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ABSTRACT
Generating effective visual embedding of high-dimensional data is difficult - the analyst expects to see the structure

of the data in the visualization, as well as patterns and relations. Given the high dimensionality, noise and imperfect
embedding techniques, it is hard to come up with a satisfactory embedding that preserves the data structure well, whilst
highlighting patterns and avoiding visual clutters at the same time. In this paper, we introduce a generic framework for
improving the quality of an existing embedding in terms of both structural preservation and class separation by feature space
transformations. A compound quality measure based on structural preservation and visual clutter avoidance is proposed
to access the quality of embeddings. We evaluate the effectiveness of our approach by applying it to several widely used
embedding techniques using a set of benchmark data sets and the result looks promising.
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1. INTRODUCTION
A good starting point for analyzing high-dimensional data is to map it to a 2D or 3D display as a scatter-plot-like visual-
ization to see the structure and patterns in the data. We call such an approach projection-based analysis. A large number of
Dimension Reduction (DR) techniques exist for performing such a task, however it is hard to come up with a satisfactory
embedding (projection) that provides both good reflection of the data structure and clear indication of class boundaries
at the same time. This is due to many factors. First of all, DR techniques only provide approximations of the distances
between data items in the data space. It is nearly impossible to get a ”perfect” embedding which shows the exact structure
of the data in the visual space. Secondly, high-dimensional data often contains irrelevant attributes which obscure the real
distance between data items, and the noise introduced by such irrelevant information may lead to a cluttered visual display
where class boundaries are blurred. Such limitations hinder the human analyst from understanding relationships between
data items and identifying patterns in the data. Although supervised DR techniques aim at providing better group sepa-
ration based on class labels in the data, methods that maintain good comprise between structural preservation and visual
cluttering avoidance (i.e., classes are well separated and easy to identify in the visual display) are lacking. Furthermore,
there are no existing measures that can be directly applied to evaluate the quality of a given embedding based on all the
above mentioned criteria.

We present a computational framework that tackles the problem of high-dimensional data embedding by improving
the quality of an embedding by extending relevant features in the feature vector space. The framework first identifies
relevant features in the data and then extends them in the original feature space using various transformation strategies.
Given an initial embedding, users can interactively update the configuration by enhancing the influence of relevant features
using different transformation strategies. A compound quality measure, which takes into consideration both structural
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preservation and visual clutter avoidance is designed to assess the quality of the embeddings. The structural preservation
is evaluated by existing structural quality measures. The visual clutter avoidance is evaluated by a density function that
measures the overlap between classes and an area measure that calculates the size of overlap regions between classes.
The combined measure provides a clear indication of the trustworthiness of an embedding in terms of both structural
preservation and class separation. With an appropriate graphical user interface the user can achieve the best compromise
between the two according to their preferences. Our proposed approach works in a supervised manner, that is, class labels
are used to evaluate the visual quality of an embedding in terms of class separation. Unlike most of the existing supervised
embedding techniques, which are based on specific DR algorithms, our approach is DR technique independent. It can be
applied to improve an initial embedding generated by any DR algorithm.

The main contributions of this paper include: 1) an improved projection-based data analysis framework which trans-
forms the feature vector space by extending the identified relevant features; 2) a new quality measure to automatically
evaluate projection displays, integrating structure preservation and clutter avoidance; and 3) an evaluation of the effective-
ness of different feature space transformations strategies, as a guideline for further development.

In Section 2, we introduce related work, including DR techniques that are commonly used for embedding high-
dimensional data and various quality measures for evaluating the visual quality of embeddings. Section 3 details our
framework for improving projection-based data analysis, and enumerates a number of possible feature vector transforma-
tion strategies. Section 4 discusses quality measures for evaluating a given embedding in terms of structural preservation
and clutter avoidance. In Section 5, we illustrate the effectiveness of our approach by testing with synthetic and real data.
In Section 6 we discuss the evaluation results before drawing conclusion and discussing possible extension of the work in
Section 7.

2. RELATED WORK
Analyzing high-dimensional data is challenging, as the high dimensionality induces problems in both automatic analysis
and visualization. On the automatic side, redundant and noisy dimensions may degrade the performance of the analysis
algorithms.1 On the visualization side, one has to cope with the conflict between the limited number of visual dimensions
and the large number of data dimensions. To visualize the structure of high-dimensional data effectively, the data items
have to be mapped in such a way that similar items are close to each other and dissimilar ones are far apart. This is usually
achieved by a DR technique which tries to approximate the distances between data items in data space to the corresponding
Euclidean distances in the visual display. In this section, we briefly review DR techniques that are commonly used for
embedding high-dimensional data, as well as measures for evaluating the quality of an embedding.

