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Abstract — Functional data are often sampled at high 
frequency which leads to high-dimensional vectors. The 
curse of dimensionality makes this type of signal difficult 
to handle with standard data analysis tools. Functional 
data analysis uses the functional nature of data to project 
them on a smooth basis. This paper shows how to extend 
functional Self-Organizing Maps (SOM) to signal 
windows having different lengths using functional data 
analysis. This technique may be applied for example on 
regularly sampled signals, for which the duration of each 
signal is varying; an example concerns 
electrocardiography (ECG), where the signal is usually 
cut according to the variable period between two heart 
beats. 

1 Introduction 
Many real-world data have a high-dimensional nature. 

For instance, time series sampled at a high frequency, 
spectrometric data, images, speech and sounds, etc. are 
usually represented as high-dimensional vectors. Such 
high-dimensional data are difficult to analyze with 
traditional machine learning algorithms. Indeed, learning 
from a few observations in a high-dimensional feature 
space might result in several difficulties related to the 
curse of dimensionality (empty space phenomenon, 
meaningless use of traditional distance measures, etc.) 
and a high sensibility to noise.  

Some of these high-dimensional data have a functional 
nature, i.e. they origin from a smooth function over a 
variable, usually the time. When this is the case, 
functional data analysis (FDA, see [1]) is a common way 
to overcome the effects of the curse of dimensionality.  
FDA transforms high-dimensional data vectors in 
discretized functions. Data analysis is then performed on 
the projections of the functional representations of the 
data on a chosen subspace; rather than working on the raw 
high-dimensional vectors, one can use the coefficients of 
the projection of each data on the basis for further 
analysis. Thus, FDA is a fast and easy way to represent 
accurately high-dimensional vectors by a chosen number 
of numerical coefficients. 

The choice of the subspace basis relies on the prior 
knowledge of the problem. A Fourier basis allows good 
representation of periodic data, while a fixed basis 
handles easily missing values. Another common choice is 

to use B-splines as basis functions because of their 
smoothness and projection properties.  

Using FDA has another advantage: working on the 
numerical coefficients of the functional representations of 
the data leads to a much lighter computational load. 
Furthermore, functional preprocessing allows fast 
computation of some specific operations such as 
integration, derivation, etc. 

Another difficulty may be related to the analysis of 
real-world signals cut in windows whose length differ.  
Such situation may arise in different contexts; in speech 
recognition for example, the duration of the same vowel 
might vary when pronounced several times even by the 
same speaker.  If the sampling rate is kept constant, which 
is usually the case, it results in vectors with different 
(high) dimensions.  Another example is when one wants 
to analyze heartbeats from an electrocardiogram (ECG) 
recording; as the ECG signal is usually cut in windows 
according to the period between beats, and as the heart 
rate frequency varies over time, this also results in 
sampled vectors of different dimensions. 

In these cases, it is not possible to directly use classical 
machine learning algorithms, as the latter usually rely on 
data represented in a single vector space of fixed 
dimension.  In this paper, we show that this problem can 
be solved using an appropriate preprocessing. FDA can be 
used to project functional data observations on subspaces 
spanned by a fixed number of basis functions, even if the 
sampled functional data have different dimensions.  The 
idea consists in dilating each of the basis functions 
proportionally to the length of the raw data vector. In this 
way, each data vector can be accurately described by a 
fixed number of numerical coefficients. This paper 
extends the functional SOM presented in [2] to variable-
length signal windows using this methodology. The 
VLSWF-SOM (Variable-length signal windows 
functional SOM) is applied to classify heartbeats from an 
ECG recording.  

The following of this paper is organized as follows. 
Functional data analysis and how it can be used on 
variable-length signal windows will be explained in 
section 2. Section 3 will present an application of this 
methodology on typical ECG data. Section 4 concludes 
and discusses the results of the application to ECG data. 



2  Functional representation of 
variable-length signal windows 
Variable-length signal windows sampled at fixed 

frequency results in variable-size vectors.  This section 
shows how a functional preprocessing may overcome this 
problem, and how to use it for further analysis by SOMs. 

