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Abstract

The marginal entropy hðZÞ of a weighted sum of two variables Z ¼ aX þ bY ; expressed as a function of its weights,

is a usual cost function for blind source separation (BSS), and more precisely for independent component analysis

(ICA). Even if some theoretical investigations were done about the relevance from the BSS point of view of the global

minimum of hðZÞ; very little is known about possible local spurious minima.

In order to analyze the global shape of this entropy as a function of the weights, its analytical expression is derived in

the ideal case of independent variables. Because of the ICA assumption that distributions are unknown, simulation

results are used to show how and when local spurious minima may appear. Firstly, the entropy of a whitened mixture,

as a function of the weights and under the constraint of independence between the source variables, is shown to have

only relevant minima for ICA if at most one of the source distributions is multimodal. Secondly, it is shown that if

independent multimodal sources are involved in the mixture, spurious local minima may appear. Arguments are given

to explain the existence of spurious minima of hðZÞ in the case of multimodal sources. The presented justification can

also explain the location of these minima knowing the source distributions. Finally, it results from numerical examples

that the maximum-entropy mixture is not necessarily reached for the ‘most mixed’ one (i.e. equal mixture weights), but

depends of the entropy of the mixed variables.
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1. Introduction

The marginal entropy of a whitened weighted
sum of m variables is an important measure in
many data and signal processing contexts. For
instance, the signal entropy can be used as a cost
d.
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function for blind source separation (BSS) (see e.g.
[10]) and blind deconvolution [14,15], in the
independent component analysis (ICA) context.
Indeed, in such applications, efficient algorithms
minimizing this entropic function can lead to
recovering the lowest entropic source [10]. This
method can be extended to the simultaneous
extraction of npm sources if n non-singular
mixtures are available.
Despite its popularity in the ICA community,

very little is known about the global shape of the
marginal entropy, when it is expressed as a
function of the mixing coefficients. However,
having information about this shape can be critical
when the minimization of the marginal entropy
function is performed through a gradient descent
as it is the case in most ICA algorithms. Actually,
some spurious local minima of the entropy may
appear, as mentioned in [3]. In [16], Cardoso
presents a simple example involving two indepen-
dent sources having a joint distribution with 3�
3 ¼ 9 modes; in this example the maximum
likelihood-based cost function, another criterion
for ICA, fails to give a satisfactory non-mixing
solution, even when the source distributions are a
priori known. An intuitive justification can explain
this problem, looking at the Kullback–Leibler
distance between the target and the output
distributions. In this paper, we extend this study
to the marginal entropy cost function (equivalent,
under the whiteness constraint, to the mutual
information one [7]).
This work covers the problem of a mixture of

two sources. The influence of the source indepen-
dence assumption and of the source distribution
modality on the existence of spurious minima is
analyzed through numerical simulations. On one
hand, simulation results show that the dependence
level between the original sources influences the
existence of spurious minima. Furthermore, it is
shown that the most random mixture is not
necessarily obtained with equal mixture coeffi-
cients: the level of randomness of the mixture also
depends on the source entropies. On the other
hand, the impact of the source distributions shape
is examined; two simple examples involving two
independent sources having a joint distribution
with 2� 2 ¼ 4 modes are given; in this examples,
the marginal entropy cost function fails to give an
acceptable, non-mixing, solution. An intuitive
explanation of this phenomenon is provided in
terms of structural modification (actually, the
number of modes) of the distribution. The
simulation results are reinforced by theoretical
arguments (without using any information on the
source distributions, except their (in)dependence)
when possible.
This paper is organized as follows. In Section 2,

the problem of source separation is briefly recalled,
and the impact of whitening the signals issued
from ICA on the mixing coefficients is derived.
The ICA application is presented as an optimiza-
tion problem in Section 3. In Section 4, the
entropy is defined, and its use for ICA is argued
from two point of views. The output distributions
are characterized in Section 5. In Sections 6 and 7,
the impact of source independence and source
modality is analyzed, respectively.
2. Blind source separation

2.1. Separation consists in adjusting the weights of

a mixture

Consider a vector of n unknown zero-mean
sources S ¼ ½S1; . . . ;Sn�

T linearly combined by an
unknown square n � n (invertible) mixing matrix
A; resulting in a vector of observed signals U ¼

½U1; . . . ;Un�
T (the T exponent denotes the trans-

position operator):

U ¼ AS. (1)

The sources extraction method consists in multi-
plying U by an unmixing matrix B such that W ¼

BA is diagonal, up to permutations between its
rows (one non-zero element per row and per
column: W is ‘non-mixing’). The vector of the
outputs Z¼

:
BU ¼ WS is thus an estimation of the

original sources, possibly permuted and scaled.
Now assume that S ¼ ½S1 S2�

T (n ¼ 2) and that
Z is the first element of Z (Z¼

:
Z1). In this case, the

mixing system reduces to

U ¼
a11 a12

a21 a22

" #
S1

S2

" #
(2)
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and

Z ¼ ðb11a11 þ b12a21Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
a

S1 þ ðb11a12 þ b12a22Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
b

S2,

(3)

where aij and bij are the elements of A and B;
respectively. The invertibility of the mixing system
implies that the rank of A must be two
(det jAja0). Consequently, by adjusting the ele-
ments b1i of the first row of B (or equivalently
the elements a and b of the first row of W),
it is possible to yield Z proportional to an
original source. In the following, we consider that
a and b (called here ‘weights’ or ‘mixture
coefficients’) can be freely adjusted, without loss
of generality.
It is well known (see e.g. [17]) that if the

extraction of both sources is required, Z2 can be
obtained by orthogonalization of B subject to
RZ ¼ IB; where RZ is the covariance matrix of Z
and IB the identity matrix of the same size as B:
This is called a deflation approach [13].
2.2. Whitening all signals

