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Abstract 
 

Making results reliable is one of the major concerns in artificial 
neural networks research. It is often argued that Self-Organizing 
Maps are less sensitive than other neural paradigms to problems 
related to convergence, local minima, etc.  This paper introduces 
objective statistical measures that can be used to assess the stability of 
the results of SOM, both on the distortion and on the topology 
preservation points of views. 

 

 
1  Introduction 
 
Neural networks are powerful data analysis tools.  Part of their interesting 
properties comes from their inherent non-linearities, in contrast to classical, linear 
tools.  Nevertheless, the non-linear character of the methods has also its 
drawbacks: most neural network algorithms rely on the non-linear optimization of 
a criterion, leading to well-known problems or limitations concerning local 
minima, speed of convergence, etc. 
 
It is commonly argued that vector quantization methods, and in particular self-
organizing maps, are less sensitive to these limitations than other classical neural 
networks, like multi-layer perceptrons and radial-basis function networks.  For this 
reason, self-organizing maps (SOM) [1] are often used in real applications, but 
rarely studied on the point of view of their reliability: one usually admits that, with 
some "proper" choice of convergence parameters (adaptation step and 
neighborhood), the SOM algorithm converges to an "adequate", or "useful", state. 
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This paper aims at defining objective criteria that may be used to measure the 
"reliability" of a SOM in a particular situation.  The bootstrap methodology is used 
to measure the variability of both the quantization error and the organization of the 
map. Section 2 summarizes the main idea of the bootstrap, section 3 defines a 
measure of the variability of the quantization error, section 4 a measure of the 
variability of the organization of the map, and section 5 applies the concepts to a 
few simple distributions. 
 
 

2  Bootstrap 
 
The main idea of the bootstrap [2] is to use the so-called "plug-in principle".  Let F 
be a probability distribution depending on an unknown parameter vector θ. Let 
x=x1, x2,..., xn be the observed sample of data and θ̂  = T(x) an estimate of θ. The 
bootstrap consists in using artificial samples (called bootstrapped samples) with 
the same empirical distribution as the initial data set in order to guess the 
distribution of θ̂ .  Each bootstrapped sample consists in n uniform drawings with 
repetitions from the initial sample. If x* is a bootstrapped sample, T(x*) will be a 
bootstrap replicate of θ̂ . 
 
This main idea of the bootstrap may be declined in several ways. In particular, 
when the evaluation of T(x) requires non-linear optimization, the well-known 
problems, or limitations, related to local minima and convergence are encountered. 
It may thus happen that different local minima are reached when T(x*) is evaluated 
for different bootstrapped samples. This is clearly not what we are looking for: our 
purpose is to examine the variability (or the sampling distribution) of some 
parameters when they are evaluated through different (bootstrapped) samples, but 
keeping all other conditions unchanged. In order to overcome this problem, local 
bootstrap methods may be used, where the initial conditions for each evaluation of 
θ̂  are kept fixed.  In the following, we will speak about: 
•  Common Bootstrap (CB) when each evaluation of θ̂  is initialized at random; 
•  Local Bootstrap (LB) when the initial values of each evaluation are kept fixed; 
•  Local Perturbed Bootstrap (LPB) when a small perturbation is applied to the 

initial conditions obtained as with the Local Bootstrap. 
 
If we want to evaluate the influence of the convergence (only) during the 
evaluation of θ̂ , we will not bootstrap samples, but reiterate the evaluation of T(x) 
with the same sample x and different initial conditions. In this case, we will speak 
about Monte-Carlo simulations instead of bootstrap, and we will use the same three 
variants as above: Common Monte-Carlo (CMC), Local Monte-Carlo (LMC) and 
Local Perturbed Monte-Carlo (LPMC). 
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3  Stability of the Quantization in the SOM 
 
One of the two main goals of Self-Organizing Maps is to quantize the data space 
into a finite number of so-called centroids (or code vectors). Vector quantization is 
used in many areas to compress data over transmission links, to remove noise, etc. 
The distance between an observed data xi and its corresponding (nearest) centroid 
is te quantization error. Averaging this quantization error over all data leads to the 
distortion or intra-class sum of squares (which are different names for the same 
error, used respectively in the information theory domain and by statisticians): 
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where U is the number of units in the SOM, Gi is the i-th centroid, d is the classical 
Euclidean distance, and Vi is the Voronoi region associated to Gi, i.e. the region of 
the space nearer to Gi than to any other centroid. Note that the objective function 
associated with the SOM algorithm for a constant size of neighborhood and finite 
data set is the sum of squares intra-classes extended to the neighbor classes, (see 
[3]). But actually, one usually ends with no neighbor for the last iterations of the 
SOM algorithm; at the end of its convergence, the SOM algorithm thus exactly 
minimizes the SSIntra function. 
 
