
2

Kmax

N � 1
þ N � 1

N � 1

� �
¼ 2N � 1

2ðN � 1Þ �
L
2
: ð14Þ

Additional markers for each embedding can then be plotted on this
line, according to their respective value of L. The closer to the bot-
tom left corner the marker lies, the higher L is. Furthermore, the
horizontal and vertical shifts between the two markers associated
with an embedding also convey some information. They indicate
how the considered embedding improves Qlocal and Qglobal with re-
spect to a random embedding that has the same value of Kmax.

As to the embeddings of the hollow sphere, CCA outperforms
the NLM (CCA’s main marker is higher than NLM’s one). CCA also
achieves a better preservation of large neighborhoods (CCA’s main
marker is on the right of NLM’s one). Finally, the secondary mark-
ers located on the baseline indicate that CCA’s value of localness L
is higher than NLM’s one (CCA’s secondary marker is closer to the
bottom left color). The next section presents comparison with
more DR methods on more difficult data sets.

5. Experiments

This section aims at embedding several data sets in a two-
dimensional space, for visualization purposes, regardless of the
intrinsic data dimensionality. Several methods are used and com-
pared with the proposed quality criteria.

5.1. Methods

The experiments compare the following methods:

� Classical metric multidimensional scaling (Young and House-
holder, 1938; Torgerson, 1952) (CMDS).
� Sammon’s nonlinear mapping (Sammon, 1969) (NLM).
� Curvilinear component analysis (Demartines and Hérault, 1997;

Hérault et al., 1999) (CCA).
� Stochastic neighbor embedding (Hinton and Roweis, 2003)

(SNE).
� t-Distributed stochastic neighbor embedding (van der Maaten

and Hinton, 2008) (tSNE).

Two versions of tSNE are compared. The first one is the
implementation provided by the authors of (van der Maaten
and Hinton, 2008). The second version relies on a simpler gradi-
ent descent (without momentum and ‘early exaggeration’).
Moreover, it does not randomly initialize the embedding as in
the first implementation. Instead, scaled principal components
are used.2 The implementation of SNE relies on the same initiali-
zation. The NLM and CCA are initialized with principal compo-
nents as well.

All methods are used with both Euclidean distances and geode-
sic ones (Tenenbaum, 1998; Bernstein et al., 2000). The geodesic
distance are approximated by computing shortest paths in the
Euclidean graph that is associated with 6-ary neighborhoods. Com-
bining CMDS and CCA with geodesic distances amounts to imple-
menting Isomap (Tenenbaum et al., 2000) and CDA (Lee et al.,
2000; Lee and Verleysen, 2004), respectively.

Parameters of the various DR methods are set to typical values,
with no further optimization, as the point of this paper is to illus-
trate the use of quality critria, not to claim the superiority of one or
another method.

5.2. Data sets and results

The first data set contains a sample of 1000 points drawn from a
Swiss roll (Tenenbaum et al., 2000) with uniform distribution. Its
equation is written as

n ¼
ffiffiffi
u
p

cosð3p
ffiffiffi
u
p
Þ;

ffiffiffi
u
p

sinð3p
ffiffiffi
u
p
Þ;pv ;0;0;0

� �T
; ð15Þ

where random parameters u and v have uniform distributions be-
tween 0 and 1. The three last coordinates are kept constant and
Gaussian noise with standard deviation 0.1 is added to all six
dimensions. Fig. 5 and Table 2 summarize the results. Embedding
sc
th
in
e
th
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the Swiss roll provided as a first data set clearly entails some diffi-
culties: the variance of the noise that pollutes the six dimensions is
quite high. The values of Qlocal in the last column of Table 2 provide
a ranking of the methods. Geodesic distances improve the result of
SNE and CCA; all other methods work better with Euclidean dis-
tances. The best methods are those that provide extrusive embed-
dings (Bavg is negative). The worst methods are intrusive but tend
to better preserve large neighborhoods (the values of Qglobal are
higher). Strong correlations exist between Qavg and Qglobal and
Fig. 7. Some faces randomly d
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Fig. 8. Quality and behavior curves for e
between L and Qlocal. Initializing tSNE with principal components
slightly decreases Qlocal. However, a significantly larger value of
Qglobal compensates for this loss.

The second data set includes 1000 images from the MNIST digit
database (LeCun et al., 1998). Each image is 28 pixels wide and
28 pixels high, leading to 784-dimensional vectors after concatena-
tion. The first 100 images associated with each digit from 0 to 9 are
gathered in the data set. The results are shown in Fig. 6 and Table 3.
The subset of the MNIST database is embedded best by tSNE, which
rawn from the database.
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Table 4
Scalar quality criteria derived from the curves in Fig. 8, for B. Frey’s faces. Methods are
ranked according to Qlocal (ranks are between parentheses).