If the zero-mean signals Z have a covariance
matrix equal to identity they are said to be white:
RZ ¼ IB [17]. Under whitening constraint on the
output Z, the coefficients a and b are not
independent. Indeed, constraining the variance
s2Z ¼ 1 we have

s2Z¼
:

EfðaS1 þ bS2Þ
2
g � EfaS1 þ bS2g

2

¼ a2EfS2
1g þ b2EfS2

2g þ 2abEfS1S2g � EfaS1g
2

� EfbS2g
2 � 2abEfS1gEfS2g

¼ a2 ðEfS2
1g � EfS1g

2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s2

S1

þb2 ðEfS2
2g � EfS2g

2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s2

S2

þ 2ab ðEfS1S2g � EfS1gEfS2gÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dS1S2

. ð4Þ

Moreover, as the sources are independent, they are
uncorrelated (dS1S2 ¼ 0) and the previous relation
reduces to

s2Z ¼ a2 þ b2 ¼ 1. (5)
The a and b coefficients may then be expressed as
circular functions of an angle y;

a¼: sinðyÞ,

b¼: cosðyÞ. ð6Þ

The observed signals are also supposed to be
uncorrelated and to have unit variance (i.e.
they are whitened: RU ¼ IB). If they are not, a
linear transformation based on the eigenvalue
decomposition of RU is applied [8]. It has been
shown in [17] that this constraint combined with
RZ ¼ IB reduces B to an orthogonal matrix
(j detðBÞj ¼ 1).
Note that the whiteness assumption on the

sources is not restrictive if the sources are
uncorrelated. Indeed, we may divide Si by sSi

and multiply the ith column of A by the
same quantity, without changing the observed
signals U:
In the remaining of this paper, the sources will

be deemed to have a unitary variance. In some
examples, they will be slightly correlated, but in
that cases the value of the Pearson’s coefficient will
be given. In all situations, we will impose the
constraint on the weights given by Eq. (5), without
guarantee that it will imply s2Z ¼ 1; since dS1S2 can
be non-zero.
3. From BSS to ICA and optimization

Of course, in ‘real-world’ applications blind

update rules for the elements of B must be found;
blind means that neither the sources nor the mixing
matrix are known, so that the trivial solution
B%¼

:
A�1 cannot be used.

If the sources S are mutually independent, the
ICA methods allow to recover the original signals
by minimizing a cost function C; the main
property of adequate cost functions is that
CðZÞX0; with equality (global minimum) if and
only if the output signals are independent, i.e. if

f Z ¼ f Z1
f Z2

, (7)

where f Z and f Zi
are the joint and marginal

distributions of Z and Zi respectively. If at most
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one source Si has a Gaussian distribution, it is
known from the Darmois–Skitovitch theorem
[8,12] that these independent components corre-
spond to the original sources:

Z� ¼ B�A|ffl{zffl}
W�

S ¼ PDS, (8)

where P and D denote permutation and diagonal
matrices, respectively. Similarly, Z�; B� and W�

are the Z; B andW matrices found at CðZÞ ¼ 0: In
other words, W� is non-mixing. In the remaining
of this paper, it is assumed that at most one source
follows the Normal law.
Several cost functions C were derived for ICA,

for example using the mutual information
[16,17,8], the kurtosis [16,17,6], the order statistics
[19], the higher-order cumulants [10,16,17,5] or the
marginal entropy of one of the outputs (see a.o.
[3,11]). In this paper, we focus on this latter
criterion.
4. Differential entropy as cost function for ICA

The minimum marginal entropy is one of the cost
functions that allow recovering independent sig-
nals. If the original sources S are mutually
independent, finding the unmixing matrix B that
minimizes—globally—the entropy hðZÞ of the
mixture Z will imply b ¼ 0 if S1 has a lower
entropy than S2; and a ¼ 0 in the opposite case.
The other signal can be found by deflation (see
Section 2.1). An alternative to the deflation
approach allowing to extract simultaneously all
the sources is to minimize the sum of the output
marginal entropies: hðZ1Þ þ hðZ2Þ:
In this section, we first introduce the differential

entropy hðX Þ of a random variable X. Next, the
relevance of hðZ1Þ þ hðZ2Þ and hðZÞ as cost
functions for ICA is examined starting from the
mutual information (MI) concept and using the
entropy power inequality (EPI).

4.1. Differential entropy
Definition 1. The differential entropy (also called
Shannon’s entropy) of a continuous variable X
with distribution f X is defined as [21]

hðX Þ¼
:
�

Z
f X ðxÞ log f X ðxÞdx. (9)

This definition applies both to univariate and
multivariate random variables. The differential
entropy hðX Þ can be seen as a measure of the
amount of ‘randomness’ in the variable X. In this
paper, the theoretical developments are presented
with logarithm to base 2 for simplicity, but the
results remain valid if other bases are chosen. The
following theorem illustrates a property of the
differential entropy that will be used further in this
paper.