The Monte-Carlo and/or bootstrap methods will allow us to estimate the variability 
of SSIntra, in other words to assess if one may be confident in the stability of the 
quantization obtained by the SOM. Note that we do not speak about the value 
(location) of the centroids themselves, but on how they quantify the space in 
average. If the SOM is computed several times according to the Monte-Carlo or the 
Boostrap principle detailed in the previous section, one can calculate the mean 
µSSIntra and the standard deviation σSSIntra of the distortion. The variability of SSIntra 
is the evaluated by its coefficient of variation CV defined as follows: 
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where θ is the parameter to examine, here SSIntra. 
 
 

4  Stability of the Neighborhood Relations in the SOM 
 
The second main goal of the SOM is the so-called topology preservation, which 
means that close data in the input space will be quantized by either the same 
centroid, either two centroids that are close one from another on a predefined string 
or grid. Often, for example when the SOM is used as a visualization tool, it is 
desirable to have an objective measure of this neighborhood property. We then 
define for any pair of data xi and xj,  
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where NEIGHb
i,j(r) is an indicator function that returns 1 if the observations xi and 

xj are neighbor at the radius r for the bootstrap sample b, and B is the total number 
of bootstrapped samples. If the radius r is 0, it means that we evaluate if the two 
data are projected on the same centroid; if r = 1, it means that we evaluate if the 
two data are projected on the same centroid or on the immediate neighboring 
centroids on the string or grid (2 on the string, 8 on the grid), etc. 
 
A perfect stability would lead STABi,j to always be 0 (never neighbor) or 1 (always 
neighbor). We can study the significance of the statistics STABij(r), by comparing it 
to the value it would have if the observations fell in the same class (or in two 
classes distant of less than r) in a completely random way.  Let U be the total 
number of classes and v the size of the considered neighborhood.  The size v of the 
neighborhood can be computed from the radius r by v = (2r + 1) for a one-
dimensional SOM map (a string); and v = (2r + 1)2 for a two-dimensional SOM 
map (a grid), if edge effects are not taken into account.  For a fixed pair of 
observations xi and xj , with random drawings, the probability of neighboring would 
be v/U. If we define a Bernoulli random variable with probability of success v/U, 
(where success means: "xi and xj are neighbor"), the number Y of successes on B 
trials is distributed as a Binomial distribution, with parameters B and v/U.  
Therefore, it is possible to build a test of the hypothesis H0 "xi and xj are only 
randomly neighbors" against the hypothesis H1 "the fact that whether xi and xj are 
neighbors or not is meaningful". 
 
If B is large enough (i.e. greater than 50), the binomial random variable can be 
approximated by a Gaussian variable, making the hypothesis test easier.  For 
example, with a test level of 5%, we conclude to H1 if Y is less than 
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the case of the bootstrap, B depends on the pair (xi, xj), since the bootstrapped 
samples have to contain both data: we follow the same approach as in [4] which 
consists in evaluating STABi, j(r) only on the samples that contain observations xi 
and xj. 
 
 

5  Experiments 
 
The above described indicators have been evaluated on artificial and real databases; 
a selection of results follow. 
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5.1 Databases 
 
Three artificial databases have been used: Gauss_1, Gauss_2 and Gauss_3. All 
three are two-dimensional data sets, obtained by random drawings on uncorrelated 
Gaussian distributions.  They are respectively represented in figures 1, 2, and 3. 
Gauss_1 contains only one cluster of observations.  Gauss_2 contains three clusters 
of equal variance and some overlap.  Gauss_3 is also composed of three clusters, 
but of different variances and without overlap. Each data set has 500 observations. 
For data sets Gauss_2 and Gauss_ 3, observations 1-166, 167-333 and 334-500 are 
in the same cluster. 
 
A real database, POP_84, was also used.  It contains six ratios measured in 1984 on 
the macroeconomic situation of countries: annual population growth, mortality 
rate, analphabetism rate, population proportion in high school, GDP per head and 
GDP growth rate. This dataset has been already used in [5], and is available 
through [6].  
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Figure 1: Gauss_1, Gauss_2 and Gauss_3 databases 
 
 

5.2  Stability of the Distortion Error  
 
Table 1 summarizes the results on the coefficient of variation (2) of the distortion 
(1), measured on the three artificial databases, and obtained by the CMC, LMC and 
LPMC methods on 5000 independent samples (note that such a large number of 
samples is not necessary in practice to obtain reliable results; 100 samples is 
already a good choice). The Kohonen map used in these simulations is a 3- or 6-
units 1-dimensional string. 
 

method CMC LMC LPMC 
# units 3 6 3 6 3 6 

Gauss_1 5.2 4.5 5.3 4.4 5.2 4.5 
Gauss_2 5.1 4.6 4.9 4.5 5.1 4.6 
Gauss_3 7.6 10.1 6.4 10.3 6.7 10.1 
 

Table 1: Coefficients of variation of SSIntra, obtained with 1-dimensional 3- and 6-units 
SOM, and with CMC, LMC and LPMC Monte-Carlo simulations. 
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An expected result is that the CV is low in each case, and does not seem to be 
influenced by the initialization method used (CMC, LMC or LPMC).  This 
enforces the idea that the SOM is a reliable method, not falling too much into the 
traps of local minima encountered with other neural network models (see for 
example [7] for opposite results obtained with MLP). 
 
