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Abstract—Nearest neighbor search and many other numerical data analysis tools most often rely on the use of the euclidean

distance. When data are high dimensional, however, the euclidean distances seem to concentrate; all distances between pairs of data

elements seem to be very similar. Therefore, the relevance of the euclidean distance has been questioned in the past, and fractional

norms (Minkowski-like norms with an exponent less than one) were introduced to fight the concentration phenomenon. This paper

justifies the use of alternative distances to fight concentration by showing that the concentration is indeed an intrinsic property of the

distances and not an artifact from a finite sample. Furthermore, an estimation of the concentration as a function of the exponent of the

distance and of the distribution of the data is given. It leads to the conclusion that, contrary to what is generally admitted, fractional

norms are not always less concentrated than the euclidean norm; a counterexample is given to prove this claim. Theoretical arguments

are presented, which show that the concentration phenomenon can appear for real data that do not match the hypotheses of the

theorems, in particular, the assumption of independent and identically distributed variables. Finally, some insights about how to choose

an optimal metric are given.

Index Terms—Nearest neighbor search, high-dimensional data, distance concentration, fractional distances.
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1 INTRODUCTION

THE search for nearest neighbors (NNs) is a crucial task in

data management and data analysis. Content-based

data retrieval systems, for example, use the distance

between a query from the user and each element in a

database to retrieve the most similar data [1]. However, the

distances between elements can also be used to automati-

cally classify data [2] or to identify clusters (natural groups

of similar data) in the data set [3].

To define a measure of distance among data, the latter

are often described in a euclidean space through a feature

vector, and the euclidean distance is used. The euclidean

distance is the euclidean norms of the difference between

two vectors and is supposed to reflect the notion of

similarity between them.

Nowadays, most data are getting more and more

complex in the sense that a large number of features is

needed to describe them; they are said to be high

dimensional. For example, pictures taken by a standard

camera consist of two to five million pixels, digital books

contain thousands of words, DNA sequences are composed

of tens of thousand bases, and so forth.

High-dimensional data must obviously be described in a

high-dimensional space. In those spaces, however, the norm

used to define the distance has the strange property to

concentrate [4], [5]. As a consequence, all pairwise distances

in a high-dimensional data set seem to be equal or at least

very similar. This may lead to problems when searching for

NNs [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],

[18], [19], [20], [21], [22]. Therefore, the relevance of the

norm, specifically of the euclidean norm, is questioned

when measuring high-dimensional data similarity.
Some literature suggests using fractional norms, an

extension of the euclidean norm, to counter concentration

effects [23], [24]. Fractional norms have been studied and

used [25], [26], [27], [28], [29], but many fundamental

questions remain open about the concentration phenomen-

on. Does the concentration phenomenon occur when the

data do not match the hypotheses of the theorems about

concentration? Is the concentration phenomenon really

intrinsic to the norm/distance, or can it be caused by some

other counterintuitive effect of the high dimensionality? Are

fractional norms always less concentrated than higher order

norms? The aim of this paper is to provide answers to these

questions. In particular, this paper will show that the norm

of normalized data will concentrate even if the latter do not

match the independent and identically distributed (i.i.d.)

hypothesis. It will also show that the concentration

phenomenon occurs even when an infinite number of data

points are considered. Finally, this paper shows that, in

contrast to what is generally acknowledged in the literature,

fractional norms are not always less concentrated than

higher order norms.
This paper is organized as follows: Section 2 introduces

the concentration phenomenon and reviews the state of the

art. Section 3 evokes the link between the concentration of

the norm and the curse of dimensionality in database

indexing. Section 4 discusses the limitations of current

results and extends them. For the sake of clarity, this section

will only present the new results; proofs and illustrations

are gathered in Section 5. Finally, Section 6 proposes some

ways to choose an optimal metric in particular situations.
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2 STATE OF THE ART

The concentration of distances in high-dimensional spaces

is a rather counterintuitive phenomenon. It can be roughly

stated as follows: In a high-dimensional space, all pairwise

distances between points seem identical. This paper will

study the concentration of the distances through the

concentration of the norm of random vectors, as done in

[4], [24], [30], and [31]. Given a data set supposedly drawn

from a random variable Z, we consider Z0 that is distributed

as Z and define X ¼ Z� Z0. The probability density function

of X is the convolution of the respective probability density

functions of Z and �Z0. Studying the distribution of

distances in the data set produced by Z, kZ� Z0k, is

equivalent to studying the distribution of kXk the norm of

X. Similarly, studying the pairwise distances in a data set

with n elements can be done by first building another data

set with nðnþ 1Þ=2 elements corresponding to all pairs,

whose attributes are the differences between two elements

and then studying the norm of this new data.
This section illustrates the phenomenon and gives an

overview of the main known results about the concentration

of the norm/distance.

2.1 An Intuitive View of the Concentration
Phenomenon

The following experiment will help in introducing the

concept of concentration for the norm in high-dimensional

spaces. The aim is to observe that the norms of high-

dimensional vectors tend to be very similar to one another.
Let X ¼ ðX1; � � � ; XdÞ be a d-dimensional random vector

taking values in the unit cube ½0; 1�d. Each component Xi

will be referred to as variable Xi. We will denote by X � F a

random vector X distributed according to the multivariate

probability density function F . Let � ¼ fxðjÞgnj¼1 � IRd be a

finite sample drawn from X, that is, a set of independent

realizations of X.

We consider the set fkxðjÞkgnj¼1 of all the norms of the xðjÞ.

Obviously, the values of kxðjÞk are bounded: kxðjÞk 2 ½0;M�,
where M ¼ kð1; . . . ; 1Þk.

In low-dimensional spaces ðd < 10Þ, if n is not too small,

minjfkxðjÞkgnj¼1 will be close to zero, and maxjfkxðjÞkgnj¼1

will be close to M. However, in higher dimensional spaces

ðd > 10Þ, this is not verified anymore. Fig. 1 shows the

average value, empirical standard deviation, and maximum

and minimum observed values of the norm of a uniformly

randomly drawn sample of size n ¼ 105 in spaces of

growing dimension. The euclidean norm is considered, so

M ¼
ffiffiffi
d
p

.
We can observe that the average value of the norm

increases with the dimension, whereas the standard

deviation seems rather constant. When the dimension is

low (Fig. 1a), we can see that the minimum and maximum

observed values are close to the bounds of the domain of

the norm, respectively, 0 and
ffiffiffi
d
p

.
When the dimension is large, say, from dimension 10

onward, the maximum and minimum observed values tend

to move away from the bounds. Indeed, even with a large

number of points ð105Þ, all the observed norms seem to

concentrate in a small portion of their domain. In addition,

this portion gets smaller and smaller as the dimension

grows, when compared to the size of the total domain.
This phenomenon is referred to as the concentration of the

norm. Section 2.3 will review some results from the

literature about the concentration of the norm in high-

dimensional spaces; Minkowski norms will be introduced

in Section 2.2.

