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Bâtiment Maxwell, Place du Levant, 3, B-1348 Louvain-la-Neuve, Belgium

Summary. Three extensions of the traditional learning rule for Self-Organizing
Maps are presented. They are based on geometrical considerations and explore
various possibilities regarding the norm and the direction of the adaptation vectors.
The performance and convergence of each rule is evaluated by two criteria: topology
preservation and quantization error.

1 Introduction

Self-Organizing Maps (SOMs, [1,2]) are well known in the domain of Vector
Quantization (VQ). Unlike other VQ methods, the neurons (or prototypes)
used for the quantization are given a position in a grid, which is often one- or
two-dimensional. This predefined geometrical organization, combined with a
well chosen learning rule, generates a self-organizing behavior, useful in nu-
merous areas like nonlinear projection and data representation. More techni-
cally, learning rules for VQ can be classified into two sets, according to the
number of neurons which are adapted at each stimulation of the network:

• ‘Winner Takes All’ (WTA) rules, like for Competitive Learning (CL, [3]),
where only one neuron is adapted;

• ‘Winner Takes Most’ (WTM) rules, like for Neural Gas (NG, [4]), where
all neurons are adapted.

In order to observe self-organization, learning rules for SOMs have to ful-
fill two conditions: they belong to the WTM set and they use information
given by the position of each prototype in the grid. Other characteristics of
the rules are more or less unconstrained. Section 2 studies these degrees of
freedom and presents four different learning rules (three alternative rules in
addition to the traditional one). Next, section 3 describes some experiments
and criteria to test the four rules. Section 4 gathers results and discusses
them. Finally, conclusion (section 5) shows that one of the proposed rules
improves convergence with respect to the traditional SOM rule.

2 Four learning rules

First of all, let’s write the traditional learning rule for SOMs. Suppose that
the map is defined by:
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1. matrix W , of which rows wr give the weights in the feature space;
2. function d(q, r), measuring the distance between neurons q and r in the

grid space.

At learning time t, a vector xi of the feature space stimulates the map (see
also Figure 2, left):

wt+1
r = wt

r +∆wt
r = wt

r + γtr(xi −wt
r). (1)

In this equation, γtr = αte−0.5(d(r,∗)/λt)2 is the learning rate for neuron r,
computed as the product of the global learning rate αt (between 0 and 1,
decreasing in time) and the neighborhood factor depending on the neighbor-
hood width λt (between 0 and ∞, decreasing in time). Finally, ∗ is the index
of the ‘winning’ neuron, such that ‖xi −w∗‖ ≤ ‖xi −ws‖ for all neurons s.

From a geometrical point of view, the traditional SOM rule adapts neu-
rons radially around the stimulating vector xi. Now, consider that the self-
organizing map is like a fishing net crumpled on the ground and that the
neurons are like small balls linked together by short pieces of elastic cord.
Consider also that the stimulating vector is like the hand of the fisherman,
taking a node of the net between two fingers. In this case, the neurons do not
move directly towards the hand, i.e. radially, but instead they are pulled by
neighboring neurons. Formally, it means that the neurons have to be adapted
towards neuron q, where index q indicates the neuron preceding neuron r on
the shortest path [5] between neuron r and winning neuron ∗. This idea is
illustrated on the right of Figure 2 and leads to the following learning rule:

∆wt
r = γtr(w

t+1
q −wt

r), (2)

where neuron r has to be adapted after neuron q. Note that the neighborhood
factor cannot be suppressed, although the new rule presents an interesting
property without the neighborhood factor. Indeed, suppose that the map is
reduced to a string in a one-dimensional feature space and that its current
state is such that:

• wt
r = r, with wt

∗ = ∗ = 0;
• wt

r is linked with wt
r−1;

• the stimulating vector is xi = 0.

If λt is set to +∞, then the neighborhood has no limit, γtr degenerates to α
t

and one can rewrite the traditional rule into:

wt+1
r = wt

r + αt(xi −wt
r) = (1− αt)r, (3)

while the fisherman’s rule leads to a recurrence:

wt+1
r = wt

r + αt(wt+1
r−1 −wt

r) = (1− αt)r + αtwt+1
r−1, (4)

solved by wt+1
r = (1− αt)

∑r
i=0 i(α

t)r−i.
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Fig. 1. Weight ratio after and before adapta-
tion, with αt = 0.25, for the traditional SOM
rule (constant horizontal line) and for the fish-
erman’s rule (decreasing curve)

Figure 1 is a plot of the weight ratio wt+1
r /wt

r, showing that even without
the neighborhood factor, the fisherman’s rule induces an attenuation of the
adaptation, as the distance to the winning neurons grows. This constatation
does not imply that the neighborhood factor is useless in the fisherman’s rule.
Actually, it would be like running the traditional rule with λt set as constant:
convergence is not guaranteed.