2.1 Functional data analysis 
The basic idea of FDA is that the discrete vectors 

acquired when recording smoothly time-varying data can 
be thought of as functions. (of course the same idea can 
be developed for functions of another argument than time, 
for example the wavelength in smooth spectra) In 
practice, many measured signals such as time series, have 
this functional property, but they are acquired in a discrete 
way. FDA provides a simple way to convert discrete 
functional data into a true functional form. The main FDA 
assumption is that, for a data vector nℜ∈y , there is a 
smooth function f such that  
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where )( nmx m ≥ℜ∈  is the vector of kx  and 
nℜ∈ε  is the vector of errors kε . The function f can be 

different for every data vector and is not known. FDA 
makes it possible to transform the y vectors into functions 
in the L²( Γ ) Hilbert space.  

However, it is not possible to manipulate arbitrary 
functions living in a Hilbert space on a computer. A 
solution to this problem is to work, not on the functions 
themselves, but on an approximation of each function f by 
projecting it on a chosen subspace; further analysis is then 
performed on these projections, more specifically on the 
coefficients of the projection. This technique allows 
indirect computer handling of the functional data.  

The subspace chosen for the projection is a Hilbert 
basis of the functional space L²( Γ ). From this basis, we 
choose a set of functions ℵ∈Φ ii )( . B-splines bases are 
often used; indeed, B-splines have interesting practical 
properties such as smoothness, numerical stability, 
locality, efficient calculations, etc. 

Then, it is possible to work on by the projection of the 
functional representations of the data vectors on the 
vectorial space defined by the first p basis functions. The 
FDA principle necessitates fixing parameter p 
beforehand, according to expert knowledge of the data, or 
according to some cross-validation scheme. Each 
observation vector ny ℜ∈  is now represented by a 

vector pℜ∈α  such that 
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the reconstruction error of the function in the chosen 
subspace, is minimized.  

The FDA approach has nice interesting properties. First 
of all, it easily allows dealing with irregular sampling. As 
long as the bases remain fixed, the data observation 
vectors are changed into a fixed size coordinate vector on 
the chosen basis. Secondly, FDA provides a simple way 
to reduce the dimensionality of a problem without loosing 
too much information. Thirdly, a projection of the 
observations on a low-dimensional space is an easy way 
to decrease the noise in the data.  

2.2 Variable-length signal windows 
It is in general not possible to analyze variable-length 

vector observations by classical analysis methods. Indeed 
most conventional data analysis tools, including the SOM 
and most of its extensions, rely on vector data represented 
in a single vector space.  Therefore, it is interesting to 
develop an easy and computationally light way to 
transform variable-length vector observations to a fixed-
size representation.  When the initial data have a 
functional nature, this can be done using FDA. 

We propose to project the raw data vectors having 
different lengths on a fixed-sized subspace using FDA. 
For each functional data to be projected, the basis (for 
example the set of B-splines) will have the same number 
dimension p, i.e. the same number of basis functions.  
However, the basis functions themselves will differ 
between one functional data to be projected and another, 
in the sense that they will be scaled (according to their x-
axis, i.e. time) proportionally to the total length of the 
functional data to be projected. Figures 1 and 2 show 
examples of similarly shaped signals of different length 
and the basis functions used for their approximation.  

The same number of basis function will be used, but 
these functions will span over a larger domain if the 
approximated function if longer. The coefficients of the 
projection the basis functions scaled according to the data 
will reflect the form of the functional data, rather than 
their length, which is the goal to be reached. 

After this projection on a scaled version of the basis 
function, it is possible to use the αi, i.e. the numerical 
coefficients of the projections, in classical machine 
learning analysis methods. This is the idea of the variable-
length signal windows functional SOM. 

It must be stressed that in addition to a way to reduce in 
a functional way the dimensionality of the data, this 
method gets rid of the variable-length observations 
problem in a straightforward, fast and easy to implement 
way. 
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Figure 1 : A function to approximate and its basis 
functions  

 
Figure 2 : Another function to approximate and its 
basis functions 
 

2.3 Functional SOM on variable-
length signals 

The idea behind the functional SOM [2] is that 
functions derived from the raw data are used as inputs to a 
classical SOM [3]. Theoretically, it is possible to use 
SOMs in a vector space of any finite dimension. 
However, in general, it is not possible manipulate 
function in computer calculations. As detailed in Section 
2.1, one way to overcome this problem is to submit the 
numerical coefficients of the functional data projection as 
inputs for the SOM, rather than the functional data 
themselves. As these coefficients are the best 
approximation (in the mean square sense) of the functions 
according to the chosen basis, the SOM will be trained on 
low-dimensional vectors which are fairly good 
approximations of the functional data. This approach is 
also less computationally intensive than working with the 
high dimensional raw input vectors.  In addition, variable-
length signal windows can be dealt with according to the 
procedure detailed in Section 2.2. 