Qavg Bavg L Qglobal Qlocal

CMDS Eucl. 0.7445 0.1140 0.8152 0.8168 0.4259 (10)
CMDS geod. 0.7428 0.0512 0.8442 0.7936 0.4685 (8)
NLM Eucl. 0.6772 0.0129 0.7546 0.7809 0.3585 (12)
NLM geod. 0.7036 0.0348 0.8432 0.7602 0.3997 (11)
CCA Eucl. 0.7711 0.0498 0.9078 0.8018 0.4695 (7)
CCA geod. 0.7245 �0.0022 0.9975 0.7249 0.5543 (3)
SNE Eucl. 0.7667 0.0802 0.9145 0.7899 0.5187 (6)
SNE geod. 0.7320 0.0411 0.9842 0.7365 0.4529 (9)
tSNE Eucl. 0.7035 0.0055 0.9990 0.7036 0.6184 (1)
tSNE geod. 0.6425 �0.0162 0.9975 0.6428 0.5521 (4)
tSNE Eucl. PCI 0.7488 0.0116 0.9985 0.7491 0.6009 (2)
tSNE geod. PCI 0.7257 0.0051 0.9975 0.7262 0.5514 (5)
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is known to perform very well with clustered and very high-
dimensional data (van der Maaten and Hinton, 2008). The version
of tSNE initialized with principal components takes the second
place and slightly improves Qglobal. Though usually successful in
manifold learning, geodesic distances prove to be useless with this
10-cluster data set. Sammon’s NLM performs badly, especially with
Euclidean distances: any two-dimensional embedding requires in-
ter-cluster distances to be distorted in a way that is incompatible
with the weighting scheme of its objective function.

The third data set contains 1965 pictures of B.J. Frey’s face
(Roweis and Saul, 2000). Each face is 20 pixels wide and 28 pixels
high, leading to 560-dimensional vectors after concatenation.
Some face poses are illustrated in Fig. 7. Fig. 8 and Table 4 summa-
rize the results. As the MNIST data set, Frey’s face bank contains
vectorized images. The dimensionality is very high as well,
although the data cloud owns a different structure. Since the face
pictures are drawn from a movie featuring the same person, there
are smooth transitions between the various face expressions. In
other words, clusters of the dataset (if any) are likely to be distrib-
uted on a smooth manifold. As a consequence, one expects geode-
sic distances to be useful for distance-preserving methods. Values
of Qlocal for CMDS, NLM, and CCA confirm this hypothesis. In con-
trast, geodesic distances do not improve the results of similarity-
preserving methods such as SNE and tSNE. With a principal com-
ponent initialization, tSNE yields a higher value of Qglobal than with
a random initialization, at the expense of a small decrease of Qlocal.
6. Conclusions

The question of quality assessment for dimensionality reduc-
tion methods has remained unanswered for a long time. Recently,
several publications have proposed quality criteria that are based
on ranks and neighborhoods. These are for instance the trustwor-
thiness and continuity, the mean relative rank errors, the local con-
tinuity metacriterion, and the quality and behavior criteria. Relying
on ranks rather than distances makes these criteria more pertinent,
as ranks are almost invariant to the dilations or contractions that
are often required to embed complex data sets in low-dimensional
spaces. Yet, these criteria all leaves the user with a free parameter:
the observation scale, that is, the size of the K-ary neighborhoods
to be considered.

This paper suggests that information provided by some of these
scale-dependent criteria be summarized into a single scalar value.
For this purpose, we first compute the local continuity metacriteri-
on and the closely related quality criterion QNX(K) for all admissible
values of K. Next, for a given embedding, we determine the value of
K where the local continuity metacriterion attains its maximum
value. This splits the range of K into two intervals. Averaging
QNX(K) over both intervals yields Qlocal and Qglobal, which assess
the preservation of small and large neighborhoods, respectively.
We suggest Qlocal as a unique and scalar quality criterion, in agree-
ment with the widely admitted consensus that dimensionality
reduction should focus on the preservation of local data properties.

A quantity such as Qlocal obviously inherits the main advantages
and shortcomings of the rank-based criteria it is based upon,
namely QNX(K) and the local continuity metacriterion. In spite of
their qualities, ranks that come out of a distance sorting process
still depend in a straightforward way on some underlying metric.
Rank-based criteria leave this responsibility to the user. On the po-
sitive side, Qlocal elegantly circumvents the question of the observa-
tion scale. The user is provided with a single figure that allows
him/her to compare embeddings or DR methods in a straightfor-
ward way.
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