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Why an inexact oracle for first-order methods 7

In smooth convex optimization:

o First-order methods = Methods of choice for large-scale problems
due to their cheap iteration cost

e Sometime impossible/costly to compute exact first-order informa-
tion (function and gradient values) at each iteration

Possible causes: numerical errors (see E1.) ; need to solve another
(simpler) optimization problem, which can only be done approxi-
mately (see E2.) ; non smoothness! (see E3., E4.)

e Our goal: Study the etfect of inexact first-order information on two
usual first-order methods:

Classical Gradient Method (CGM)
and Fast Gradient Method (FGM)

e Important issue: link between desired objective function accuracy
and accuracy needed for oracle first-order information ?

A definition of inexact oracle.

Consider the convex optimization problem:

f* — mianQ f(x)

where f is convex and () is a closed convex set C R".

Definition:

f is equipped with a first-order (¢, L)-oracle (f, ¢, 9,.¢) = Oc.r|f](y)
& for any y € Q, we can compute (f, ¢, gy .c) satisfying:
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roperties: f, . is e-accurate, g, . is an e-subgradient 4+ upper bound

First-order methods with a (e, L)-oracle

Let € = desired accuracy for the solution (SA),
let e = accuracy of the oracle (OA) and define R = H:BO — "

1. Classical Gradient Method
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e No accumulation of errors
Error asymptotically tends to € (OA)

e OA=5SA:e= 0O(¢)
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o Complexity: O ( ) (not optimal )

2. Fast Gradient Method
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¢ Accumulation of errors
Error asymptotically tends to oo
(decreases at first, then increases linearly)

e OA must be smaller than SA: € = @(E?’/ 2)

e Optimal complexity: O (@ R) .

Both methods are optimal (in a different way)

1. CGM is the fastest first-order method without error accumulation

2. Any first-order method with convergence rate ;> must suffer from
error accumulation, and FGM has the lowest possible error accu-
mulation for such a method: ©(ke).
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Examples of (¢, L)-oracles

Exact computation at shifted points

Assumptions: f is convex with a Lipschitz-continuous gradient
(constant L)

Oracle: At each point z € (), the oracle provides exact value of f
and V f but computed at a ditfferent point z..

= (e, L)-oracle with e = L ||T — Z.||5 and L = 2L.
Smooth saddle point problem
Assumptions:

f(z) = max ¥(z,u)

where

e U is a closed, convex set
e U(r,u)=G(u)+ (Au, x)

e (G(u)is a differentiable, strongly concave function with param-
eter k > (

Denoting u, = arg min,cy ¥ (x,u), we have:
f(x) =V (x,u.), Vf(x)=Au,.
Oracle: At each point z € @), the oracle provides

f:z;,e — \Il(x,ﬂx), Jr.e = Aﬂa:

where 4, is an approximate solution of max,cy ¥ (x, u).
= (€, L)-oracle with e = 2(V(x,u;) — V(z,u,;)) and L = 21141
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Non-smooth convex function

Assumptions: f is convex, subdifferentiable with bounded varia-
tion of the subgradients:

lg(z) —gW)ll, <M Vg(z) € df(z),g(y) € 0f(y), Vr,ye€Q

Oracle: At each point 7, the oracle provides f(Z) and g(z) € df(x).

= (€, L)-oracle with arbitrary e and L = ]\24—: (i.e. a whole family of
oracles with arbitrary value of ¢)

Consequence:

Application of CGM or FGM to f with right choice of € solves non-
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smooth problem with an optimal rate of convergence © (ﬁ) .

Smooth convex function with Hoélder continuous gradient

Assumptions: f is convex, differentiable with Hoélder continuous
gradient:

IVf(x) = VI, < Lvlz—yll” Vz,ye

foragiven 0 <v < 1.
Oracle: At each point z, oracle provides f(z) and V f(Z)
= (€, L)-oracle with arbitrary € and
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Consequence:

Application of FGM to f with right choice of € solves 'weakly’

smooth problem with an optimal rate of convergence : © (L ’/ﬁ;’/ ) .
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WE OBTAIN UNIVERSAL OPTIMAL METHOD BOTH FOR SMOOTH,
WEAKLY SMOOTH AND NON-SMOOTH CONVEX PROBLEMS.
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