2.1 Dimension Reduction for High-dimensional Data Visualization
DR is a well-studied topic by the machine learning community. The idea behind all DR techniques is that they should
produce low-dimensional representations that preserve meaningful structural properties of data. In general, these properties
formalize proximity relationships. They can be similarities (adjacencies, dot products) or dissimilarities (distances, angles).
A large number of DR techniques exist, ranging from classical approaches such as Principal Component Analysis (PCA),2

Classical Multidimensional Scaling (MDS),3 to more recent extensions such as Curvilinear Component Analysis (CCA),4

Isomap,5 Generative Topographic Map (GTM),6 and Stochastic Neighbor Embedding (SNE).7

For generating a visual embedding, the training data can be either labeled or unlabeled, leading the development of
supervised and unsupervised DR algorithms, which are often studied separately. While unsupervised DR aims at repre-
senting high-dimensional data in lower-dimensional spaces in a faithful way, supervised DR tends to emphasize features
relevant for a given labeling of the data in the final embedding such that the visualization provides better class separation.
However many DR techniques have variations for both supervised and unsupervised learning. The algorithm we propose
in this paper works in a supervised manner, however, it can be applied to improve an embedding generated by any DR
technique as long as trustworthy class labels are provided. Next, we focus on a few representative DR techniques as a basis
for understanding the fundamental principle of DR. Comprehensive surveys of DR techniques can be found in.8–12

PCA and classical MDS are probably the two linear DR techniques for embedding high-dimensional data most widely
used in data visualization. Also known as Karhunen-Loève transform, PCA reduces the dimensionality of the data to
summarize the most important parts and simultaneously filters out noise. The algorithm de-correlates variables and selects
those that bear most of the data variance for projection. PCA was later extended to Classical MDS which starts from either



a Gram matrix or a matrix of pairwise Euclidean distances instead of the sample covariance to compute the projections
along the principle components.

One inherent limitation of linear approaches is that they cannot take into account nonlinear structures consisting of
arbitrarily shaped clusters or curved manifolds. Among many nonlinear extensions of MDS which are designed to over-
come such limitation,4, 13, 14 Isomap is a interesting variation. Instead of using pairwise input-space distances as simple
Euclidean distances, Isomap uses geodesic distances along the manifold of the data (technically, along a graph formed by
connecting all k-nearest neighbors) to recover certain types of manifolds. SOM is one of the earliest nonlinear techniques
which trains a discretized map representation of the input space of the training samples. A neighborhood function is used
to preserve the topological properties of the input space. A notable recent extension of SOM is GTM, which is a generative
version of SOM. GTM represents the probability density of high-dimensional data in a smaller number of latent or hidden
variables using latent variable models.15 The SNE method and its variant, t-SNE,16 have recently received much attention.
They are based on similarity preservation instead of distance preservation. They involve specific similarity definitions that
show interesting invariance properties and makes them robust against the phenomenon of norm concentration.

Automatic DR techniques help to show underlying structure and relationships in high-dimensional data. However,
with the increasing size and complexity of data, it becomes more and more difficult to generate meaningful transforma-
tions without interactive analysis based on integrating human knowledge and feedback during the learning process. This
leads to the development of interactive dimension reduction techniques. Examples include the iPCA system17 which sup-
ports the analysis of multivariate datasets through extensive interaction with the PCA output. The iVisClassifier system18

facilitates the interpretability of the computational model applied to the data via interaction and multiple views projections.
Furthermore, the DimStiller framework19 defines an interactive workflow that guides users through the process of finding
suitable dimension subsets. In20 the importance of integrating interactions with statistic methods (in particular, DR tech-
niques) to support explorative analysis of high-dimensional data is discussed. In21 interactive selection of sets of features
was proposed. The approach generates, for each candidate feature set, a projection. Using color-coding, a comparison
matrix of the individual projections is provided which supports identification of similar and complementary feature sets.
A related problem was addressed in.22 There, Dendrogram structures were extracted from alternative feature sets, and
applied for interactive comparison and selection of feature sets.

The above mentioned techniques show that a rich body of research exists on high-dimensional data visualization.
However, how to appropriately compute and visualize structure and patterns in high-dimensional data remains a tough
challenge due to the nature of the data and DR techniques.