A more surprising result at the first sight is the increase of the CV when switching 
from a 3- to a 6-units map on the Gauss_3 distribution.  This can however be 
explained by the fact that the Gauss_3 distribution contains 3 well separated 
clusters. When using a 3-units map on this distribution, one centroid will obviously 
converge around the center of each cluster. Adding units will however lead to 
situation where the supplementary ones may be "captured" by one cluster or by 
another, increasing the variability of the situation after convergence.  This is of 
course not (or less) true with the Gauss-1 and Gauss_2 distributions where there is 
overlap between clusters. 
 
 
5.3  Assessing the Right Number of Units in the Map 
 
This last comment makes think that it would be possible to estimate the number of 
units to include in a SOM on a particular database, by examining the evolution of 
the CV when increasing the number of units.  This is an important question when 
using SOM, and may be considered as a by-product of the proposed measures. 
Table 2 shows the coefficient of variation of SSIntra obtained after Local Boostrap, 
on the three Gauss_x databases. Table 2 confirms the step between 3 and 4 units on 
the Gauss_3 databases, while the results on the other databases are less conclusive, 
as expected.  
 

# units Gauss_1 Gauss_2 Gauss_3 # units Gauss_1 Gauss_2 Gauss_3 
1 5.2 4.3 5.5 6 5.1 4.7 12.0 
2 4.5 6.0 8.9 9 5.4 4.7 10.9 
3 5.9 5.4 6.5 12 3.7 4.9 9.2 
4 5.5 4.9 14.4 15 4.0 4.0 8.0 
5 4.4 6.6 15.2     

 
Table 2: Coefficients of variations of SSIntra obtained after Local Bootstrap. 

 
5.4  Stability of the Neighborhood Relations  
 
Table 3 shows a few results obtained on the POP_84 data set, on selected pairs of 
countries. The values in the table are those of the STAB indicator defined in 
equation (3). The two first columns refer to a 1-dimensional SOM with 6 units, and 
show respectively STABi,j(0) and STABi,j(1), where i,j identifies the countries, while 
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the third column refers to STABi,j(2) on a 7x7 2-dimensional SOM. The results 
marked with * are those for which the hypothesis test (with 1% significance) 
defined in section 4 lead to conclude hypothesis H1, i.e. the neighborhood relation 
(presence or absence) between two countries is meaningful.  As expected, 
countries with similar situations give high values of the STAB indicator.  Countries 
with very opposite situations give very low values. 
 
Countries STABi,j(0) 

6 units 
STABi,j(1) 
6 units 

Countries STABi,j(2) 
7x7 units 

Turkey/Upper Volta 0.04* 0.65* Greece/France 0.18* 
Turkey/Cuba 0* 0.22* Australia-France 0.82* 
Turkey/Sweden 0* 0.05* Greece/Belgium 0.21* 
Turkey/France 0* 0* Turkey/France 0.02* 
Turkey/Greece 0* 0.25* Singapore/USA 0.49 
Upper Volta/Cuba 0* 0* Sweden/Japan 0.73* 
Upper Volta / Sweden 0* 0* Greece/Malta 1* 
Upper Volta / France 0* 0* Canada/France 0.84* 
Sweden/France 1* 1* Sweden/France 0.97* 
Cuba / Sweden 0.02* 0.81* USA/Zimbabwe 0* 
Cuba / France 0.02* 0.78* USA/Finland 0.85* 
Cuba / Greece 0.69* 0.97* USA/Australia 0.68* 

 
Table 3: STAB indicator on the POP_84 dataset, for selected pairs of countries.. 

 
 

6  Discussion 
 
This paper introduces measures to assess the stability of the SOM convergence, 
under the distortion and topology preservation point of views.  Having objective 
measures of the stability may enforce the idea that SOM are less sensitive to 
problems related to convergence and local minima than other neural network 
paradigms.  A by-product to the proposed measure is a way to estimate the number 
of units in a Kohonen map. 
 
The measure of the stability of the neighborhood relations concerns a particular 
pair of data. It would be interesting to obtain a global measure of the topology 
preservation over the whole map.  As "reliable" neighborhood relations mean 
values of the STAB indicator near to 0 or 1, a possibility is to draw an histogram of 
the STAB values, and to measure how this histogram is close or not to a "U"-shape 
(peaks at 0 and 1, and smooth curve with low values in between). 
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