Theorem 1. Consider X% ¼ CX þ m; where m is a

shift, C a scaling (matrix or scalar) factor and X a

random variable. Then, the entropy of X% is given

by [9]

hðX%Þ ¼ hðX Þ þ log jCj. (10)

If C is a matrix, jCj denotes the absolute value
of detðCÞ: This expression shows that the entropy
is not sensitive to shifting but well to scaling. Note
that contrarily to the entropy of a discrete
variable, the differential entropy can be negative.
Furthermore, if C is an orthogonal matrix,
hðX%Þ ¼ hðX Þ:
4.2. Minimum mutual information approach

The mutual information (MI)—noted I—be-
tween two variables Z1 and Z2 is the Kullback–-
Leibler divergence (also called relative entropy)
between the joint density and the product of the
marginal ones [9]:

IðZÞ ¼

Z
f ZðzÞ log

f ZðzÞ

f Z1
ðz1Þf Z2

ðz2Þ
dz. (11)

The mutual information can be used as a measure
of independence, and was proposed as a cost
function for ICA by Comon [8]. It can be shown
[9] that the MI can be rewritten in terms of
entropies:

IðZÞ ¼ hðZ1Þ þ hðZ2Þ � hðZÞ. (12)

As previously explained in Section 2.2, B is
orthogonal under whitening constraint. Therefore
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Fig. 1. Restricted areas in the entropy space. The marginal

entropy of a whitened weighted mixture is located above the

zone delimited by the dark areas (Eq. (15)) and the horizontal

line P 
 minðhðS1Þ; hðS2ÞÞ (Eq. (16)).
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Eq. (10) gives hðZÞ ¼ hðUÞ ¼ hðSÞ þ log j detðAÞj:
the joint entropy of the whitened outputs is
constant under invertible transformations [7,9]
(since j detBj ¼ 1). In the case of whitened out-
puts, minimizing the mutual information (i.e. the
dependence) between the outputs is equivalent to
minimizing the sum of the marginal entropies, since
the last term of the right-hand part of Eq. (12) is
constant. Note that the marginal entropy criterion
is different from the one used in the algorithm
derived by Bell and Sejnowski [2]. Indeed, this
algorithm tries to maximize the joint entropy of the
outputs, non-linearly mapped in ½0; 1�n through an
activation function. Hence, the sum of the margin-
al output entropies is a local cost function for BSS:

C12ðZÞ¼
:

hðZ1Þ þ hðZ2Þ. (13)

4.3. Entropy power inequality approach

A fundamental result in statistics and informa-
tion theory is the entropy power inequality.

Theorem 2. If S1 and S2 are two independent

random variables, then [9]:

22hðS1þS2ÞX22hðS1Þ þ 22hðS2Þ (14)

with equality if and only if S1 and S2 follow the

Normal law.

The entropy power inequality is used to prove
the following property of the entropy of a
weighted sum of random variables.

Corollary 1.

hðZÞ ¼ hðaS1 þ bS2Þ

XmaxðhðS1Þ þ log jaj; hðS2Þ þ log jbjÞ. ð15Þ

Proof. By substitution, we have that
22hðaS1þbS2ÞX22hðaS1Þ þ 22hðbS2Þ: Using Eq. (10), the
fact that 22hðUÞ

X0 for any random variable U; and
the strictly increasing property of the logarithm
function, we have the enounced result. &

The corresponding ‘forbidden zones’ for hðZÞ

are colored in dark in Fig. 1. For illustration
purposes, hðS1Þ was arbitrarily chosen lower than
hðS2Þ:
Unfortunately, the result enounced by Eq. (15)

does not imply that hðaS1 þ bS2ÞXminðhðS1Þ;
hðS2ÞÞ (see small white area below the horizontal
solid line in Fig. 1). Nevertheless, this last relation
can easily be proven as shown below.

Corollary 2. If S1 and S2 are independent random

variables and if at least one of them has not a

Gaussian distribution, then the following inequality

holds:

hðZÞ ¼ hðaS1 þ bS2ÞXminðhðS1Þ; hðS2ÞÞ (16)

with equality if and only if a ¼ 0 in the
hðS2ÞohðS1Þ case, b ¼ 0 in the hðS1ÞohðS2Þ case
or if ab ¼ 0 in the hðS2Þ ¼ hðS1Þ case.