2.2 The Euclidean Norm and the Minkowski Family

The Minkowski norms form a family of norms parame-

trized by their exponent p ¼ 1; 2; . . . :
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Fig. 1. From bottom to top: minimum observed value, average minus standard deviation, average value, average plus standard deviation, maximum

observed value, and maximum possible value of the Euclidean norm of a random vector. The expectation grows, but the variance remains constant.

A small subinterval of the domain of the norm is reached in practice.



kXkp ¼
X
i

jXijp
 !1

p

: ð1Þ

When p ¼ 2, the Minkowski norm corresponds to the
euclidean one, which induces the euclidean distance. For
p ¼ 1, it is sometimes called “sum-norm” and induces the
Manhattan or city-block metric. The limit for p!1 is the
“max-norm,” which induces the Chebychev metric.

In the sequel, we will consider extensions of Minkowski
norms to the case where p is a positive real number. For
p � 1, those extensions are indeed norms, but for 0 < p < 1,
the triangle inequality does not hold and, hence, they do not
deserve the name; they are sometimes called prenorms.
Actually, the inequality is reversed. A consequence is that
the straight line is no longer the smallest path between two
points, which may seem counterintuitive. In the remainder,
we will denote p-norm a norm or prenorm of the form (1)
with p 2 IRþ. We will call a fractional norm a p-norm with
p < 1.

Fig. 2 depicts the 2D unit balls (that is the set of xðjÞ for
which kxðjÞk ¼ 1) for values of p equal to 1

2 , 1, 2, and infinity.
We can see that, for p � 1, the balls are convex; for
0 < p < 1, however, they are not. In Sections 2.3, 2.4, and
2.5, results from the literature about the concentration of
Minkowski norms and fractional p-norms will be presented.

2.3 Concentration of the Euclidean Norm

In the experiment described at the beginning of this section,
we observed that the expectation of the norm of a random
vector increases with the dimension, whereas its standard
deviation (and, hence, its variance) remains rather constant.
Demartines [4] has theoretically confirmed this fact.

Theorem 1: Demartines. Let X 2 IRd be a random vector with
i.i.d. components: Xi � F . Then,

EðkXk2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ad� b
p

þOð1=dÞ and ð2Þ

VarðkXk2Þ ¼ bþOð1=
ffiffiffi
d
p
Þ; ð3Þ

where a and b are constants that do not depend on the
dimension.

The theorem is valid whatever the distribution F of the
Xi might be. Different distributions will lead to different
values for a and b, but the asymptotic results remain. The
theorem proves that the expectation of the euclidean norm
of random vectors increases as the square root of the
dimension, whereas its variance is constant and indepen-
dent of the dimension. Therefore, when the dimension is
large, the variance of the norm is very small compared with
its expected value.

Demartines concludes that when the dimension is large,
vectors seem normalized: The relative error made while
considering EðkXk2Þ instead of the real value of kXk2
becomes negligible. As a consequence, high-dimensional
vectors appear to be distributed on a sphere of radius
EðkXk2Þ. Demartines also notes that, since the euclidean
distance is the norm of the difference between two random
vectors, its expectation and variance follow laws (2) and (3);
pairwise distances between points in high-dimensional
spaces seem to be all identical.

Demartines mentions that if Xi are not independent, the
results are still valid provided that we replace d with the
actual number of “degrees of freedom.”

The result from the work of Demartines is interesting in
that it confirms the experimental results, but it is restricted
to the euclidean norm and makes the rather strong
hypothesis of independence and identical distributions.

2.4 Concentration of Arbitrary Norms

Independent of the results of Demartines’ work, Beyer et al.
explored the effect of dimensionality on the NN problem [5].

Whereas Demartines defines a data set � as consisting of
n independent draws xðjÞ from a single random vector X,
Beyer et al. consider n random vectors PðjÞ; a data set is then
made of one realization of each random vector.

The main result of Beyer et al.’s work is the following
theorem. The original theorem is stated for an arbitrary
distance measure; it is rewritten here with norms for
illustration purposes.

Theorem 2: Beyer et al., adapted. Let PðjÞ : 1 � j � n be n
d-dimensional i.i.d. random vectors. If

lim
d!1

Var
kPðjÞk

EðkPðjÞkÞ

 !
¼ 0 ð4Þ

then, for any � > 0,

lim
d!1

P
maxj kPðjÞk �minj kPðjÞk

minj kPðjÞk
� �

" #
¼ 1:

The theorem is interpreted as follows: Suppose a set of
n data points, randomly distributed in the d-dimensional
space. Some query point is supposed to be located at the
origin, without loss of generality. Then, if hypothesis (4) is
satisfied, independent of the distribution of the components
of the PðjÞ, the difference between the largest and smallest
distances to the query point becomes smaller and smaller
when compared with the smallest distance when the
dimension increases. The ratio

maxj kPðjÞk �minj kPðjÞk
minj kPðjÞk

is called the relative contrast.
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Fig. 2. Two-dimensional unit balls for several values of the parameter of

the p-norm.



Beyer et al. conclude that all points seem to be located at
approximately the same distance from the query point; the
concept of NN in a high-dimensional space is then less
intuitive than in a lower dimensional one.

Beyer et al. explore some scenarios that satisfy (4) and
some that do not. A proof that Minkowski norms and
fractional norms satisfy the hypothesis will be given in
Section 4.1.

2.5 Concentration of Minkowski Norms

Hinneburg et al. focused on the search for NN as well [23].
They produced the following theorem relative to Minkows-
ki norms.

Theorem 3: Hinneburg et al. Let PðjÞ : 1 � j � n be n
d-dimensional i.i.d. random vectors and k:kp be the Minkowski
norm with exponent p. If the PðjÞ are distributed over ½0; 1�d,
then there exists a constant Cp independent of the distribution
of the PðjÞ such that

Cp � lim
d!1

E
maxj kPðjÞkp �minj kPðjÞkp

d
1
p�1

2

 !
� ðn� 1Þ � Cp:

ð5Þ

Hinneburg et al. note that a consequence of (5) is the
surprising fact that, on average, the contrast

max
j
kPðjÞkp �min

j
kPðjÞkp ð6Þ

grows as d1=p�1=2. They further conclude that, as a result, the
contrast converges to a constant when the dimension
increases and when the euclidean distance is used. For the
L1 norm, it increases as

ffiffiffi
d
p

, for the euclidean norm ðp ¼ 2Þ,
it remains constant, and for norms with p � 3, it tends
toward zero. Hinneburg et al. conclude that, for Lp metrics
with p � 3, the NN search in a high-dimensional space
tends to be meaningless for Minkowski norms with
exponent larger than or equal to 3, since the maximum
observed distance tends toward the minimum one. The
distance has lost its discriminative power between the
notions of “close” and “far.”

The conclusion we can draw from this theorem is the
following: On average, the ratio between the contrast and
d1=p�1=2 is bounded. However, the bounds themselves
depend on the value of p. Furthermore, if the number of
points n is large, the upper bound may be very large too. In
practice, though, it may appear that the value of the ratio is
much closer to the lower bound than to the upper one. A
result independent of the number of points is presented in
Section 4.2.