2.2 Quality Measures
Despite the fact that DR research started over a hundred years ago and a large number of DR techniques have been
developed, the question of quality assessment of a given embedding remains mostly unanswered until recent years. One
possible way to measure the quality of a embedding is to use a so called stress or strain measure.23–25 These measures
often come with nonlinear DR methods, and are typically used as objective functions for measuring the quality of structural
preservation in terms of how well do the Euclidean distances between pairwise data items in a low-dimensional embedding
approximate the corresponding distances in high-dimensional data space. While strain and stress measures check the
preservation of global structure of data with respect to distance/similarity preservation, in recent years, more and more
research has been devoted to designing of new criteria for quality assessment with a broader applicability, taking into
consideration also the small neighborhood preservation, examples include the trustworthiness and continuity measure,26

the local continuity meta-criterion,27 and the K-ary neighborhoods measure.28 In the case of labeled data, the classification
error is a typical choice, see for instance29 and other references in.30 The integration of classification error measures in the
DR technique leads to better group separation in the final embedding.

As mentioned previously, apart from studying the structure of the data, analysts also expect to see patterns in the
embedding. Such patterns include grouping information, such as classes (with labeled data) and clusters (with unlabeled
data) and outliers. Although it is often intuitive to tell the visual quality of an embedding by seeing how cluttered it is and
how badly groups overlap, a qualitative measure is still preferred by analysts for quality assessment. In recent years some
research has been devoted to the evaluation of visual quality of graphical representations of high-dimensional data in a
broader sense.31–34 Such graphical representations include not only visual embedding of high-dimensional data generated
by DR techniques, but also other form of visualizations such as parallel coordinates35 or scatter plot projection of data
values over a subset of dimensions (usually two or three dimensions, mapped to x-, y- and z- axes in the visual display).



The visual quality measures can be based on different user tasks, for example, outliers, clusters, correlation, and abstraction
level. Two existing visual quality measures are closely related to our problem.33 The first measure is the Histogram Density
Measure which was designed for ranking scatter plot visualizations. The second one is the Class Density Measure which
is based on an image processing algorithm that transforms each group in a continuous, smooth density function based on
local neighborhoods and measures the mutual overlap between pairwise of data items in the scatter plot. An overview of
approaches that use quality measures in high-dimensional data visualization and a systematization based on a literature
review is presented in.36

None of these above mentioned measures however provides the facility to assess the quality of a given embedding
in terms of both structural preservation and class separation, as well as visual cluttering avoidance. In our work, we try
to design a measure which takes into account both structural preservation quality and visual quality to make sure the
embedding reflects the original structural of the data as well as provides clear (low-cluttered) visualization for pattern
analysis.

3. FEATURE SPACE TRANSFORMATION
Most projection-based analyses involve two steps: Given a high-dimensional data set, a distance or similarity matrix that
records pairwise distances (similarities) between objects is first calculated using a preselected measure; a DR technique
is then applied, aiming to approximate in the projection space the pairwise distance (similarity) measured in the data
space. The visual embedding is meant to help analysts to understand the data structure as well as identify meaningful
patterns in the visual display, in particular, arbitrary shaped clusters. However, high-dimensional data often contains
irrelevant dimensions which obscure the real distance between objects and even with carefully chosen DR techniques,
the grouping information may still be hidden in the visual representation due to the noise. To reduce noise and preserve
grouping information as well as structure of data, we propose a feature vector transformation approach which first design
transformation strategy and then transform the original feature space by extending corresponding feature vectors. Such
transformation is expected to provide better group separation in the final embedding. The resulting embedding can be
evaluated by a quality measure to make sure the final embedding shows clear separation of classes, whilst still preserving
data structure well. This is achieved by a quality measure combining class-related overlap measures on the one hand, and
stress-based measures on the other. In this section we introduce our method for feature vector space transformation and
exemplify our approach with two simple transformation strategies.

Figure 1. Example for a projection of two 2-dimensional data
sets with three classes. Left: data set A, right: data set B.
Classes 0, 1 and 2 are colored in red, green and blue.

The main idea of the feature space transformation is to extend
the relevant features (e.g., mean values of selected dimensions)
for better group separation in the final embedding. This can be
achieved by adding additional feature vectors to the original fea-
ture space to leverage the noise introduced by irrelevant dimen-
sions. For selecting dimensions to extend, there are a number of
intuitive guidelines, for example, one can check the range of data
values over a dimension - typically the smaller the range, the less
likely the class is going to overlap with others in the dimension
therefore dimensions that have high range may be less relevant
to the class separation. Another choice is the spread - if all the
class members share similar values in one dimension, it is likely
this dimension is discriminative to the class label. In other words,
generally speaking dimensions that have high spread may be se-
lected for extension. Next we use these two measures for relevant
feature selection.