Proof. In the first part of the proof, it is assumed
that aba0: Hence, Theorem 2 can be applied on
aS1 and bS2 instead of S1 and S2; respectively.
Using the hypothesis that both source distribu-
tions are non-Gaussian, then, combining Theo-
rems 1 and 2, we have

22hðaS1þbS2Þ422hðaS1Þ þ 22hðbS2Þ ð17Þ

¼ 22ðhðS1Þþlog jajÞ þ 22ðhðS2Þþlog jbjÞ ð18Þ

¼ 22hðS1Þ2log ja
2j þ 22hðS2Þ2log jb

2j ð19Þ

¼ a222hðS1Þ þ b222hðS2Þ. ð20Þ

Since the logarithm is a strictly increasing func-
tion, we can rewrite this expression as

hðaS1 þ bS2Þ41
2
logða222hðS1Þ þ b222hðS2ÞÞ. (21)
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Now, assume that hðS2ÞXhðS1Þ: Taking into
account that the outputs are whitened (Eq. (5)
holds), we obtain the following result:

hðaS1 þ bS2Þ41
2 logð2

2hðS1Þ þ b2ð22hðS2Þ � 22hðS1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X0

Þ

ð22Þ

4hðS1Þ. ð23Þ

Hence, we have hðaS1 þ bS2Þ4hðS1Þ: On the
contrary, if hðS1ÞXhðS2Þ; it is proven in the same
way that hðaS1þ bS2Þ4hðS2Þ: In other words, if
aba0; the equality in Eq. (16) cannot be reached:
hðaS1þ bS2Þ4minðhðS1Þ; hðS2ÞÞ:
The specific cases of a ¼ 0 and/or b ¼ 0 are

handled differently. It is obvious that if a ¼ 0; then
Z ¼ S2 implying hðZÞ ¼ hðS2ÞXminðhðS1Þ; hðS2ÞÞ;
the equality is reached if and only if hðS2ÞphðS1Þ:
Similarly, if b ¼ 0; then Z ¼ S1 and hðZÞ ¼

hðS1ÞXminðhðS1Þ; hðS2ÞÞ; the equality holds if
and only if hðS1ÞphðS2Þ: Furthermore, if hðS1Þ ¼

hðS2Þ; then both a ¼ 0 or b ¼ 0 ensure that hðZÞ ¼

minðhðS1Þ; hðS2ÞÞ: The combination of these results
proves Eq. (16). &

Corollary 2 can be observed in Fig. 1.
As a consequence, the entropy of a unit-variance

weighted mixture of two whitened independent
sources is larger or equal than the entropy of the
lowest entropic source. It follows from Eq. (23)
that the equality is reached when the absolute
value of the weight associated to this particular
source is one (all the other weights being zero); the
entropy of a marginal output distribution is a local
cost function for ICA:

CiðZiÞ¼
:

hðZiÞ. (24)

Note that contrarily to the MI approach, the
entropy of a marginal distribution focus on a
single output signal Z ¼ Zi:

4.4. Gradient descent on C12ðZÞ and CiðZiÞ?

The above sections show that minimizing the
sum of the output entropies or the entropy of a
single output allows one to solve the BSS problem.
Furthermore, the global minimum of Ci leads to
recover the lowest entropic source (up to a scale
factor). A generalization to more than two sources
may be found in [11]; however in the latter,
Poincaré’s separation theorem of matrix algebra
must be used.
If one wants to find non-mixing minima (corre-

sponding to B ¼ B�) by gradient descent, the
existence of mixing local minima (i.e. minima that
do not correspond to {ab ¼ 0 and aþ ba0} and
thus associated to spurious solutions) of hðZÞ must
be discussed; this is the topic of the next sections.
Note that if mixing minima exist, they are local
minima because of Corollary 2 (see Eq. (16)).
5. Characterization of the output distributions

The analytical expression of hðZÞ expressed as a
function of the weights and of the differential
entropy of the sources will be derived. It is well
known (see e.g. [20]) that if Z is a sum of
independent variables S1 and S2; then f Z is the
convolution of the distributions f S1

and f S2
: For

instance,

f Z ¼ f S1
n f S2

or f ZðzÞ ¼

Z
f S1

ðtÞf S2
ðz � tÞdt,

(25)

where the symbol n denotes the convolution
operator. Therefore, the distribution of Z ¼ aS1 þ

bS2 is the convolution of f aS1
and f bS2

:

f Z ¼ f aS1
nf bS2

. (26)

A change of variables makes it possible to rewrite
the densities f aS1

and f bS2
in terms of the marginal

distributions of the original variables. Indeed, if
V ¼ aS1; then [9]

f V ðvÞ ¼ f aS1
ðvÞ ¼

f S1
ðv=aÞ

jaj
. (27)

Using Eqs. (26) and (27), the distribution of Z can
be rewritten as

f ZðzÞ ¼
1

jabj

Z
f S1

t
a

	 

f S2

z � t
b

� �
dt. (28)

This analytical expression does not allow to draw
conclusions on the existence of mixing minima of
hðZÞ without knowing some information about
the densities of the sources S1 and S2 involved in
the mixture. In particular, the structure of the
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distribution (unimodal or multimodal) influences
the existence of mixing minima, even in the ideal
mixing case (see Section 7). For this reason, in
order to discuss the significance of each local
minimum from the source separation point of view
(and to extend the justification to dependent
sources), the next sections present simulation
results of the entropy of a mixture.
Let us remark that CiðZiÞ cannot be used as cost

function for BSS in the case of Gaussian sources.
Indeed, having Eq. (26) in mind, it can be proven
that if both f S1

and f S2
are Normal distributions,

then f Z is also a Normal distribution. Moreover,
the variance of Z is unitary (see Eq. (5)). Hence,
whatever a; Z is a whitened Normal variable, i.e.
hðZÞ ¼ 1