Yianilos [31] mentions that the standard deviation of the p-
norm, p � 1, of a uniformly distributed random vector is
�ðd1=p�1=2Þ and sketches a proof. In contrast to the
approaches by Beyer et al. and Hinneburg et al., Yianilos
considers random vector distributions rather than realiza-
tions of random vectors. He also asserts that the i.i.d.
hypothesis can be weakened. He then makes the same
conclusions as Hinneburg et al. and investigates the
consequences for excluded middle vantage point forests
methods for similarity search in metric spaces. We will see a
similar result in Section 4 without the restriction of the
uniform distribution and on the values of p.

2.6 Concentration of Fractional Norms

Aggarwal et al. extend Hinneburg’s result to fractional
p-norms [24]. In a sense, if p ¼ 2 is “better” than p ¼ 3 and
p ¼ 1 is “better” than p ¼ 2, why not to look at p ¼ 1

2 to see if
it is “better” than p ¼ 1? Aggarwal et al. produced the
following theorem.

Theorem 4: Aggarwal et al. Let PðjÞ : 1 � j � n be n
d-dimensional independent random vectors, uniformly dis-
tributed over ½0; 1�d. There exists a constant C independent of
p and d such that

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2pþ 1

s
� lim

d!1
E

maxj kPðjÞkp �minj kPðjÞkp
minj kPðjÞkp

 !
�
ffiffiffi
d
p

� ðn� 1Þ � C �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2pþ 1

s
:

Aggarwal et al. note that the constant
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2pþ 1Þ

p
may

play a valuable role in affecting the relative contrast and
confirmed it experimentally with synthetic data sets. They
then conclude that, on average, fractional norms provide
better contrast than Minkowski norms in terms of relative
distances.

The next section will provide a similar result indepen-
dent of the number of points. That result will show that the
conclusions of Theorem 4 cannot be extended to the case
where the data are not uniformly distributed.

Independent of Aggarwal et al., Skala [30] has shown
that the ratio

�pðdÞ ¼
EðkXkpÞ

2

2VarðkXkpÞ
; ð7Þ

increases linearly with dimension d. Here, X is a random
vector whose components are i.i.d. distributed. The theorem
does not require uniform densities; however, it is exact only
in the p ¼ 1 case and gives an approximate result for other
values of p.

3 CONCENTRATION AND SIMILARITY SEARCH IN

DATABASES

In order to better understand the impact of concentration on
NN search and indexing, this section reviews some example
studies available in the literature. It further describes the
context of this research and justifies the importance of the
study of concentration and alternative metrics.

The major consequence of concentration on NN search is
that indexing methods, which have an expected logarithmic
cost, actually sometimes perform no better than simple
linear scanning. This has been described among others in
[32], [33], [34], and [35] and was acknowledged by many
others as the curse of dimensionality.

Consequently, new indexing structures, specially de-
signed for high-dimensional data were suggested, like the
X-tree [34], TV-tree [35], and so forth, and an approximate
search was proposed as a solution [36]. A survey of these
methods can be found in [37].

It seems that Brin [38] was one of the pioneers to actually
relate the curse of dimensionality to the particular shape of
distance distributions in high-dimensional spaces. He
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proposed the Geometric Near-neighbor Access Tree (GNAT)
indexing structure that was built taking into account the
minimum and maximum distances in the data set.

Whereas Berchtold et al. [39] suggested that the decrease
of performances is due to the boundary effects, coming
from the fact that all points seem located in the “corners” of
the space, Weber et al. [40] proposes a review of counter-
intuitive properties of high-dimensional geometrical spaces
and relates them to the losses of performances.

In view of their theorem (Theorem 2), Beyer et al. explain
the decreases of performances of the indexing methods by
the instability of the search for NNs. They propose to use
less concentrated metrics and further question the intrinsic
relevance of NN search, independent of performance issues, for
concentrated metrics.

Whereas many of the responses to the curse of
dimensionality are to introduce a new indexing method,
Hinneburg et al. [23] and Aggarwal et al. [24] propose to use
alternative metrics that are less concentrated. Their main
purpose, however, is to use a more “meaningful” metric in
high-dimensional spaces and not to accelerate the search.

In both cases, using less-concentrated norms either to
perform better with indexing structures or to get a more
meaningful NN search thus assumes that the concentration
phenomenon is intrinsic to the notion of the norm.

The aim of this paper is to show that the concentration is
indeed intrinsic to the norm. To this end, we will consider
results that are independent of the number of points.
Considering a high-dimensional bounded space with some
points scattered over it, it seems reasonable to think that the
less points you have, the more concentrated the distances
are akin to be since the maximum distance will decrease
while the minimum distance will increase. The “number of
points” parameter either has to be taken into account or has
to be ruled out of the equation. In the following, we propose
to do this by considering data distributions instead of data
sets. The conclusion of our study is that, indeed, the
concentration phenomenon is intrinsic to the norm and,
thus, justifies Aggarwal et al.’s work on fractional metrics to
reduce concentration.

From Aggarwal et al.’s results, it is often extrapolated
that using fractional distances with small values of the
p parameter will decrease the concentration phenomenon.
The latter fact has subsequently been used as an argument
to use fractional norms in all sorts of situations without first
checking for applicability. However, the restriction is that
the data must be uniformly distributed. As we are dealing
here with high-dimensional spaces, it appears quite evident
that real data can only sparsely populate high-dimensional
spaces because of their finite number and because they
often lie on a submanifold. Therefore, data are far from
being uniformly spread over the space. This study confirms
that the distribution of data has to be taken into account to
estimate the concentration. Depending on the distribution,
the evolution of the concentration with respect to the value
of parameter p may be increasing as p gets smaller; in other
cases, it also may have a local maximum for some value of
p, as will be shown later.

4 FURTHER THEORETICAL RESULTS

Section 2 reviewed major results from the literature. This
section will describe new results in order to better
understand the phenomenon of norm concentration in

high-dimensional spaces. All proofs and examples are
postponed to Section 5 for ease of readability.

4.1 The Finite and Bounded Sample

A finite number of points will most probably be sparsely
distributed in a high-dimensional space. Most points will be
far away from each other, and the density will be very low
over the whole space. This is referred to as the Empty Space
Phenomenon [41]. Furthermore, if the points live in a closed
(bounded) region of the space, for instance, the ½0; 1�d
hypercube, then the maximum distance is bounded too. In
such a situation, it may happen that the relative contrast is
very low. The questions are then: Is the concentration
phenomenon a side effect of the Empty Space Phenomenon,
just because we consider a finite number of points in a
bounded portion of a high-dimensional space? Would the
conclusions still hold if an infinite number of points (in
other words a distribution) spanning the whole space was
considered?