However, SOMs, as most other data analysis tools are 
based on comparisons in terms of distances between 
objects (here functions). In order to guarantee the 
equivalence between the comparison of the functions and 
their projection on a basis, it is necessary to manipulate 
the coefficients of the projection if the basis functions are 
not orthogonal [2]. Defining Φ as the matrix of scalar 
products between basis functions (Φij = <Φi, Φj>), Φ can 
be written according to its Cholesky decomposition: 

UU T=Φ . 
Then αU  should be submitted to the classical SOM, 

α being the coordinate vector of each input function.  In 
this way, the theoretical functional SOM can be 
efficiently approximated by a SOM on vector data. 

3 Application to ECG data 
A typical example of variable-length signal windows 

concerns the analysis of ECG signals.  Indeed such 
signals are usually cut into windows whose lengths 
correspond to the period between two beats (or a shifted 
version of it).  As the heart beat frequency varies over 
time, this results in variable-length windows. 

3.1 ECG data and problem 
description 

An electrocardiogram is a marker of the heart activity. 
The heart has four cavities: two atria and two ventricles. 
When those muscles are activated, their movement is 
accompanied by an electrical depolarization. The ECG 
records the electrical signals the heart activity produces. 
At the beginning of a heartbeat, the atria contracts and 
produces the P wave visible on Figure 3. Next, the 
ventricles beat, producing the QRS complex. The last part 
of a heartbeat is produced by the repolarisation of the 
ventricles, which produces the T wave. This cycle forms 
one heartbeat. The heart of a healthy person beats 
between 60 and 100 times per minute.  

 
Figure 3 : ECG beat and its different peaks 

 
An ECG recording is a powerful tool which can help 

cardiologists to detect pathologies. The length (time) 
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between different parts of the beat (PR, QRS, QT (see 
Figure 3), etc) can be used to detect several types of heart 
malfunctions. However, a specialist is needed for correct 
interpretation of an ECG recording. In the past, ECG 
recording used to be only a few seconds long, allowing a 
manual handling and inspection by cardiologists. 
Nowadays, it is more and more frequent to use much 
longer ECG recordings. Sometimes, the heart activity is 
recorded for 24 hours. Such ECGs hold much more 
information, but it is not possible anymore to analyze 
them manually. In addition, some analyses might only be 
done on good quality beats: flat baseline, good signal to 
noise ratio, etc. It is not possible for a cardiologist to scan 
manually the whole recording in order to find portions of 
good quality signals usable for the analysis. This is why 
there is a need for an automatic classifier able to select 
beats suitable for fine analysis (which will be called 
“good beats” in the following) from beats that are not 
suitable (which will be called “bad beats”) in a long ECG 
recording. 

In this experiment, we used a 15-minute ECG recording 
sampled at 500 Hz recorded on healthy patients. The aim 
of this work is to discriminate good quality beats (see 
Figure 4) from bad quality ones (see Figure 5). Each one 
of those beats having different lengths. 
 

 
Figure 4 : good quality beats 

 
Figure 5 : bad quality beats 

 
 

3.2 Adaptation of the method to ECG 
data 

In order to apply FDA on the different beats, the first 
thing is to cut the 15 min long signal in single beats. The 
signal was cut at the R peaks, so that one beat starts at the 
maximum of the QRS complex and ends and the 
maximum of the next QRS. Cutting the signal at the R 
peaks is a far from being an ideal solution. It cuts the 
beats at the middle of their natural structure. However, the 
R detection is much more robust than the detection of the 
other peaks. In addition, and because we want to classify 
the beats by their shapes, it is important to be sure that 
their most intensive peak is perfectly aligned to avoid 
errors due to bad peaks alignment.  

To detect the R peak, a simple local maximum 
detection was used. The maximum in a window of fixed 
length was annotated as the maximum of the QRS 
complex. The window was shifted forward by 200 ms 
after the detection of an R peak (a heartbeat cannot occur 
physiologically less than 200 ms after the previous beat, 
[4]). As the ECG is sampled at a constant rate and the 
heart frequency changes with time, the beats cut from the 
original ECG signal are of unequal length. A total of 1017 
windows results from this procedure applied to the 15-
minutes ECG recording. 