2
logð2peÞ; which is a constant function. In

this special case, the inequality in Eq. (14) can be
replaced by a strict equality.
6. Impact of the dependence between signals

It has been shown in [4] that there is no spurious
minima in C12ðZÞ when both S1 and S2 are nearly

Gaussian. Although, to the authors knowledge,
there is no similar result neither for CiðZiÞ; nor for
C12ðZÞ if the signals are not nearly Gaussian.
In this section, the global shape of C1ðZÞ

(expressed as a function of the mixing coefficients)
where at most one of the two variables is multi-
modal is analyzed through numerical simulations.
The impact of the level of correlation and
dependence between S1 and S2 on the existence
of mixing minima is emphasized.
In the simulations below, the mutual informa-

tions and the entropies are computed using the
natural logarithm, implying that the correspond-
ing numerical values are expressed in ‘nats’. The
mixed variables S1 and S2 have unit variance. Let
us first recall that the a2 þ b2 ¼ 1 constraint on the
weights guarantees that the mixture has a unit
variance (s2Z ¼ 1; see Eq. (5)) only if the original
sources S1 and S2 are uncorrelated (dS1S2 ¼ 0; see
Eq. (4)); this constraint will be respected in the
following.
Mixtures Z ¼ aS1 þ bS2 of four random vari-

ables, illustrated as signals in Fig. 2, are analyzed.
These variables have different correlation and
dependence levels. The correlation is measured
through Pearson’s correlation coefficient rðS1;S2Þ;
given for zero-mean variables by

rðS1;S2Þ ¼
EfS1S2gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EfS1S
T
1 gEfS2S

T
2 g

q (29)

with 0pjrjp1: On the other hand, the mutual
information IðS1;S2Þ; defined by Eq. (11), mea-
sures the statistical independence between the
signals (IðS1;S2ÞX0 with equality if and only if
S1 and S2 are independent [9]).
Note that while independence implies zero corre-

lation, the reciprocal is false. While a zero correlation
means dS1S2 ¼ 0; independence is reached only if
EfjðS1ÞcðS2Þg ¼ EfjðS1ÞgEfcðS2Þg for all non-
linear functions j and c [17].
The values of the correlation and mutual

information between the signals plotted in Fig. 2
are given in Table 1. These values are estimated of
the associated theoretical statistical quantities,
since the true distributions are supposed to be
unknown. For this reason, the estimation of
correlation and mutual information depend on
the sample size. For instance, only an infinite
number of samples allow to get a zero mutual
information. The source distributions are esti-
mated with the Parzen estimator and shown in the
right column of Fig. 2. Details about this estimator
and the choice of the standard deviation of the
basis kernels can be found in the appendix.
Fig. 3 shows the entropy of the mixtures as a

function of a for several combinations of the
signals given in the left column of Fig. 2.
Three results must be pointed out. Firstly,

mixing minima do not seem to exist in C1ðZÞ

when the original sources S1 and S2 are indepen-
dent (Figs. 3(a) and (b), with sources such that
IðS1;S2Þ is small). Secondly, contrarily to the
previous case, when the dependence level grows
(higher values of IðS1;S2Þ), mixing minima appear
(Figs. 3(c) and (d)). Note that for correlated
variables (with non-negligible r; i.e. dS1S2a0),
the constraint on the weights given by Eq. (5) no
more imposes s2Z ¼ 1 (see Eq. (4)); in this case, a
scaled version of Z (defined by Z% ¼ Z=sZ) is
preferred to ensure the consistency with the source
separation problem. If dS1S2a0; a scale factor
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Table 1

Left: absolute values correlations—jrj; right: mutual information—I— between signals of Fig. 2 (distributions estimated by Parzen

windows)

Signals 1 2 3 4 Signals 1 2 3 4

1 1 0.08 0.06 0.03 1 1.565 0.081 0.050 0.020

2 0.08 1 0.00 0.00 2 0.081 1.556 0.385 0.021

3 0.06 0.00 1 0.01 3 0.050 0.385 0.643 0.019

4 0.03 0.00 0.01 1 4 0.020 0.021 0.019 1.548
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Fig. 2. Signals (left) and their estimated distributions (right).
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appears between C1ðZÞ and C1ðZ
%Þ (see Eq. (10)

and the difference between C1ðZÞ—solid—and
C1ðZ

%Þ—dotted—curves in Fig. 3(c)). On Fig.
3(d) (where independence between sources is not
fulfilled), even Eqs. (15) and (16) are violated.
It is obvious from Figs. 3(c) and (d) that we

cannot trust in both local and global minima when
the sources are mutually dependent; the entropy
is not an appropriated cost function for BSS in
this case.
Finally, for independent variables with different

entropies, hðZÞ does not reach its maximum
(i.e. more random mixture) for a ¼ b ¼

ffiffi
2

p

2
(see

Fig. 3(b)). The most mixed signal, i.e. with equals
weights, is thus not necessarily the most random,
with the highest entropy.
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Fig. 3. Entropies vs. a for several whitened variables S1 and S2 (see Fig. 2 for labelling). Solid line, C1ðZÞ; dashed line, C1ðZ
%Þ where