Unfortunately, the results by Beyer et al., Hinneburg
et al., and Aggarwal et al. cannot be extended to the case
where the number of data points is arbitrarily large. Indeed,
the bounds on the relative contrast depend on the number
of points. Furthermore, if the values the data points PðjÞ can
take are unbounded, the notion of relative contrast may not
be relevant anymore since it relies on maximum and
minimum values.

In contrast to Beyer et al.’s, Hinneburg et al.’s, and
Aggarwal et al.’s results, Demartines’ and Yianilos’ ones do
not refer to a finite number of points but rather to a
distribution. Unfortunately, they consider Minkowski
norms only. An interesting result would be to extend their
results to fractional p-norms.

For that purpose, it is proposed to use the ratio

RVF ;p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðkXkpÞ

q
EðkXkpÞ

ð8Þ

as a measure of the concentration; RVF ;p will be called the
relative variance of the norm. It is nonnegative; a small value
indicates that the distribution of the norm is concentrated,
whereas a larger one indicates a wide effective range of
norm values. Intuitively, we can see that RVF ;p measures
the concentration by relating a measure of spread (standard
deviation) to a measure of location (expectation). In that
sense, it is similar to the relative contrast that also relates a
measure of spread (range) to a measure of location
(minimum).

The main result of this section is that, regarding the
relative variance, all p-norms concentrate as the dimension-
ality of the space increases. This is stated more precisely in
Theorem 5, deduced from two lemmas that, respectively,
characterize the individual behaviors of the variance and of
the expectation of the norm. Those lemmas are presented
here while their respective proofs can be found in
Section 5.1.

Lemma 1. Let X ¼ ðX1; � � � ; XdÞ be a random vector with i.i.d.

components: Xi � F . Then,

lim
d!1

EðkXkpÞ
d1=p

¼ c ð9Þ
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with c being a constant independent of the dimension but
related to p and to the distribution F .

Therefore, it appears that the expectation of the p-norm
of a random vector grows as the pth root of the dimension.
Note that this result is consistent with (2) in the euclidean
case ðp ¼ 2Þ.

The second lemma concerns the variance of the norm.

Lemma 2. Let X ¼ ðX1; � � � ; XdÞ be a random vector with i.i.d.
components: Xi � F . Then,

lim
d!1

VarðkXkpÞ
d

2
p�1

¼ c0 ð10Þ

with c0 being a constant independent of the dimension but
related to p and to the distribution F .

The dependency on d
2
p�1 indicates that the variance

remains constant with the dimension for the euclidean
distance. We can also see that the variance decreases when
the dimension increases for p-norms with p > 2 and
increases for p-norms with p < 2. This is consistent with
Demartines’ and Hinneburg et al.’s results.

From these Lemmas, it can be shown that all p-norms
concentrate as the dimension increases.

Theorem 5. Let X ¼ ðX1; � � � ; XdÞ be a random vector with i.i.d.
components: Xi � F . Then,

lim
d!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðkXkpÞ

q
EðkXkpÞ

¼ 0;

that is, the relative variance decreases toward zero when the
dimension grows.

The proof can be found in Section 5.1. From Theorem 5, it
can be concluded that the concentration of the norms in
high-dimensional spaces is really an intrinsic concentration
property of the norms and not a side effect of the finite
sample size or from the Empty Space Phenomenon. This
result extends Demartines’ one to all p-norms and does not
depend on the sample size.

Moreover, although all p-norms concentrate as the
dimension increases, they do not concentrate in the same
way. Characterizing these differences with respect to p is
the topic of Section 4.2.

4.2 Impact of the Value of p on the Concentration

In the previous section, it has been shown that all p-norms
concentrate, whatever is the value of pðp > 0Þ. In this
section, the relationship between the relative variance and
the value of p for a given dimension will be made explicit.

Theorem 6. Let X ¼ ðX1; � � � ; XdÞ be a random vector with i.i.d.
components: Xi � F . Then,

lim
d!1

ffiffiffi
d
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðkXkpÞ

q
EðkXkpÞ

¼ 1

p

�F ;p
�F ;p

;

where �F ;p ¼ EðjXijpÞ, and �2
F ;p ¼ VarðjXijpÞ.

If d is large, we can thus approximate the relative
variance by

RVF ;p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðkXkpÞ

q
EðkXkpÞ

’ 1ffiffiffi
d
p � 1

p
� �F ;p
�F ;p

� �
:

This means that, for a fixed (large) dimension, the relative
variance evolves with p as

KF ;p ¼
1

p
� �F ;p
�F ;p

: ð11Þ

The evolution of KF ;p with p determines the value of the
relative variance for a fixed dimension d. Aggarwal et al.
has shown that, if the points are uniformly distributed, the
relative contrast at fixed dimension increases as p decreases.
We will show below and prove in Section 5.3 that, under the
uniform distribution hypothesis, the relative variance
increases as p decreases too.

However, in general, the function described in (11) is not
always strictly decreasing with p as stated in the following
proposition:

Proposition 1. The relative variance (11) is 1) a strictly
decreasing function of p when the variables are distributed
according to a uniform distribution F over the interval [0, 1],
but 2) there exists distributions F for which it is not the case.
Fractional norms are not always less concentrated than higher
order norms.

The proof is given in Section 5.2. There are thus data for
which the 1-norm is more concentrated than the 2-norm, for
instance; in general, a higher order norm can be less
concentrated than a fractional norm by having a higher
relative contrast or relative variance. In conclusion, using
fractional norms does not always bring less concentrated
distances.

4.3 The i.i.d. Hypothesis

All theorems presented in Section 4 rely on the fact that data
are supposed to be i.i.d. What happens if it is not the case in
practice (actually it will hardly ever be)? Are these
assumptions really needed, or do they merely make the
proofs easier or even feasible? This section addresses these
issues.

First, the “identically distributed” assumption is con-
sidered. In the previous sections, we have supposed that all
Xi are distributed according to the same distribution:
Xi � F . If variables Xi are not identically distributed, it
means that each Xi is distributed according to some
distribution noted F i: 8i : Xi � F i.

Proposition 2. If the data are not identically distributed, then the

conclusion of Theorem 5 still holds provided that the data are

normalized.

The proof is given in Section 5.3. Normalizing means
here to subtract the mean from the variables and divide
them by their standard deviation so that 8i : EðXiÞ ¼ 0 and
VarðXiÞ ¼ 1. Normalizing data is often considered as
important when using norms and distances, because it
ensures that all variables Xi will have equal influence on the
computation of the norm. If this it is not the case, the
variables with the largest variances will have the largest
influence on the distance value, whereas the variables with
low variances will have little or no influence on the
computation of the norm.
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Actually, norms will concentrate for nonidentically
distributed data if they are normalized. However, if the
data are not normalized, some variables may have too little
effect on the distance value.

The “independent” assumption may not be encountered

in practice. If X has components Xi that are not

independent, it means that the joint distribution F of X ¼
ðX1; � � � ; XdÞ differs from the product of the marginal

distributions F i. The existence of relations between the

elements of X means that X lies on a (possibly nonlinear)

submanifold of IRd. If the submanifold is nonlinear, the

euclidean norm, for instance, measures the distances

between data points using “short cuts,” that is, through a

straight line in the space; this can be very different from a

geodesic distance measured along the manifold [42], [43].