3 Description of the experiments

Comparing the traditional learning rule and the fisherman’s one is almost
impossible because their nature is totally different. In order to make them
comparable, one has to list their differences one by one and try each combi-
nation. Actually, there are two differences between both learning rules: the
traditional rule is non-recursive and purely radial, while the fisherman’s one
is recursive but not radial. This leads to four combinations showed in equa-
tions 5a to 5d, table 1 and figures 2 and 3. The four rules can be written
more or less the same way:

∆wt
r = γtr ‖xi −wt

r‖
xi −wt

r

‖xi −wt
r‖
, (5a)

∆wt
r = γtr ‖w

t+1
q −wt

r‖
xi −wt

r

‖xi −wt
r‖
, (5b)

∆wt
r = γtr ‖xi −wt

r‖
wt+1
q −wt

r

‖wt+1
q −wt

r‖
, (5c)

∆wt
r = γtr ‖w

t+1
q −wt

r‖
wt+1
q −wt

r

‖wt+1
q −wt

r‖
. (5d)

In each of these four equations, one finds from left to right the learning
rate, the norm of the adaptation and its direction. To evaluate these four
rules, two criteria are defined. The first one is the relative quantization error,
written as:

EV Q =

√

∑

i

(xi −w∗)2 /

√

∑

i

(xi − µxi)2, (6)
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Fig. 2. Traditional SOM rule (left) and fisherman’s rule (right)
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Fig. 3. Hybrid rules: non radial non recursive (left) and recursive radial (right)

Table 1. Rules

Non-recursive Recursive

Radial Rule 5a (Figure 2, left) Rule 5b (Figure 3, right)

Traditional SOM Rule Hybrid

Non-radial Rule 5c (Figure 3, left) Rule 5d (Figure 2, right)

Hybrid Fisherman’s rule

where index i traverses the whole learning set, w∗ without time index t is the
winning neuron after learning and µxi is the averaged stimulus. The second
criterion measures the topology preservation:

ET =
∑

s

]

{

r|r 6= s, r 6∈ N(s), ‖wr −ws‖ < max
q∈N(k)

‖wq −ws‖

}

, (7)

where ] is the set cardinality operator and N(k) is the set of direct neigh-
bors of neuron s. This error criterion is specially designed for honeycombed
maps and counts the number of prototypes which are badly positioned on the
map. More precisely, ET approximates each hexagonal cell with a circle and
counts all prototypes that are inside the circle while they should be outside.
If the map is thoroughly unfolded, then the circles approximate very well the
hexagonal cells and ET gives a value close to zero. On the contrary, when the
map is crumpled, hexagonal cells are distorted, circles grow and so does ET .
Unlike other criteria [6], ET easily detects when maps are twisted, as shown
in Figure 4.

The experiments were conducted on honeycombed maps with 100 neurons
(see Figure 4). The training set was always the same: 2500 samples drawn
from a uniform distribution of width 1 and length 4, so that the map can fit
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Fig. 4. Rectangular honeycombed maps with 100 neu-
rons: if parameters are well chosen, then convergence is
fast (first map), and ET is below 20; on the contrary, if
λt decreases too fast, then convergence is slower, twist
effects may occur (second map) and ET around 100

perfectly. The maps were randomly initialized with 100 of the 2500 samples
and convergence was stopped after 5 epochs on the data set. Different values
were tested for parameters αt and λt, the initial value being always ten times
larger than the fifth one (last epoch); the three intermediate values are com-
puted with an exponential decrease from the initial to the final value. Each
parameter configuration was repeated 300 times.

4 Results and Discussion

Table 2 and 3 summarizes some results for the four rules (λt is given rela-
tively to the largest grid distance). A first good result is that all four rules
perform well when αt and λt values are well chosen. But, when parameters
are too low or too high, some differences appear. The main difference exists
between radial rules and non-radial ones, which are rapidly outperformed.
Two rules remain: the traditional one and the recursive radial. When λt is
low, the traditional rule wins, but shortly. On the contrary, when λt is high,
the recursive rule is clearly better. Generally, when λt is high, twist effects
tend to disappear with the recursive rule. An intuitive explanation for this
unexpected but good performance may be the following: after initialization,
the map is strongly crumpled and therefore the path along the links from
any neuron r to the winning neuron ∗ can be much longer than the distance
between stimulus and neuron r. This leads to stronger adaptation norms and
better unfolding. Moreover, the recursive rule can move neurons beyond the
stimulus (this occurs when the last neuron on the shortest path is further
than stimulus). The poor performance of non radial rules is probably also
due to initialization: when the map is crumpled, the adaptation vectors have
a strong tangential part and a weak radial component, so that neurons move
a lot, but without coherence in their direction.

Table 2. Mean values of EV Q for various parameter settings

α1 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.7

λ1 0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9

5a 0.0732 0.0871 0.1076 0.1317 0.0725 0.0869 0.1076 0.1320

5b 0.0736 0.0851 0.0988 0.1145 0.0727 0.0843 0.0981 0.1132

5c 0.0800 0.1118 0.1569 0.1957 0.0774 0.1093 0.1516 0.1918

5d 0.0790 0.1016 0.1265 0.1495 0.0772 0.0984 0.1240 0.1480
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Table 3. Mean values of ET for various parameter settings

α1 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.7

λ1 0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9

5a 0.88 5.67 16.96 35.07 3.27 9.53 24.67 44.89

5b 1.51 2.95 5.71 16.46 0.70 5.36 7.37 16.44

5c 62.22 137.64 264.68 421.46 42.53 131.15 238.25 398.88

5d 32.46 79.94 152.38 236.06 24.79 64.36 137.83 223.80

5 Conclusion

This study has shown that the recursive radial rule is more robust than the
traditional SOM rule when the neighborhood is wide. Actually, recursiveness
fastens the convergence during the first epochs. Therefore, an idea for future
work consists in combining both rules: the recursive rule for map initialization
and rough unfolding, and the traditional one for fine tuning.
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