Z% ¼ Z=sZ ; circles, hðS1Þ þ log jaj; top-down triangles, hðS2Þ þ log jbj: (a) S1: signal 1 and S2: signal 3; (b) S1: signal 3 and S2: signal

4; (c) S1: signal 2 and S2: signal 1; (d) S1: signal 2 and S2: signal 3.
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7. Impact of the modality

In the particular case where both the distribu-
tions of S1 and S2 have more than one mode, the
key result observed in the previous case (no mixing
minima for C1ðZÞ if IðS1;S2Þ is sufficiently small)
vanishes. This is illustrated in the next sections.
7.1. Spurious minima

A first joint density of two bimodal independent
variables S1 and S2 is shown in Fig. 4(a). In this
example, the tails of the modes overlap. The
evolution of C1ðZÞ vs. a is given in Fig. 4(b). One
can observe a mixing minimum around a ’ 0:65;
despite the very low level of dependence between
the original sources (IðS1;S2Þ ¼ 0:016). It is visible
from Figs. 4(c) and (d) that if the modes of the
source distributions are not overlapping anymore,
this phenomenon can be more clearly emphasized
(IðS1;S2Þ ¼ 0:006).
By contrast with the previous situation, if each

of these sources is combined with any unimodal
source from Fig. 2 (signals 2–4), no spurious
minimum appears. However, if one of the multi-
modal sources used in this section is combined
with the sine wave from Fig. 2 (bimodal distribu-
tion), we can also observe the appearance of a
mixing minimum.
Because of these possible mixing local minima,

in the particular case of multimodal sources, a
gradient descent on CiðZiÞ (even if the sources are
mutually independent) can lead to spurious mini-
ma. In order to emphasize this phenomenon, the
graphs in Figs. 4(b) and (d) are plotted vs.
y in Figs. 5(a) and (b), respectively. The non-
mixing (acceptable) solutions corresponds to y ¼

kp=2 8k 2 Z (see Eq. (6)). We can observe that
mixing solutions exist around y� ¼ ð2k þ 1Þp=4:
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Fig. 4. Effect of the source multimodality on the existence of mixing minima for uncorrelated and quasi-independent sources. Solid

line, C1ðZÞ; dashed line, C1ðZ
%Þ where Z% ¼ Z=sZ ; circles, hðS1Þ þ log jaj; top-down triangles, hðS2Þ þ log jbj: (a) Joint distribution of

slightly bimodal independent sources, (b) evolution of hðZÞ vs. a; (c) joint distribution of heavy bimodal independent sources, (d)

evolution of hðZÞ vs. a:
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Fig. 5. Evolution of C1ðZÞ vs. y for uncorrelated and quasi-independent variables having bimodal distributions: (a) Slight bimodality

with hðS1Þ ’ hðS2Þ; (b) high bimodality with hðS1Þ5hðS2Þ:
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This phenomenon seems to deforce a defla-
tion approach: if C1ðZÞ is trapped in a spu-
rious minimum (yakp=2), the first estimated
source will not correspond to an original one;
the estimation of the second one will thus
fail too, if it is obtained by orthogonaliz-
ing the second row of W with respect to the
first one.
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Let us denote by wij the jth entry of the ith row
of W: Hence, under the whitening constraint, if
w11¼

:
sinðyÞ; the system reduces to

Z ¼
Z1

Z2

" #
¼

sinðyÞ cosðyÞ

cosðyÞ � sinðyÞ

" #
S1

S2

" #
. (30)

With symmetric algorithms, i.e. where all sources
are extracted simultaneously, the cost function is
the sum of the marginal entropies [10], as detailed
in Section 4.2. One may ask if the local spurious
minima also appear with such algorithms. Un-
fortunately, Fig. 6 shows that even the symmetric
approaches do not allow to avoid spurious minima
of the associated cost function C12ðZÞ; and suffer
from the same drawback as deflation methods. For
this reason, the mutual information criterion may
have local minima, when minimized by adjusting
an unmixing angle of a rotation matrix. Note that
it is shown here that the mutual information may
have spurious minima when this criterion is
minimized under constraint that the observations

are linear mixtures of the sources signals and that

the outputs are a rotated version of the whitened

observations; without this constraint, the mutual
information cost function seems to have no local
minima (see e.g. [1]).

Remark 1. Note that because of Eq. (16), the
mixing minima of Ci (if they exist) are local, since
in this experience both sources respect the assump-
tions of Corollary 2. Similar conclusions can be
pi/43pi/4

pi/2

3pi/2

5pi/4 7pi/4

pi 0 p

(a) (b

Fig. 6. Evolution of C12ðZÞ vs. y for uncorrelated and quasi-ind

approach): (a) Slight bimodality with hðS1Þ ’ hðS2Þ; (b) high bimoda
drawn regarding C12; since the minimum value
(which is zero by Eq. (12)) is reached if and only if
the Zi are mutually independent, i.e. if Z ¼ Z� as
explained in Section 3.
Hence, both Ci and C12 can be used as BSS cost

functions, since their global minimum corresponds
to ab ¼ 0: Unfortunately, there is no guarantee
that their global minima can be reached through a
gradient descent when both source variables are
multimodal because of the existence of local
minima.