However, the manifold can be represented in a vector space

IRdint whose dimension is the number of degrees of freedom

of the manifold. Dimension dint is called the intrinsic

dimension and d the embedding dimension. Each realization

of X in the embedding space may then be mapped to a

unique realization in a dint-dimensional projection space.
One may thus expect that the asymptotic properties of

the norms behave similarly in both spaces. Actually, the

measure of intrinsic dimensionality � proposed by Chavez

et al. [1] is precisely the inverse of the square of the relative

variance. Korn et al. [22] relate the concentration to the

fractal dimension of the data, which is another way to

measure its intrinsic dimensionality.
The fact that the concentration depends on the intrinsic

dimension of the data is often admitted [2], even if there is

no consensus about the actual definition of the intrinsic

dimension.
As a consequence, high-dimensional data that present a

lot of correlation or dependencies between variables will be

much less concentrated than if all variables are indepen-

dent. The conclusion we can draw is that the concentration

phenomenon depends on the intrinsic dimension of the

data more than on the dimension of the embedding space.

5 PROOFS AND ILLUSTRATIONS

In this section, proofs are given for Lemmas 1 and 2, for

Theorems 5 and 6, and for Propositions 1 and 2.

5.1 Proof of Theorem 5

The proof of Theorem 5 is based on Lemmas 1 and 2.

Therefore, the proofs of the lemmas are given first. tu

5.1.1 Proof of Lemma 1

The proof requires two steps. First, it will be shown that,

under the assumptions of Lemma 1, we have

P lim
d!1

kXkp
d1=p

¼ c

� �
¼ 1; ð12Þ

where c is a constant independent of the dimension d of X

(Step 1). Then, this result will be extended to the expectation

of the norm (Step 2).
Step 1. Let Si ¼ jXijp for i ¼ 1; . . . ; d. The Si are i.i.d. as

well; let �F ;p be their expectation.

The Strong Law of Large Numbers (SLLN) allows us to

write

P lim
d!1

1

d
�
Xd
i¼1

Si ¼ �F ;p

" #
¼ 1:

Then,

P lim
d!1

1

d
�
Xd
i¼1

Si

 !1=p

¼ �F ;p1=p

24 35 ¼ 1

or, by definition of Si,

P lim
d!1

1

d1=p
�
Xd
i¼1

jXijp
 !1=p

¼ �F ;p1=p

24 35 ¼ 1:

This is nothing else than

P lim
d!1

kXkp
d1=p

¼ �F ;p1=p

� �
¼ 1;

which concludes the proof with c ¼ �F ;p1=p.

Step 2. By (12), for any realization � of X except some

� 2 �, a subset of IRd with measure 0, we have

lim
d!1

k�kp
d1=p

¼ �F ;p1=p:

Thus,Z
IRdn�

F ð�Þ � lim
d!1

k�kp
d1=p

d� ¼
Z

IRdn�
F ð�Þ � �F ;p1=pd� ð13Þ

¼ �F ;p
1=p ð14Þ

with the last equality coming from the fact that �F ;p
1=p is

bounded. In addition, we haveZ
IRdn�

F ð�Þ � lim
d!1

k�kp
d1=p

d� ¼
Z

IRd
F ð�Þ � lim

d!1

k�kp
d1=p

d� ð15Þ

¼ lim
d!1

Z
IRd
F ð�Þ �

k�kp
d1=p

d� ð16Þ

since � is of measure 0. Combining (14) and (16) gives

lim
d!1

Z
IRd

k�kp
d1=p

d� ¼ lim
d!1

EðkXkpÞ
d1=p

¼ �F ;p1=p; ð17Þ

which concludes the proof since the right-hand side of (17)

is independent of the dimension d. tu

5.1.2 Proof of Lemma 2

Let �F ;p be the expectation of variable jXijp and �F ;p its

variance. For random vectors X of dimension d and a given

p-norm, we have
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VarkXkp
d2=p�1

¼
E kXkp �EkXkp
� �2
� �

d2=p�1

¼ E
kXkp � EkXkp

d1=p�1=2

� �2
" #

:

Since

kXkp � EkXkp ¼
kXkpp � EkXkp

� �p
Pp�1

r¼0 kXk
p�r�1
p � EkXkp

� �r ;
we have

kXkp � EkXkp
d1=p�1=2

¼
kXkpp � EkXkp

� �p� �
=
ffiffiffi
d
p

Pp�1
r¼0

kXkp
d1=p

� �p�r�1
� EkXkp

d1=p

� �r :
Therefore,

VarkXkp
d2=p�1

¼ E
ðkXkpp � EkXkp

� �p
Þ=

ffiffiffi
d
p

Pp�1
r¼0

ðkXkp
d1=p

� �p�r�1
� EkXkp

d1=p

� �r
0B@

1CA
2264
375:

Using the theorem by Lebesgue and Fatou about the
convergence of integrable functions, we can swap the limit
and the expectation operators:

lim
d!1

VarkXkp
d2=p�1

¼ E lim
d!1

ðkXkpp � EkXkp
� �p

Þ=
ffiffiffi
d
p� �2

Pp�1
r¼0

ðkXkp
d1=p

� �p�r�1
� EkXkp

d1=p

� �r� �2

26664
37775

¼ E
limd!1 ðkXkpp � EkXkp

� �p
Þ=

ffiffiffi
d
p� �2

limd!1
Pp�1

r¼0

ðkXkp
d1=p

� �p�r�1
� EkXkp

d1=p

� �r� �2

26664
37775:

The transition from the former to the latter is allowed since
the denominator does not tend toward zero.

Because of Lemma 1, we know that
EkXkp
d1=p tends toward a

constant as d increases. Furthermore, we have seen that
almost surely, that is, with probability 1,

kXkp
d1=p also tends

toward a constant.
Therefore, the denominator almost surely tends toward a

constant as the dimension grows:

P lim
d!1

Xp�1

r¼0

kXkp
d1=p

� �p�r�1

�
EkXkp
d1=p

� �r
¼ p � �ðp�1Þ=p

F ;p

" #
ð18Þ

is 1, which means that, with probability 1,

lim
d!1

VarkXkp
d2=p�1

¼
E limd!1 ðkXkpp � EkXkp

� �p
Þ=

ffiffiffi
d
p� �2

� �
p � �ðp�1Þ=p

F ;p

� �2
:

If we focus on the numerator now, we notice that

kXkpp � EkXkp
� �p

¼
Xd
i¼1

jXijp � EkXkp
� �p

¼
Xd
i¼1

jXijp �
EkXkp
� �p

d

0@ 1A:
Using the result from Lemma 1, we write

lim
d!1

kXkpp � EkXkp
� �p� �

¼ lim
d!1

Xd
i¼1

jXijp � �F ;p
	 


:

The numerator can now be written as

E
Xd
i¼1

jXijp � �F ;p
	 
 !2

=d

24 35:
Since

E
Xd
i¼1

jXijp � �F ;p
	 
" #

¼
Xd
i¼1

E jXijp � �F ;p
	 
� �

¼
Xd
i¼1

E jXijp½ � � �F ;p
	 


¼
Xd
i¼1

�F ;p � �F ;p
	 


¼ 0;

we have

E
Xd
i¼1

jXijp � �F ;p
	 
 !2

24 35 ¼ Var
Xd
i¼1

jXijp � �F ;p
	 
 !