Next, FDA was applied in order to bring back the 
different beats at the same length. A B-splines basis with 
60 basis functions of order 4 was used. The number of B-
splines was chosen using a leave-one-out method as in [5] 
in order to minimize the reconstruction error of the 
signals. Figure 6 shows the reconstruction error versus the 
number of B-splines in the basis. 
 

 
Figure 6 : Reconstruction error in function of the 

number of B-splines 
 

The reconstruction error clearly decreases up to 60 B-
splines. A higher number of B-splines does not result in 
significantly improved reconstruction. For this reason, 60 
B-splines were used to approximate each beat, as this 
offered a good compromise between reconstruction error 
and dimensionality reduction. 

The next step was to apply functional SOM to the 
coefficients of the splines approximation of each of the 
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1017 beats. A large SOM with 15x15 prototypes was 
trained using the SOM toolbox 2.01.  The SOM 
prototypes were initialized along the highest eigenvectors 
of the input vectors. The training consisted first on a 
sequential training of 10 epochs, with the initial and final 
training radii respectively set to 6 and 1, and a Gaussian 
neighborhood function; this part of the training is 
essentially responsible for the topographic organization 
property of the SOM.  Next, a batch training of 500 
epochs was performed, with a training radius set to 0, in 
order to guarantee the fine-tuning of the vector 
quantization property of the map.  

After the training, a k-means clustering was applied on 
the prototypes of the SOM. The number of clusters was 
set to 3 after a visual analysis of the prototypes on the 
map (see Section 3.3 for details about this choice).  The 
goal is to classify the beats into "good" and "bad", leaving 
opportunities for the "bad beats" to be classified in several 
(here 2) clusters. 

3.3 Results and discussion 
The application of functional SOM to the ECG data 

described in section 3.2 shows a nicely structured map 
with three very clear clusters (see Figure 7). The upper 
left corner of the map groups beats with a descending 
baseline while the lower right corner of the map has beats 
with ascending baselines. The good beats which should be 
selected for the analysis are grouped along the diagonal 
going from the lower right corner to the upper left corner. 
The very clear organization of this map suggested using 3 
clusters for the k-means algorithm on the prototypes.  

 
 

 
Figure 7 : SOM prototypes 

                                                           
1 Available from  
http://www.cis.hut.fi/projects/somtoolbox/ 

 
Figure 8 shows the results of the k-means clustering 

with 3 clusters on the map showed in Figure 6. The 
clustering confirms our visual analysis on Figure 6. 
Cluster 1 contains the beats with a descending baseline 
which are on the upper left corner of the map. On the 
diagonal, cluster 2 contains the good beats. Cluster 3 
groups the ascending baseline beats from the lower right 
corner of the map.  

 
Figure 8 : Clustered SOM prototypes 

 
71.39% of the beats are classified into cluster 2 (“good 

beats”) while cluster 1 and 3 represent respectively 
14.26% and 14.36% of the whole recording.  

 
Figure 9 : non classified bad beats 

 
This result seems acceptable as the overall baseline of 

the recording is constant, and the clusters 1 and 3 have 
opposite trends. Figure 9 shows a part of the ECG 
recording containing beats that should be rejected 
(according to visual inspection) for further analysis. 
Figure 10 shows the same part of the recording colored 
with respect to the clustering. The classification seems to 
be accurate enough to discriminate between good and bad 
beats.  
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Figure 10 : Classification of bad beats 

 
If the method behaves correctly, beats of different 

lengths, but with similar shapes should be classified in the 
same cluster. Figure 11 shows an example of the results 
obtained from this type of beats. The beats in the 
rectangle are slightly shorter than the other normal beats; 
still, their shape is similar to them. The classification 
method puts all those beats in the second cluster, which 
corresponds to the good beats.  

 
Figure 11 : Classification of good beats 

4 Conclusions 
This paper shows that it is possible to use classical 

machine learning methods on variable-length observation 
data using FDA preprocessing.  Adapting the size of the 
basis functions used in the preprocessing allows getting 
rid of differences between the observation lengths, and 
concentrating on their shape. The method has been 
applied to discriminate between normal shaped heartbeats 
and abnormal ones, using a functional SOM approach and 
further k-means clustering to group the cluster prototypes 
into a low number of classes. 

Further work will consist in extending the method to 
local time variations in signal windows, adapting the 
widths of basis functions individually through gradient 
descent on a local reconstruction error. 
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