Remark 2. The reader can easily check that
hðZjyÞ ¼ hðZjpþ yÞ; as it can be seen in Fig. 5.
This is due to the fact that the sign of Z has no
consequence on C1ðZÞ (Eq. (10) with C ¼ �1).
Moreover, hðZjyÞ ¼ hðZjp� yÞ if f S1

or f S2
has a

symmetry axis. Similarly, the additional symme-
tries visible in Fig. 6 are due to the fact that
permuting Z1 and Z2 does not change C12ðZÞ:

7.2. Discussion

It is interesting to try to explain why such
spurious minima in the entropy function appear
when multimodal sources are involved in the
mixture. Similarly, the values of the critical angles
(corresponding to spurious minima of the entropy)
should be analyzed: for which reason those
minima seem to occur around y�?
Recall that f Z is the convolution of f aS1

and
f bS2

(Eq. (26)). Note that by Eq. (27) the latter
pi/4

5pi/4

pi/2

3pi/2

3pi/4

7pi/4

i 0

)

ependent variables having bimodal distributions (symmetric

lity with hðS1Þ5hðS2Þ:
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distributions are similar to the densities of the
original variables, up to a contraction (resp.
extension) of the magnitude (resp. probability)
axes.
Consider that f S1

is multimodal with M41
modes and that f S2

is unimodal. The resulting
distribution of Z is a distribution having one mode
if jaj is small and M modes if jaj is close to one.
Therefore when jaj varies from 0 to 1, the structure
of f Z evolves smoothly from an unimodal
distribution to a M-modal one.
The case of both multimodal (here bimodal)

sources is intrinsically different, the analysis is
restricted to angles y in the first quadrant, but
the reasoning holds in the three other ones.
An illustration of this case is given in Fig. 7,
using the jointly distributed sources from Fig. 4(c).
Note that contrarily to s2Z; the variance of aS1

and bS2 vary with y: This implies that a direct
estimation of their distributions using fixed-
variance basis kernels (see the appendix) is
not reliable. In order to illustrate the distribu-
tion in Fig. 7, we have circumvent this problem
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Fig. 7. Effect of y on the multimodality structure of f Z and on the

(f bS2
): (a) p=6; (b) p=4; (c) p=3; (d) p=2:
by using Eq. (27) to draw f aSi
as a scaled version

of f Si
:

For y near 0 or p=2; the structure of f Z is
bimodal (because Z is close from one of the
original bimodal variables). This is illustrated in
Fig. 7(d) for y ¼ p=2: When y increases starting
from 0, f Z tends to have a four-modal structure
(see Fig. 7(a)), due to the dilatation (resp.
contraction) of the X-axis of f aS1

(resp. f bS2
).

The same situation occurs if y decreases starting
from p=2 (Fig. 7(c)).
Let us denotes DðS1; yÞ (resp. DðS2; yÞ) the

distance between the two modes of f aS1
(resp.

f bS2
) where a ¼ sinðyÞ and b ¼ cosðyÞ: According

to this definition, the distances between modes in
the original f S1

and f S2
distributions are, respec-

tively DðS1; p=2Þ and DðS2; 0Þ:
It exists for particular values y& for which

the contraction of the axes produces the same
distance between modes in f aS1

jy& and f bS2
jy&:

DðS1; y
&
Þ ¼ DðS2; y

&
Þ; as shown in Fig. 7(b). In

this case, the convolution of the distributions of
aS1 and bS2 will be a three-modal density, the
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central mode of the result corresponding to the
superimposition of f aS1

jy& and f bS2
jy&; this mode

is higher than the two other ones, due to the
matching of the two pairs of modes. If the
distances between the modes are equal in the
original densities (DðS1;p=2Þ ¼ DðS2; 0Þ), the va-
lues y& correspond to the angles verifying
sinðy&Þ ¼ cosðy&Þ:
For the variables used in the example shown in

Fig. 7 we have DðS1;p=2Þ ’ DðS2; 0Þ ’ 2 (see their
joint distribution plotted in Fig. 4(c)). According
to the above development, y& should thus be
close to p=4: This is effectively the case as shown in
Fig. 7(b).
Of course, if the distance between the modes of

f S1
is different than the one of f S2

(DðS1;p=2ÞaDðS2; 0Þ), then the distances DðS1; yÞ
will become equal to DðS2; yÞ for a different
contraction of their magnitude axes. In other
words, a three-modal structure for f Z is now
reached for y&ap=4:
The above justification can intuitively explain

the existence of local spurious minima in the
entropy function of a linear mixture of multimodal
sources. Indeed, keeping a unit-variance mixture
and the modal widths approximately constant, if
the number of modes in the mixture increases, the
entropy (i.e. the ‘randomness’) of the mixture will
increase too. Therefore, if as in the above example
there is a local minimum in the number of modes
(four then three then four) when a increases, there
will also be a local minimum in the entropy
function (see Fig. 5(b)).
Consequently, the existence of the spurious

minima in the entropy cost function is directly
related to a structure modification of f Z according
to the weights. This modification occurs when two
multimodal sources are involved in the mixture.
The values of the critical angles depend of the
distances DðS1;p=2Þ and DðS2; 0Þ between the
modes of the original distributions.
Nevertheless, it must be stressed that the

entropy of a distribution cannot be seen, in
all situations, as an increasing function of the
number of modes. Indeed, it is not difficult to
find examples of whitened variables having a
distribution with three small-width modes that
have a smaller entropy than other whitened
bimodal variables having a distribution with
large and close modes. For this reason, the link
between the local minima of the entropy and the
modality of the distribution is only intuitive.
However, it is clear that the mixture entropy
extrema are directly related to the particular
structure of the mixture distribution, which in
turns depend on a specific contraction of the
source distributions.
8. Conclusion