To illustrate the feature space transformation approach, we generate two simple 2-dimensional data sets, A and B, each
contains 30 objects that belong to three different classes. Figure 1 shows the 2D projection of both data sets. Colors are
used to indicate class labels.

One simple feature space transformation strategy is the addition of mean values. Although a feature space can be
transformed in many different ways, besides this simple strategy. For example, median or mode can be applied instead of
means value (depending on the nature of data) etc. Also, the number of extensions of can vary. The maximum number



of extensions can be the total number of dimensions n, in which case we extend all dimensions. Our experimental results
show that this maximum extension leads to a good group separation but loss of similarity preservation between groups
objects 6. Next, we illustrate the mean-value extension strategy using the two data sets. First of all, the mean values mvdc
of each dimension d ∈ {1, . . . ,n} for each class c are calculated (see Table 1). We found a simple heuristic approach based
on mean spread of dimensions may already be suitable for selecting which dimensions to extend. Ideally the selected
dimensions should be discriminative to the class labels. In our case, we take the range and spread (see below for details).

Table 1. Mean values mvdc for each dimension d ∈ {1,2} for each class c ∈ {0,1,2} of data set A and B.

Class mv1c data A mv2c data A mv1c data B mv2c data B
c=0 10 10 10 10
c=1 16 16 16 19
c=2 20 24 20 24

We start from calculating the range rd for each dimension d ∈ {1, . . . ,n} with class labels c (here c ∈ {0,1,2}):

rd = max(mvdc)−min(mvdc) (1)

Result in range values for data sets A and B as shown in Table 2. Next we calculate the spreadd measure for each dimension

Table 2. Range values rd for each dimension d ∈ {1,2} of data set A and B.

d=1 data A d=2 data A d=1 data B d=2 data B
min 10 10 10 10
max 20 24 20 24
r 10 14 10 14

which is defined as:

spreadd =

{
r2

d/sdd i f sdd 6= 0
r2

d else
(2)

where sdd is the standard deviation of the differences between the ordered mean values of the classes within dimension d.
With this heuristic we can reward equally spread mean values, the higher the spread measure the better. Table 3 shows the
spread values for the data sets A and B. In the next section, we define quality measures that can be applied to evaluate the

Table 3. Spread-measure spreadd for each dimension d ∈ {1,2} of data set A and B.

d=1 data A d=2 data A d=1 data B d=2 data B
difference between c0 and c1 6 6 6 9
difference between c1 and c2 4 8 4 5
standard deviation 1.4 1.4 1.4 2.8
range 10 14 10 14
spread 70.7 138.6 70.7 69,3

effectiveness of the above mentioned heuristic approaches.

4. QUALITY MEASURES
As mentioned previously, to visualize high-dimensional data a good embedding is expected to approximate the data struc-
ture well and highlight patterns. There are a number of quality measures for evaluating these properties (see Subsec-
tion 2.2), however not many of them take both aspects into consideration and allows the user the define the best com-
promise. We propose a new quality measure which combines three score functions for evaluating structural and visual
aspects of an visual embedding respectively and gives users the freedom of adjusting the weight for each score. First of
all, for measuring the structural preservation, we use two alternative quality measures which assess how well the structure
of data is preserved in the embedding. Secondly, for measuring overlapping between groups, we combine an area-based
overlapping measure and a density-based overlapping measure. The former calculates the size of the overlapping regions



between groups. The latter measures how objects between different groups overlap in a particular region. The combination
gives a good indication of how well groups are separated in the projection.

Note that a wide range of measures exist for calculating the structure preservation, the area of overlap between two
regions and the density of overlapping objects inside a region. The measures we use in this paper are used to illustrate the
basic principle of our approach and can be replaced by other measures of similar nature.