:

However,

Var
Xd
i¼1

jXijp � �F ;p
	 
 !

¼
Xd
i¼1

Var jXijp � �F ;p
	 


¼
Xd
i¼1

Var jXijpð Þ

¼ d � �2
F ;p

leading to the conclusion that

E
Xd
i¼1

jXijp � �F ;p
	 
 !2

=d

24 35 ¼ �2
F ;p: ð19Þ

Using expression (19) for the numerator and (18) for the

denominator, the result is that

P lim
d!1

VarkXkp
d2=p�1

¼
�2
F ;p

ðp � �ðp�1Þ=p
F ;p Þ2

" #
¼ 1: ð20Þ

The same arguments as in Step 2 from the proof of

Lemma 1 can be used to get
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lim
d!1

VarkXkp
d2=p�1

¼
�2
F ;p

ðp � �ðp�1Þ=p
F ;p Þ2

; ð21Þ

which proves the lemma since the right-hand side of (21) is

independent of the dimension d. tu

5.1.3 Proof of Theorem 5

Lemmas 1 and 2 are used to prove Theorem 5.
Writing ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarkXkp
q

EkXkp
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarkXkp
p
d1=p�1=2

EkXkp
d1=p

� d�1=2

and taking the limit

lim
d!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarkXkp

q
EkXkp

¼ lim
d!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarkXkp
p
d1=p�1=2

EkXkp
d1=p

� d�1=2;

we have, by Lemma 1 and Lemma 2

lim
d!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarkXkp

q
EkXkp

¼
ffiffiffiffi
c0
p

c
� lim
d!1

d�1=2 ¼ 0:

ut

5.2 Proof of Theorem 6 and Proposition 1

Similar to Theorem 5, the proof of Theorem 6 is based on

Lemmas 1 and 2.
Theorem 6 is proven as follows:
From Lemmas 1 and 2,

lim
d!1

ffiffiffi
d
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarkXkp

q
EkXkp

¼ lim
d!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarkXkp
p
d1=p�1=2

EkXkp
d1=p

¼
ffiffiffiffi
c0
p

c
: ð22Þ

Using the values of c and c0, respectively, from (17) and (21),

we have

ffiffiffiffi
c0
p

c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�F ;p

p��
p�1
p
F ;p

� �2

s
�

1
p

F ;p

¼ 1

p
� �F ;p
�F ;p

: ð23Þ

Proposition 1 contains two claims; the proofs are,

respectively, given in Part a and Part b.

Part a. If F is the uniform distribution over the interval

[0, 1], �F ;p is given by

�F ;p ¼
1

pþ 1
:

Since �2
F ;p ¼ �F ;2p � �F ;p2, we have

�F ;p ¼
p

pþ 1
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2pþ 1

s
:

Therefore,

1

p
� �F ;p
�F ;p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2pþ 1

s
: ð24Þ

We can conclude that, under the uniform distribution and
large dimension d hypotheses, the relative variance
decreases with p. The concentration of the norm thus
increases as p grows.

Part b. A counterexample is provided to prove assertion b
of the proposition. Let us consider a situation where data are
dispatched into two Gaussian clusters with variance �2 ¼ 1
and, respectively, centered on 1 and �1. The marginal
distribution of each Xi is then

F	ð�Þ ¼ 1

cst
� e�

��1
�ð Þ

2

þ e�
�þ1
�ð Þ

2� �
: ð25Þ

In this example, the relative variance is higher for higher
order norms than for fractional norms, as illustrated in
Fig. 3; consequently, fractional norms are more concen-
trated than higher order norms with values of p 2 ½8; 30�.

The next examples are taken from real data sets used by
Aggarwal et al. in [24]: the segmentation data set and the
Wisconsin Diagnostic Breast Cancer (WDBC) data set from
the University of California, Irvine (UCI) Machine Learning
Repository [44]. Fig. 4 shows a plot of the relative contrast
as a function of p. In Fig. 4a (the segmentation data set),
between p ¼ 1 and p ¼ 2, the relative contrast is actually
increasing. This is a real example where the euclidean norm
is actually less concentrated than the 1-norm. Fig. 4b is even
more interesting. Here, the relative contrast is consistently
better for higher order norms than for fractional norms. tu

5.3 Proofs for Proposition 2

In Section 5.1, the proof of Theorem 5 was built using the

Law of Large Numbers. Although this law is often stated

with the i.i.d. hypothesis, the “identically distributed” one is

sufficient but not necessary. Actually, if the data are

normalized, the assumption of identical distributions is

not necessary.
It has been shown that a less restrictive sufficient

condition for the Law of Large Numbers to hold is that
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Fig. 3. Relative variance for data distributed as F	, as a function of p.

We can see that a maximum is obtained for a rather large value of p, far

from 1.



the set of Xi must be uniformly integrable [45]. This means
that, for any � > 0, there exists some K <1 such that for
every Xi Z

jXij�K
F ið�Þj�jd� < �: ð26Þ

Note that (26) is actually the expectation of jXij restricted to

the values jXij � K. It is equivalent to [45]

9k > 1 : sup
i

EjXijk <1: ð27Þ

If the data are normalized, EðXiÞ ¼ 0, and VarðXiÞ ¼ 1

for all i. We then have

1 ¼ Var Xi ¼ E X2
i � E X2

i ¼ E X2
i ¼ EjXij2:

Taking k ¼ 2 in (27) leads to the conclusion that if the data

are centered and reduced, as often done in practice, then

they are uniformly integrable. In this case, the Law of Large

Numbers still holds without the assumption of equal

distributions. Therefore, all subsequent results are valid

provided that the data are normalized; this proves

Proposition 2.
To show that the “independent” part of the i.i.d.

hypothesis is not necessary either, we will compare the

concentration of norms in real data sets with the same

embedding dimensions but different intrinsic dimensions.
Suppose we have some data described in a d-dimen-

sional space for which we know that the intrinsic dimension

dint is lower. Such a situation occurs, for example, when the

variables are significantly correlated. We will see that, for

such data, the value of the relative variance is much more

similar to the one of a dint-dimensional data set with

independent variables than of a d-dimensional data set with

independent variables. For that purpose, we will ensure

that marginal distributions, that is, the distribution of each

variable taken separately, are identical in both data sets.
Suppose we have � ¼ fxðjÞgnj¼1, a sample drawn from

X ¼ ðX1; � � � ; XdÞ � F ð�1; �2; . . . ; �dÞ, where F is the multi-

variate probability density function of X. The marginal

distributions of Xi are

F ið�iÞ ¼
Z Z

F ð�1; . . . �i; . . . ; �dÞ d�1 . . . d�i�1 d�iþ1 . . . d�d:

To produce a data set �0 that is marginally identically
distributed as �, we propose the following: If we consider a
matrix where each row corresponds to a data element xðjÞ

and each column to a variable Xi, the values in each column
are randomly permuted. As a consequence, the marginal
distributions of each variable will not change. By contrast,
all relationships between variables are destroyed in the
process. Therefore, we obtain a sample �0 that is marginally
distributed as �, but where the components are now
independent; the intrinsic dimension of �0 is thus equal to
its embedding dimension.

