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Abstract
The analysis of the big volumes of data requires efficient and robust dimension reduction techniques to represent
data into lower-dimensional spaces, which ease human understanding. This paper presents a study of the stability,
robustness and performance of some of these dimension reduction algorithms with respect to algorithm and data
parameters, which usually have a major influence in the resulting embeddings. This analysis includes the perfor-
mance of a large panel of techniques on both artificial and real datasets, focusing on the geometrical variations
experimented when changing different parameters. The results are presented by identifying the visual weaknesses
of each technique, providing some suitable data-processing tasks to enhance the stability.

Categories and Subject Descriptors (according to ACM CCS): I.2.6 [Computing Methodologies]: Artificial
Intelligence—Machine learning

1. Introduction

The technological evolution in recent years has resulted in
an unprecedented generalization of data sources, which usu-
ally implies not only better, but also bigger datasets. Social
networks and open data initiatives are clear examples of this
new trend. For many economic sectors, these huge amounts
of data include potential information, which usually is hid-
den and therefore it is necessary to be extracted. As a conse-
quence, this requires having suitable techniques for analyz-
ing and visualizing all these data. As these data are typically
high-dimensional and so they can not be visualized directly
in a two/three dimensional lattice, dimensionality reduction
(DR) techniques play a key role, making a transformation
of these data into a meaningful, visualizable and reduced-
dimensional space.

Dimensionality reduction includes techniques that allow
the user to obtain meaningful data representations of a given
dimensionality, improving the process of comprehension
and analysis of data. In this field, several techniques have
been proposed –we only focus on unsupervised techniques.
Principal Component Analysis (PCA) [Jol05] or Multidi-
mensional Scaling (MDS) [Tor52, YH38] are well-known
examples of linear DR techniques. Although linear tech-
niques usually perform well, they fail when working with
complex datasets, which lie on a nonlinear manifold. In these

cases, nonlinear techniques performs better as they have the
ability to deal with this kind of data. Nonlinear DR tech-
niques [LV07] started to appear later, especially with nonlin-
ear variants of multidimensional scaling [Sam69] and neu-
ral approaches [KSH01, DH97]. In recent years, the evo-
lution in the DR field has focused on spectral techniques,
such as Isomap [TSL00], Local Linear Embedding (LLE)
[RS00], Laplacian Eigenmaps (LE) [BN03], and non-convex
techniques, such as Stochastic Neighbor Embedding (SNE)
[HR02] and t-Distributed Stochastic Neighbor Embedding
(t-SNE) [vdMH08]. These modern DR techniques are usu-
ally known as manifold learning algorithms [TDBET98].

This paper contributes to the study the stability of unsu-
pervised DR techniques with respect to variations of their
parameters and of the data. In contrast to [KYO12], where
the authors present a study the stability by introducing a per-
turbation to data, this paper focuses on answering question
referring to both data and parameters. The reminder of this
paper is organized as follows. Section 2 introduces the moti-
vation and the aim of this work. Section 3 describes the ex-
perimental methodology and a description of the data used.
Section 4 illustrates the results. Finally Section 5 ends up
with the conclusions.
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2. Stability of dimensionality reduction techniques

Dimensionality reduction transforms a set of N high-
dimensional vectors, X= [xi]1≤i<N , into N low-dimensional
vectors (d << D), Y = [yi]1≤i<N . Mathematically, a DR
technique can be understood as an application f : RD→Rd ,
where d < D. Thereby, the main idea of DR is to keep far-
away the points which are very dissimilar in the input space,
while keeping close the ones that are near to each other in
the original lattice.

In order to better understand the stability of DR tech-
niques, it is necessary to take into account the way the em-
bedding is constructed. One of the simplest approaches to
data projection is to preserve pairwise distances, either using
an appropriate metric [Sam69,DH97] or using a probability-
based approach [HR02, vdMH08], obtaining a pairwise dis-
tance or dissimilarity matrix respectively. However, the pre-
vious approaches cannot be applied if the pairwise distance
matrix has unknown elements. In this case, an alternative
is to compute a graph model of the data, whose edges de-
pend on the known elements of the pairwise distance ma-
trix. Particularly, this method can also be applied when all
the elements of the pairwise matrix distance are known, like
in many manifold learning algorithms. Finally, the embed-
ding can be obtained from this model whether retaining the
global [TSL00] or the local structure of data [RS00, BN03].

If the stability of DR algorithms is analyzed attending to
parameter and data variations, some behaviors are expected.
For instance, graph-based solutions have a major drawback
if the constructed graph is not completely connected –a typ-
ical situation with clustered datasets–, even if the complete
pairwise distance matrix is known. In this case, they are not
capable of reducing the complete dataset X, whereas meth-
ods based on pairwise distances or similarity matrices are.
Moreover, the behavior of various graph-based algorithms
may differ. Local-based graphs have a larger dependency on
small changes in the data points than global-based ones. If
adding a moderate number of new points heavily modifies
the representation, this is considered as negative for visual-
ization purposes, because there is no continuity in the result-
ing embeddings.