4.1 Stress measure
To evaluate structuring preservation we apply Sammon’s stress25 and K-ary neighborhoods measure.37 While Sammon’s
stress focuses on the quality of global pairwise similarity preservation,25 k-ary neighborhood measure also shows the
quality of local neighborhood preservation of an embedding. The k-ary neighborhood measure records two types of
neighborhood preservation errors in the embedding, neighborhood intrusion error and neighborhood extrusion error.28

Given a data with N objects, Sammon’s stress computes an error E, which represents how well the present configuration
of N points in the lower dimensional space fits the N points in the high-dimensional space:

E =
1

∑i< j d∗i j
∑
i< j

(d∗i j−di j)
2

d∗i j
(3)

The distance between data item i and data item j in the original high-dimensional space is defined by d∗i j, and the distance
between their lower dimensional projections by di j. The stress value is calculated from the data of the projection resulting
from the transformed features, against the initial feature vector data. With this procedural method it is ensured that the
distance preservation is measured to the initial feature space.

The K-ary neighborhoods measure is defined as

QNX(K) =
N

∑
i=1

|n∗i (K)∪ni(K)|
KN

, (4)

where n∗i (K) is the set of indices of the K nearest neighbors of the i-th datum in the HD space whereas ni(K) corresponds
to the set of indices of the K nearest neighbors in the LD space.

4.2 Overlap measures
For pattern search, it is important to avoid visual cluttering in the projection such that patterns can be easily identified and
groups can be easily perceived. Visual cluttering in an embedding can be caused by either overlaying of objects in the
display or overlap between group boundaries. E.g., Figure 2 shows 3 different projections of the same data set. While the
left projection has a cluttered region on the top left corner where objects are plotted on top of each other and the middle
one has a big overlap region between purple and orange group, the right projection shows much clearer view of the groups.
To achieve a less cluttered embedding, we designed two overlap measures to evaluate the visual cluttering level of an
embedding. The first measure calculates the size of overlapping region between groups and the second measure sums up
the density of objects in overlapping regions.

Figure 2. 2D projections of high-dimensional data with 5 classes, color of objects represent class labels.



Overlap area measure. To calculate the size of overlapping regions between groups of labeled points, we first need
to define the region of each of the groups. The basic idea is to describe the group boundary by drawing a representative,
enclosing hull of the objects that belong to the same group. A number of methods exist for computing boundaries for point
sets, e.g., various convex hull generation methods38–40 and the isocontour approach as proposed in.41 In42 we computed
overlap between convex hulls for the visual comparison of the discrimination capabilities in alternative feature spaces.
Here, we apply a different and less known hull formation method proposed by Moreira and Santos43 which computes the
region of a set of points as a concave hull based on a k-nearest neighbors approach. The advantage of this approach is
that the generated region is usually more compact and better reflects arbitrary shaped groups in the embedding (see Figure
3). For each point that has to be connected to the next point, the algorithm first searches the best connection among its
k nearest neighbors to make sure the result hull is as compact as possible. Compared to the isocontour approach, the
parameter setting of Moreira and Santos’ method is much simpler and can be automated. Only one parameter needs to
be defined, which is the k parameter. It controls the smoothness of the computed hull. When k is set to 3, the algorithm
automatically looks for the smoothest possible envelop, i.e., the most compact concave hull. In the worst case, when k is
equal to number of points-1, the algorithm will output a convex hull.

Figure 3. Regions of a set of points generated by: a) convex
hull approach, b) concave hull approach.

Once the region of each group is defined, we calculate
the overlap region intersect(i, j) for each pair of groups i
and j. The overlap area measure sums up the area of all
the overlap regions between pairwise groups for the set g of
groups:

ovreg =
|g|−1

∑
i=1

|g|

∑
j=i+1

intersect(i, j) (5)

Figure 4 shows an example of the overlap area measure.
Given three classes colored in red, green and blue, our method
first computes the boundary of each class using the concave hull

approach. The size of overlap region(s) between pairwise concave hulls is then calculated and summed up as the area
overlap measure (black surrounded areas in Figure 4).

Figure 4. The black surrounded areas show the overlap of the
concave hulls for data set A(left) and data set B(right).