Having insights about the global shape of
the entropy of a linear mixture of variables is
important in order to study the performances
of such criterion for source separation. As it is
often the case in independent component ana-
lysis (ICA), nothing is known about the source
distributions but their dependence level. For
this reason, theoretical developments of hðZÞ;
where Z is a weighted sum of independent
variables S1 and S2; will only give few infor-
mation about the global shape of this function
in the general case. Nevertheless, through the
entropy power inequality, valid for independent
variables, one can prove that the global minimum
of hðZÞ is reached when only the weight associated
to the lowest entropic source is non-zero (under
whiteness constraint, its absolute value is equal
to one).
According to our numerical simulations, the

entropy hðZÞ of a mixture of independent variables
where at most one has a multimodal distribution
seems to have no mixing minimum. This means
that in practice, each local minimum of the
entropy of a unitary variance weighted sum of
independent enough signals S1 and S2 is associated
to a mixture Z ¼ Z�: Hence, it corresponds to one
of the original signals: Z� / S1 or Z� / S2:
Therefore a gradient descent on the entropy of a
mixture according to its weights will lead to a
single non-zero weight: an original source is
recovered, up to a real scale factor. If this
minimum is global, the lowest entropic source
has been extracted.
It is shown that mixing (local) minima may

appear even in an ideal mixture of independent
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sources. This can occur when the source distribu-
tions are multimodal. In [16], Cardoso presents a
simple example of spurious minimum when the
likelihood-based cost function is used for ICA,
even if the distribution of the multimodal sources
is a priori known. Similar conclusions are drawn in
this paper when the marginal entropy-based
cost functions are used instead of the maximum
likelihood one. The results also apply when the
mutual information criterion is used, since the
mutual information and the sum of the marginal
entropies are equivalent criteria for ICA under
whitening constraint. This result is shown even
for joint source distributions having 2� 2 ¼ 4
modes. It is justified by specific contractions of the
source distributions (resulting from the weighting)
that influence the number of modes in the mixture.
The justification also allows us to justify the
locations of the mixing minima knowing some
information about the modality of the source
distributions.
In the case of mutually dependent signals, it is

shown that local mixing minima may appear
whatever is the number of modes in the source
distributions. Moreover, the global minimum of
the mixture entropy does not necessarily corre-
spond to a non-mixing solution, since there is no
guarantee that the entropy power inequality holds.
This explain why the entropy function cannot be
used as cost function in this case.
Finally, it is observed that the maximum

entropy for mixtures of independent variables is
not necessarily reached for the most mixed signal
(equal weights in the mixture), but depends of the
entropy of the original sources and their number
of modes.
To conclude, even if it is true that a Gaussian

variable has the maximum entropy among all the
unbounded variables of same variance, the naive
‘‘mixing gaussianizes’’ interpretation of the central
limit theorem must be taken with care.
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Appendix. Estimation of distributions by the Parzen

method

In this appendix, the Parzen estimator [18] for
one-dimensional distributions is recalled. The
extension to higher dimensions is trivial. In
particular, it is shown how the standard deviation
of the basis Gaussian kernel has been chosen in the
experiments.
The Parzen estimator is one of the most known

(and simple) methods to estimate easily the
distribution of a variable X from a finite number
N of samples. Consider a simple isotropic kernel
K with mean m and standard deviation s such that
the

R
Kðx;m;sÞdx ¼ Z: The density estimation

consists in placing a basis kernel K of fixed
variance s2 on each point X ðiÞ in the magnitude
space of X. The estimation pðxÞ of the distribution
is the sum of these basis functions, up to a scale
factor, in order to guarantee

R
pðxÞdx ¼ 1:

pðxÞ¼
: 1

NZ

XN

i¼1

Kðx;X ðiÞ;sÞ. (31)

Particular attention must be paid to the choice of
the standard deviation of the basis kernel, in order
to avoid under- and over-fitting. In this paper,
isotropic Gaussian kernels are used.
To choose an adequate value for the standard

deviation parameter, a simple heuristic was devel-
oped. It is well known that the third signal (noted
here S3) in Fig. 2 (triangular temporal structure)
has a uniform distribution. Consequently, the
optimal value of the s parameter was taken as
the value s ¼ s% that minimizes the L1 norm
between the estimated distribution pðS3jsÞ of the
whitened triangular signal and the unit-variance
uniform distribution (noted U):

s% ¼ arg min
s

jpðS3jsÞ �Uj. (32)

This optimal value is close to 0.08 (see Fig. 8). This
parameter influences all numerical data involving
the estimated distributions (e.g. the entropy and
the mutual information). For this reason, the same
standard deviation s ¼ s% has been used in the
basis kernels to estimate all distributions in this
paper, in order to avoid any undesired effect of
such choice.
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