Regarding the way the embedding is solved, two major
alternatives exist [vdMPVdH09]. On the one hand, convex
techniques –minimization of a convex cost function–, such
as Isomap, LLE or LE, involve an eigenvalue decomposi-
tion. The mathematical procedure introduces indetermina-
cies in the embeddings, which can lead to irrelevant geomet-
ric transformations like mirroring, rotation and translation of
the projection between different results. On the other hand,
non-convex techniques –minimization of a non-convex cost
function–, e.g. SNE or t-SNE, use the gradient descent al-
gorithm in order to obtain the final projection. The prob-
lem with these algorithms comes from the randomness intro-
duced in the process: the initialization is random for all non-
convex techniques, and the way in which the data points are

presented in each iteration is also random only in stochastic
gradient descent algorithm, so it is difficult to obtain compa-
rable projection under the same conditions.

From the visual analytics point of view, some behaviors
are desired [War08]. Perception and cognition are important
parts of the process of visual analytics and it is necessary
to take them into account in order to select the most suit-
able technique for a visual analytics application. Thereby,
some of the behaviors previously described about the per-
formances of DR techniques are not good for this process.

Geometric variations –e.g. rotation, translation, . . . – in the
projection make the analysis for the user difficult. Internally,
the human brain needs to revert these transformations in or-
der to ease the comparison of projections, slowing the pro-
cess. Thus, it is necessary that the DR techniques take into
account this fact. These geometric transformations include
not only the variations caused by the algorithm, but also the
discontinuity when changing some data or algorithm param-
eters, such as the order of the data points or the neighbor-
hood parameter respectively.

Apart from these, other requirements for DR techniques
in the visual analytics field can be related to time computa-
tion. Particularly in the case of interactive applications, the
time between the action of the user and change in the display
must be the shortest possible, so if the algorithm is time-
consuming, maybe it is not suitable for interactive purposes.

The study made in this paper intends to provide an initial
approach to helping in the selection of a suitable algorithm
that combines a good dimensionality reduction performance
and good visualization features.

3. Experimental methodology

In this section, we describe the experiments and the method-
ology applied, as well as the processing tasks we propose for
improving the stability of DR techniques.

3.1. Dimensionality Reduction Techniques analyzed

In order to evaluate the stability and robustness of the DR
techniques, we propose the following experiments. Each ex-
periment focuses on different desired features for the appli-
cation of DR techniques in the visual analytic field. The
experiments are carried out on four well-known synthetic
datasets: S-curve, Swiss roll, helix and twin-peaks, and
two natural datasets, MNIST [LBBHov] and Olivetti faces
[SH94] (see Figure 1).

In this analysis, we select six DR techniques, which are
enumerated below. The settings of the techniques for the ex-
periments are shown in Table 1.

• Principal component analysis (PCA) [Jol05].
• Isomap [TSL00].
• Laplacian Eigenmaps (LE) [BN03].
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• Locally Linear Embedding (LLE) [RS00].
• Stochastic Neighbor Embedding (SNE) [HR02].
• t-Distributed Stochastic Neighbor Embedding (t-SNE)

[vdMH08].

S−curve Swiss Roll

Helix Twin Peaks

MNIST Olivetti faces

Figure 1: Datasets used for the stability comparison.

Technique Parameters Settings
PCA None None

Isomap
k: number of neighbors 4 < k < 40LE

LLE
SNE

Perplexity (P): size of a k-ary neighbor 4 < P < 40
t-SNE

Table 1: Parameter settings for the experiments.

3.2. Experiment description

A detailed description of each experiment applied to the data
is shown below. On the one hand, Experiments 1 and 2 are
related to each technique in order to study the influence of
the parameters in the resulting embeddings. On the other
hand, Experiments 3 and 4 are oriented to common scenarios
when working with natural datasets.

Experiment 1. This experiment focuses on analysing the in-
fluence of the order in which the data points are introduced
to the DR algorithm. Datasets of 1000 points are introduced
in different random orders, with the aim of analyzing the ge-
ometric variations experimented by the techniques.

Experiment 2. For this experiment, the objective is to study
the stability of the DR techniques under changes in their
parameters (see Table 1). Thus we test the behavior of the
DR techniques using identical datasets, analyzing their vi-
sual continuity in the resulting projections for a wide set of
values for the parameters.

Experiment 3. We apply this experiment regarding the per-
formance of DR techniques when working with incremen-
tally changing datasets. Starting from a dataset of 800 points,
we increase the number of points in several steps observing
the transformations generated by each technique.