Overlap density measure. The hull-based approach does not
consider the possibly, non-uniform density of points. Therefore,
we complement it by an overlap density measure that evaluates
how strongly points are over-plotted in the visual display. The
display area is divided into grid units (where the resolution of the
grid can be adjusted). A Gaussian function G is used to determine
whether a grid unit is occupied by a particular class depending on
the density of objects inside the grid square. Once the Gaussian
model for each class is computed, our approach checks pairwise
classes to see how many grid units are occupied by more than two
classes. The count will be summed up as overlap density mea-
sure. Equation (6) defines the overlap measure for a dataset with
K classes and an image with P pixels. The Gaussian function is
defined in Equation (7) where f is an indicator function which
gives 1 in case when a grid square k is occupied, according to the

Gaussian model, by a pair of classes, and 0 otherwise. In the remaining examples in this paper, we set grid resolution to 3
pixels and the σ value of the Gaussian model to 12 pixels. However the grid resolution can be adjusted and normalized to
fit in the size of the display and the σ value can also be changed.

ovdensity =
|K|−1

∑
i=1

|K|

∑
j=i+1

|P|

∑
p=1

f (Gip,G jp) (6)



f (Gip,G jp) =

{
1 i f Gip > 0 and G jp > 0
0 else

(7)

Figure 5 shows two examples of overlap regions between classes. The overlap grid squares are shaded in gray, and the
scale of the gray color indicates the density level.

Figure 5. The gray shaded regions show the density overlap
for data set A(left) and data set B(right).

Figure 4 and 5 show the visualization of area and density
overlap of the projections of the two simple data sets A an B
(Figure 1).

5. EXPERIMENTS
In this section we propose three different simple transformation
strategies and demonstrate their effectiveness by applying each
of them to transform eight different data sets. For each setting
and each data set, we apply four different DR techniques to both
the original and the transformed data and compare the quality of
generated embeddings. We use two types of existing structural
preservation measures, as well as the two overlap measures pro-
posed in the previous section to evaluate the quality of each em-
bedding. Next we detail the transformation strategies, the data,
the embedding methods, the quality measures, and the result of
the experiments.

Transformation Settings Given a labeled data set with n dimensions and m items, the feature space can be transformed
in many ways. In this section we apply three very simple transformation strategies to demonstrate the effectiveness and
generalizabililty of our approach. The basic idea is to extend the mean values of irrelevant dimensions to leverage noise
in the data and thus avoid visual cluttering in the embedding. In our first and second strategy, we select the dimension
that has the highest range / spread to represent the irrelevant dimension in the data. We extend the feature vector space
by adding an additional dimension with mean value of the irrelevant dimension assigned to all the data items to reduce
the noise introduced by the irrelevant dimension. To further analysis the compromise between structural preservation and
visual clutter avoidance, our third strategy extends all n dimensions in the data by adding an additional dimension for each
of them to the original feature space, with mean values of the dimension assigned to all data items. More specifically, our
experiment extends a given feature space in the following ways:

1. Extend the initial feature vector with the mean value of the dimension that has the highest range.

2. Extend the initial feature vector with the mean value of the dimension that has the highest spread.

3. Extend the initial feature vector with mean values over all dimensions.

Data To evaluate the effectiveness of the different transformation settings, we test each approach with eight datasets (see
Table 4 for more details). The data we chose consists of four synthetic datasets, created by Gaussian functions with a grid,
and four benchmark datasets that have been used by various recent visualization publications, including the ecoliProteins
data which encodes amino acid proteins sequences from the E.colie bacteria,44 the yeast dataset which denotes cellular
localization sites of proteins citeuci, the tse300 dataset which records the weekly price history of 300 TSE index stocks
in the year 2002,44 and the bbdm13 which is a subset from a hospital based case-control study designed to examine the
epidemiology of fibrocystic breast disease.45



Figure 6. Embeddings of original and transformed ’bbdm13’ data using 4 different DR technique (PCA, Classical Scaling, Sammon’s
Mapping, and IDMAP)

Table 4. List of data sets, ordered by number of dimensions.

Name Type Points Dimensions Classes Provenance
twoSquare synth. 968 3 4 46

gauss-d5-3c synth. 500 5 3 46

gauss-d5-5c synth. 500 5 5 46

ecoliProteins real 332 7 8 visumap
44

yeast real 1452 8 9 uci
47

tse300 real 244 9 8 visumap
44

gauss-d10-5c synth. 500 10 5 46

bbdm13 real 200 13 5 umass
45

Embedding Methods We generated 2D embeddings of both the original data and the transformed data using four DR
techniques (PCA, Classical Scaling, Sammon’s mapping and IDMAP) implemented in the PEx (Projection Explorer)
System12 using the default parameter settings. PEx is a widely visualization tool for creating and exploring visual repre-
sentations of high-dimensional data. PCA, Classical Scaling (MDS) are two of the most widely used linear DR techniques
by existing visualization systems. Sammon’s mapping is one of the most known nonlinear multidimensional scaling meth-
ods.25 IDMAP is another nonlinear extension of MDS. It is an improved embedding technique for supporting visual
exploration of multidimensional datasets.48



Figure 7. Overlapping areas in Sammon’s Mapping of ’gauss-d10-5c’ data set. Left: with the initial feature vector; middle: with the
extension of the feature vector with the mean value of the dimension that has the highest range; right: with the extension of the feature
vector with all mean values of all dimensions.