Let us denote by dRV�;2 the estimation of RVF ;p with the

euclidean norm given the data set � with high embedding

dimension and low intrinsic dimension. We will compare

this value to the value of the relative variance of �0ð dRV�0;2Þ
that has a high intrinsic dimension. Moreover, we will

compare those values to the value of the relative variance

for a data set made of a small number (typically 20 times

lower than the original number of variables) of low-

correlated variables from �ð dRV�s;2Þ (small embedding

dimension). The relative variance of a uniformly distributed

synthetic data set of dimensionality d : ð dRVrand;2Þ (high

intrinsic dimension) is also computed. It is expected that

the relative variances for data sets with low intrinsic

dimension will be similar while being much lower than

the relative variances of the data sets with high intrinsic

dimension.
The relative variance for a data set � ¼ fxðjÞgnj¼1 is

estimated as follows:

dRVX ;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 kxðjÞk2 �
Pn

j¼1 kxðjÞk2

� �2
r

Pn
j¼1 kxðjÞk2

:

The data sets mentioned in Table 1 are high-dimen-
sional data coming from various domains. The first two
data sets are the near-infrared spectra of apple and meat,
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respectively,1 the next two data sets are recorded sounds
of “yes” and “no,” and of “boat” and “goat” [46].2 The
ionosphere and the musk data sets come from the UCI
machine learning repository.3 The dimensionality goes
from 34 to more than 8,000.

As expected, it is seen in Table 1 that the relative
variance of the original data set (column 1) is very similar to
the relative variance of a subset of its variables (column 3).
In contrast, the relative variance for the crafted data set �0

(column 2) is very similar to the relative variance of a
random uniformly distributed data set of the same
dimension (column 4). tu

6 ABOUT THE OPTIMAL VALUE OF p

Throughout the preceding sections, we saw that all
fractional distances concentrate in high-dimensional spaces
and that concentration depends nontrivially on the value of
p. This concentration has negative consequences on index-
ing methods and leads to the questioning of the mean-
ingfulness of the NN search when the distances seem to be
all identical. This motivates the use of alternative metrics to
the widely used euclidean one.

6.1 Fractional Norms and Non-Gaussian Noise

One more argument can motivate the use of fractional
norms. It can easily be shown that the concept of euclidean
distance and the concept of Gaussian white noise are
intimately tied. A Gaussian white noise is a noise that has a
normal distribution with zero mean and equal variance for
all variables. Looking for the most similar data element to a
query point by minimizing the euclidean distance is
equivalent to choosing the NN to be the point most likely
to be the query point under the Gaussian white noise
scheme.

In low-dimensional spaces, most often, a Gaussian white
noise is an acceptable assumption. However, when the
dimension increases, other noise schemes might be more
appropriate. The white Gaussian noise is a model that
describes small alterations gently distributed over the
coordinates. Obviously, in low-dimensional spaces, this is
the only kind of noise we can cope with. Imagine now a noise
scheme that models large alterations of only some of the
coordinates instead of small alterations of all coordinates.

This kind of noise will generate the so-called “outliers” in
low-dimensional spaces, but in higher dimensions, where
more information is available for each data element, it can
just be handled as a noise scheme. Examples of such noise
schemes are the so-called Salt and Pepper noise on images
and Burst noise on time series; encoding errors may also be
viewed as noise that sometimes dramatically affects a small
number of the coordinates.

In [47], a “colored” noise scheme is studied, which
concentrates its effects on some of the coordinates while
leaving the other ones nearly unchanged. The experiments
on high-dimensional data show that, for such a noise,
fractional norms are better at identifying the “real” NNs,
that is, the original point when the noise is removed. For
Gaussian white noise, however, the euclidean norm gives
better results.

Similarly, in [24], the experiments show that fractional
norms are better suited for classification when masking
noise is applied. This noise scheme randomly changes some
values of the coordinates; it is very different from Gaussian
noise.

All these results clearly illustrate the fact that the
“optimal” value of p is highly application dependent.

6.2 Choosing the Norm for Regression/
Classification

In a prediction or classification problem, the value of p
could be chosen so as to get the best model performances,
according to the expected error in predicting the response
value or the class label. It would thus be considered as an
additional parameter to the model: The norm that is chosen
is the norm that minimizes the differences between the true
response values or class labels and the predicted ones.
However, this would necessitate multiplying the computa-
tion times by as many different values of p are tested.

An elegant alternative is to choose the value prior to the
building of the model. In this case, the norm is chosen
before any prediction model is constructed. It is chosen
according to a statistical measure of relevance for each
p-norm that is considered. This statistical measure gives
each p-norm a score based on how well similar data
elements according to the p-norm relate to similar response
values or class labels. If the data elements that are close in
the data space, that is, similar according to the norm, are
also close in terms of associated response value, then the
norm is considered relevant as a measure of similarity for
those data. Nonparametric noise estimators such as the
Gamma test [48] or the Differogram [49] are suitable for
this, as well as the performances of a 1-NN model.

This latter strategy (1-NN model) is illustrated in the

following experiments. We consider real data, namely, the

Housing4 data set, and the Wine, Tecator, and Apple5 data

sets. The objective in the Housing data set is to predict the

values of houses (in thousand dollars) described by

13 attributes representing the demographic statistics of the

area around each house. The data set contains 506 instances

split into 338 learning examples and 169 for testing. The
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TABLE 1
Relative Variances for Several Real Data Sets Compared with

the Relative Variances of Artificial i.i.d. Data Sets

The numbers between parentheses are the number of variables used to
build X s.



other three data sets are spectral data: for the Wine, the

alcohol content must be predicted, for the Tecator, it is the

fat content, and for the Apple data set, it is the sugar

content. A burst noise was added to the data: Some

coordinates were altered with a multiplicative noise of high

amplitude. With such a noise scheme, strongly non-

Gaussian fractional norms are better suited to measure the

similarity. The leave-one-out error of a 1-NN is used to

measure the relevance of each norm and to choose the most

relevant one. Then, a Radial Basis Function Network

(RBFN) [50] is built with the chosen norm. The parameters

of the RBFN are chosen by fourfold cross validation. Table 2

reports the Root Mean Square Error (RMSE) of prediction

on an independent test set for all the data sets. For each of

these data sets, the fractional norm, chosen prior to the

building of the model, gives better results than the

euclidean norm.