Experiment 4. In this case, the experiment aims at analyzing

the variations observed when datasets from the same topo-
logical space, but with different points, are projected, in or-
der to study which technique yields the more stable results.

In order to improve the stability and robustness of the se-
lected DR algorithms, we propose two simple, easily appli-
cable and low computational pre- and post-processing meth-
ods.

1. In the case of convex techniques, we propose the use of
Procrustes Analysis [Ken89]. This algorithm is a mathe-
matical procedure in statistical shape analysis that allows
one to analyze a set of shapes. Basically, this method
computes the rotation matrix and the translation vector
of each projection, according to a projection considered
as the baseline.
Since this algorithm makes a point-by-point comparison,
it can only be used with datasets that share them, so it
does not apply to Experiment 4.

2. For non-convex techniques, our approach focuses on con-
trolling the initialization of the algorithms, fixing the ini-
tial conditions by fixing the random seed used to gener-
ate them, while using a stochastic gradient descent algo-
rithm to obtain the optimal solution. This semi-random
approach can control the initialization, while the random
introduction of the points helps to avoid local minima.
It is important to point out that our approach is a post-
processing task in the case of convex techniques, while in
non-convex algorithms, the method is a pre-processing.

4. Results

Due to paper length constrains, only the most relevant results
are shown in Figure 2.

For Exp. 1 (Figure 2, top left), we show the results for
Isomap, LLE, whose performance is similar to LE, and t-
SNE, similar to SNE. The general behavior of the techniques
is reasonably stable, excluding t-SNE due to the randomness
in the initialization, whose performance is really improved
with the pre-processing. In the case of convex techniques,
the approach proposed, based on Procrustes Analysis, is able
of aligning the embedding in a suitable way, avoiding geo-
metrical transformations.

Referring to the influence of the parameters (Figure 2, top
righ), the behavior of LE –similar to LLE– is more unstable
than Isomap or t-SNE. As it can bee seen in Figure 2, the
continuity in the case of Isomap is better than LE, which also
tends to obtain cluttered visualization. In the case of convex
techniques, the semi-random approach gives more stability
to the projections obtained than with a random initialization.

When working with incrementally changing datasets (Fig-
ure 2, bottom left), Isomap, LE and LLE are not always ca-
pable of obtaining a fully connected graph if the number
of points is not large enough, while this problem does not
appear in PCA or t-SNE. Concerning this experiment, the
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Figure 2: Relevant results obtained from the experimental methodology proposed for the Swiss roll dataset. Notice that framed
projections corresponds to processed results with Procrustes Analysis and the semi-random approach.

post-processing in t-SNE improves the continuity between
projections with the same perplexity. Also, it is important to
emphasize that if the number of points in the dataset is large,
the influence of the parameter is lower.

In Experiment 4 (Figure 2, bottom righ), the projection of
graph-based techniques –Isomap, LE and LLE– may differ
a lot depending on the data, while in the case of SNE and
t-SNE –or PCA, which is not shown–, the projections are
reasonably stable for the same parameter.

5. Conclusions and future work

In this paper, we present a study of the analysis of stability
of unsupervised dimensionality reduction techniques under
variations in data and in the parameters of the algorithms.
The analysis is achieved through different experiments over
several artificial and natural datasets.

As a general conclusion, local methods –LE and LLE,
which retain local structure of data– are more likely to be
influenced by small changes in both data and parameter vari-
ations. They also tend to provide cluttered visualizations,
whereas data points in t-SNE, Isomap and PCA are much
more scattered. t-SNE, due to the nature of its gradient, tends
to form small clusters in the embedding.

It is interesting to point out that if the visualization of
the whole dataset is a major requirement, graph-based tech-
niques are not a good solution, as the construction of the

graph can lead to not fully-connected graphs and so not all
points will be embedded. On the other, PCA, t-SNE and SNE
are not affected by this problem. Among them, the quality of
the embedding is usually better in t-SNE and SNE, particu-
larly when working with non-linear manifolds.

Our approaches to improving the stability of DR tech-
niques obtain satisfying results. The Procrustes Analysis al-
gorithm applied to convex techniques performs well in most
of the cases, although it has a major dependence on the
projection chosen as the baseline for the geometric trans-
formation. In the case of non-convex techniques, the semi-
random approach proposed makes a stronger control of the
final shape, leading to more comparable projections.

As a future work, some possible directions are promising.
Particularly, the application of the methodologies proposed
in this paper to visual analytics tools in order to ease the
knowledge discovery process by stabilizing the projections,
as well as the extension of the study including other an out-
of-sample comparison, supervised techniques and the defi-
nition of a metric of stability for DR techniques.
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