Quality Measures For each embedding, we evaluate the quality of its structural preservation by two measures, namely
Sammon’s stress and k-ary neighborhood measure. We also evaluate the quality of clutter avoidance by the two overlap
measures, overlap area and overlap density as defined in the previous section.

Result The evaluation result are detailed in the table of Figure 9. Note that the Sammon’s stress and k-ary neighborhood
measure are always based on the distance matrix computed from the original data. First, we compare the difference between
the stress measure and overlap measure before and after each transformation. The colored columns show the difference.
Red indicates the transformation worsened the quality of embedding significantly (the value is more than 10 percent higher
after transformation), orange indicates slightly worse performance (the value is higher, but less than 10% higher after
transformation). Similarly, light green shows slight improvement (< 10% ) after transformation and dark green indicates
significant improvement (> 10%). Empty fields in the table indicate the choice of range value and spread value do not
make a difference to the result.

From the result, it is not surprising to see that most the studied feature vector transformations lead to higher Sammon’s
stress value. This is not necessarily a bad sign, because the Sammon’s stress records how well the lower dimensional
embedding approximates the pairwise distances between data items in the high-dimensional data space. As mentioned
previously, in high-dimensional data the real distances between data items are often obscured in the projection by the
irrelevant dimensions and noise in the data. The feature space transformations aim to leverage noise in the data by extending
relevant features, which naturally change the distances between pairwise data items in the transformed data space. With
respect to neighborhood preservation, which is measured by the k-ary neighborhood measure, the result is significantly
better than Sammon’s stress. In majority of the cases the measure improves after transformation and there is no negative
sign in the result. As a matter of fact, even with Sammon’s stress, there are some positive cases. For example, with both
tse300 and bbdm13 data sets, the quality of structural preservation actually improved after transformation in most of the
cases. Given the fact that nearly all the overlap area and density measures decreased significantly after the transformation
(as indicated by the dark green units in the table), this shows that transformations exist which can improve class separation
without scarifying structure preservation.

The top two quarters in Figure 6 show the embeddings of the bbdm13 data on 2D display. As we can see, there is no
big change in the structure in terms of positioning of classes and data items in the display, and on the other hand the classes
are better separated after the transformation. Even with the third transformation setting which simply adds all mean values
over all dimensions.

6. DISCUSSION
The result of the evaluation is very encouraging and there is no DR technique or data set for which the transformation
would not work at all. Even the trade-off between the structural preservation and the class separation is not as critical as



Figure 8. Area and density overlap of Sammon’s Mapping of data set ’twosquare’. Left: with the initial feature vector; middle: extension
of the feature vector with the mean value of the dimension that has the highest range; right: extension of the feature vector with all mean
values of all dimensions.

we anticipated. A big advantage of the proposed approach is its flexibility. The framework is DR technique independent
- it can be applied to improve the quality of an embedding generated by any DR techniques. Also it is easy to extend the
framework by integrating user interactions and feedbacks. We next assess in more detail the experimental results, before
discussing limitations and possible extensions of our approach.

6.1 Detailed Assessment of the Experimental Results
We see that for higher-dimensional data sets 9 Sammon’s stress values increase. This is obvious, e.g., from comparing
(twoSquare) (3 dimensions) to (bbdm) (13 dimensions in Figure 9, We note from our results, that the higher the dimen-
sionality, the less the stress value increases. In other words, the transformation performs better for datasets with higher
dimensionality. The same is true for the number of classes the dataset contains: The more classes the dataset contains, the
less increase of the stress value after transformation, but the trend is not very obvious.

In terms of class separation we see the opposite effect by looking at the overlap measures: The overlap measures
decrease more for data with fewer dimensions. There is no obvious correlation between the number of classes and the
increasing overlap measures. Nearly all overlap measures in the table decreased after transformation, indicated by the
predominant green numbers in Figure 9. That means the transformations perform well on avoiding over-plotting and visual
cluttering. A decrease can also be seen in the example in Figure 6: The areas highlighted in black contours (overlap
areas) and the gray shades (overlap density) are much smaller after the transformation. The area overlap measures decrease
around 87% to 97%, and overlap density measures decreased around 27% to 57%.