6.3 Choosing the Norm in Content-Based Similarity
Search

In many multimedia database systems, the user feedback
can be used to estimate the relevance of the result of the
search for similar elements. This can be translated into the
relevance of the metric used to get similar elements. For
instance, in image and text retrieval, the relevance measure
is used to weigh the coordinates in the computation of the
distance to better reflect the perceived (subjective) similarity
between objects [51], [52].

A relevance feedback algorithm is then given as
follows: Suppose that all elements are described by a
feature vector; given a query Q, the system retrieves the
nearest or the 2-NNs according to several p-norms (with

p ¼ 0:1; 0:5; 1; 2; 4, for instance). The user then identifies
the most relevant results, and the score of the p-norms
corresponding to those results is increased. After several
iterations, the p-norm with the highest score is chosen.

To illustrate this procedure, the XM2VTS database is
used. This database is comprised of 600 photographs,

altered with Salt and Pepper noise (some pixels are set to
black or white randomly), of 200 individuals (that is, three
pictures per individual.) At each iteration, a picture from
the data set is considered as a query point. Its NN according
to several p-norms are retrieved, and the score of the norms

for which the retrieved image corresponds to the same
individual is increased by one. Fig. 5 shows the evolution of
the score for each p-norm at iterations 1 to 20 and
iteration 580 to 600. We can see that the 1/2-norm is the
one with the highest score after 20 iterations and still the

one after all 600 iterations. The 1/4 and 1/8-norms also
have high scores in contrast to higher order norms that
perform poorly. The same experiment was repeated
100 times with only 10 iterations. In 86 percent of these
experiments, the 1/2-norm was identified as the most

relevant. The 1/8-norm was chosen as the most relevant
three times, the 1/4-norms only once, the 1-norm 10 times,
and the other (higher order) norms were never chosen.

In conclusion, fractional norms should be used when
they are a more relevant measure of similarity and, hence,

increase the performances, rather than because of concen-
tration considerations.

7 CONCLUSIONS

A comparison between data elements is often performed
using the euclidean norm and distance. In high-dimensional

spaces, however, norms concentrate. This means that all
pairwise distances in a data set are very similar and can
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TABLE 2
Performances of the RBFN on Several Data Sets with the

Euclidean Norm and with Fractional Norms

The data are altered with burst noise. The norm in the RBFN is chosen
according to the leave-one-out performances of a 1-NN.

Fig. 5. The evolution of the score of each norm as a function of the number of iterations for the face image database. The 1/2-norm appears as the

most relevant from iteration 10 onward.



lead to questioning the relevance of the euclidean distance

for measuring similarities in high-dimensional spaces.
This paper considers the problem of the concentration of

the distances independently from the number of data and

shows that the concentration is indeed an intrinsic property

of the distances and not due to finite sample size. This

paper furthermore shows that

. all p-norms concentrate, even when an infinite
number of data (that is, a distribution) is considered,
including when the distribution is unbounded;

. the value of p and the shape of the distribution of
high-dimensional data influence the value of the
relative variance, which is derived for any distribu-
tion and used as a measure of concentration;

. consequently, the exponent p of the norm can be
adjusted to fight the concentration phenomenon;

. there exist distributions for which the relative
contrast does not increase when the exponent p of
the norm decreases;

. the identically distributed hypothesis in the concen-
tration of the norm theorems is not necessary as soon
as the variables are normalized;

. the concentration phenomenon is more related to the
intrinsic dimension of data than to their embedding
dimension, which makes its consequences in prac-
tical situations less severe than mathematically
expected; and

. the optimal metric is highly application-dependent,
and some sort of supervision is needed to optimally
choose the metric.

Fractional norms are not always less concentrated than

other norms. They seem, however, to be more relevant as a

measure of similarity when the noise affecting the data is

strongly non-Gaussian.
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[27] P. Howarth and S.M. Rüger, “Fractional Distance Measures for
Content-Based Image Retrieval,” Proc. 27th European Conf.
Information Retrieval Research (ECIR ’05), J.M. Fernandez-Luna
and D.E. Losada, eds., pp. 447-456, Mar. 2005

[28] H. Jin, B.C. Ooi, H. Shen, C. Yu, and A. Zhou, “An Adaptive and
Efficient Dimensionality Reduction Algorithm for High-Dimen-
sional Indexing,” Proc. 19th Int’l Conf. Data Eng. (ICDE ’03), pp. 87-
98, Mar. 2003.

[29] C. Elkan, “Using the Triangle Inequality to Accelerate K-Means,”
Proc. 20th Int’l Conf. Machine Learning (ICML ’03), pp. 147-153,
Aug. 2003.

[30] M. Skala, “Measuring the Difficulty of Distance-Based Indexing,”
Proc. 12th Int’l Conf. String Processing and Information Retrieval
(SPIRE ’05), M.P. Consens and G. Navarro, eds., pp. 103-114, Nov.
2005.

[31] P. Yianilos, “Excluded Middle Vantage Point Forests for Nearest
Neighbor Search,” technical report, NEC Research Inst., Jan. 1999,
presented at Proc. Sixth Center for Discrete Mathematics and
Theoretical Computer Science (DIMACS) Implementation Challenge:
Near Neighbor Searches Workshop.

[32] S. Berchtold, C. Boehm, B. Braunmueller, D.A. Keim, and H.-P.
Kriegel, “Fast Similarity Search in Multimedia Databases,”
Proc. ACM Int’l Conf. Management of Data (SIGMOD ’97),
J. Peckham, ed., May 1997.

[33] N. Katayama and S. Satoh, “The Sr-Tree: An Index Structure for
High-Dimensional Nearest Neighbor Queries,” Proc. ACM Int’l
Conf. Management of Data (SIGMOD ’97), J. Peckham, ed., pp. 369-
380, May 1997.

[34] S. Berchtold, D.A. Keim, and H.-P. Kriegel, “The X-Tree: An Index
Structure for High-Dimensional Data,” Proc. 22nd Int’l Conf. Very
Large Data Bases (VLDB ’96), T.M. Vijayaraman, A.P. Buchmann,
C. Mohan, and N.L. Sarda, eds., pp. 28-39, Sept. 1996.

[35] K.-I. Lin, H.V. Jagadish, and C. Faloutsos, “The TV-Tree: An Index
Structure for High-Dimensional Data,” VLDB J., vol. 3, no. 4,
pp. 517-542, 1994.

[36] P. Indyk and R. Motwani, “Approximate Nearest Neighbors:
Towards Removing the Curse of Dimensionality,” Proc. 30th Ann.
ACM Symp. Theory of Computing, pp. 604-613, May 1998.
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catholique de Louvain. His main interests
include high-dimensional data analysis, dis-

tance-based prediction models, and feature/model selection.

Vincent Wertz received the engineering degree
in applied mathematics in 1978 and the PhD
degree in control engineering in 1982 from the
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1992, at the Université d’Evry Val d’Essonne,
France, in 2001, and at the Université Paris I-
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