We also studied the relationship between the number of extended dimensions and the quality of class separation in
terms of both overlap area and overlap density. First we applied transformation setting 1, and 3 as discussed in Section
5 to the gauss-10d-5c data, and generated embeddings from both the original dataset and transformed datasets using
the same DR technique. The result is shown in Figure 7 where overlapping regions are highlighted in black regions.
From the 3 figures we can see that the 3 embeddings have nearly the same Sammon’s stress value, however, the overlap
area measure is worsened by the 1st transformation strategy (+41%), and improved substantially after applying the 3rd
transformation strategy (-96%). We assume that extending more dimensions reduces the overall overlap area. Next we
performed the same transformation settings to the twosquare dataset. Here we see a different correlation between the
number of extended dimensions and overlap density. As we can see from Figure 8, the 1st transformation strategy gives
the smallest overlap density measure (-55%) and at the same time reduced Sammon’s stress measure substantially (-38%).
The 3rd transformation strategy on the other hand worsened the over-plotting problem to a large extend (+66%) although
it slightly improved the structural preservation (Sammon’s stress -8%).It appears that adding too many dimensions brings
negative effects to the overlap density measures.

6.2 Limitations and Possible Extensions
The contradictory effect on the stress and clutter measures brings up the challenge in finding the optimal number of ex-
tended dimensions as well as transformation strategy. In general, the space of possible feature transformations is huge.



In this paper, we were able to study just a limited set of simple transformations. The comparison of the proposed trans-
formations shows that the range heuristic mostly performs better than the spread heuristic in our experiment. In terms
of decreasing overlap measures the extension of the feature vector with all mean values of all dimensions often performs
better. However, the conclusions we draw here are based on a limited number of transformation setting, DR techniques
and relatively small datasets.

The quality measures cover important aspects of projection (stress and overlap). Defining overlap is subtle, and requires
definition of a hull model. Concave hulls form intuitive and compact shapes, but other shapes are possible. The quality
measures could serve as objective criteria for an in-depth search over the space of possible transformations, identifying
the best result. A related extension possibility is to integrate it in an interactive analysis environment where the user can
explicitly change the extensions method, and select dimensions for extension, and interact with the embedding results.
The user could be allowed to set a trade-off to weight the different quality measures, arriving at an application- and user-
dependent best choice.

Going one step further, users could be allowed to mark specific subsets of the data, e.g., specific classes, which are
considered with priority in the quality criterion and a respective automatic search. An interactive user interface could let
the user select relevant features and adjust transformation settings.

Note that our approach is based on availability of class labels. The feature extensions proposed should be compared
against supervised projection techniques, which employ the class information by the definition of the projection. Such
a comparison will be interesting to do. Our approach considers inter-class separation. However, also intra-class clutter
should be avoided. To this end, measures based on the uniformity of the spatial distribution of points in the visualization,
could be thought of. Finally, how to measure and improve the quality of projections in case where no class labels are
available, is a challenging problem.

7. CONCLUSION & FUTURE WORK
We proposed a framework for improving the quality of a low-dimensional embedding of high-dimensional data by means
of simple feature space transformation. The methods are simple and based on the idea of reducing the influence of irrel-
evant features and noise in the data, and extending by average features within classes of data points. A series of quality
measures for assessing the structural preservation quality and the visual quality of a given embedding was proposed. The
analyst can apply different transformation strategies to improve the quality of an initial embedding generated by any em-
bedding techniques. An encompassing experimental evaluating assessed the effectiveness of the approach. The result of
the evaluation are promising and showed that nearly all transformations benefited by better class separation, and in most of
the cases, the structural preservation is not much affected. Our approach is simple to implement and generically applicable
to any projection technique which operated on features.

We also identified a number of interesting extensions of our approach. The quality measures and extensions could be
interactively controlled by the user. Automatic search in the space of possible transformations could bring up a number
of candidate views for the user to inspect. Finally, our approach should be experimentally compared against supervised
projection methods, which implicitly leverage class information in doing the projection.
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Figure 9. Stress, area and density overlap for initial feature vectors and their transformations for 4 synthetic and 4 real data sets (ordered
by number of dimensions) for projection techniques PCA, MDS, Sammon’s Mapping and IDMAP. The changes are colored in (red)
orange, if the transformations perform (very) badly with respect to the initial feature vector. If the transformations perform better or
much better, the percentages for the changes are colored in light or dark green.


