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Why an inexact oracle for first-order methods ?
In smooth convex optimization:

• First-order methods = Methods of choice for large-scale problems
due to their cheap iteration cost

• Sometime impossible/costly to compute exact first-order informa-
tion (function and gradient values) at each iteration

Possible causes: numerical errors (see E1.) ; need to solve another
(simpler) optimization problem, which can only be done approxi-
mately (see E2.) ; non smoothness! (see E3., E4.)

• Our goal: Study the effect of inexact first-order information on two
usual first-order methods:

Classical Gradient Method (CGM)
and Fast Gradient Method (FGM)

• Important issue: link between desired objective function accuracy
and accuracy needed for oracle first-order information ?

A definition of inexact oracle.
Consider the convex optimization problem:

f∗ = minx∈Q f(x)

where f is convex and Q is a closed convex set ⊂ Rn.
Definition:
f is equipped with a first-order (ε, L)-oracle (fy,ε, gy,ε) = Oε,L[f ](y)
⇔ for any y ∈ Q, we can compute (fy,ε, gy,ε) satisfying:

fy,ε + 〈gy,ε, x− y〉 ≤ f(x) ≤ fy,ε + 〈gy,ε, x− y〉+
L

2
‖x− y‖2 + ε ∀x ∈ Q.

Properties: fy,ε is ε-accurate, gy,ε is an ε-subgradient + upper bound

Examples of (ε, L)-oracles
E1. Exact computation at shifted points

Assumptions: f is convex with a Lipschitz-continuous gradient
(constant L)
Oracle: At each point x ∈ Q, the oracle provides exact value of f
and∇f but computed at a different point xε.
⇒ (ε, L)-oracle with ε = L ‖x− xε‖22 and L = 2L.

E2. Smooth saddle point problem

Assumptions:
f(x) = max

u∈U
Ψ(x, u)

where

• U is a closed, convex set

• Ψ(x, u) = G(u) + 〈Au, x〉
• G(u) is a differentiable, strongly concave function with param-

eter κ > 0

Denoting ux = arg minu∈U Ψ(x, u), we have:

f(x) = Ψ(x, ux), ∇f(x) = Aux.

Oracle: At each point x ∈ Q, the oracle provides

fx,ε = Ψ(x, ux), gx,ε = Aux

where ūx is an approximate solution of maxu∈U Ψ(x, u).

⇒ (ε, L)-oracle with ε = 2(Ψ(x, ux)−Ψ(x, ux)) and L = 2‖A‖
κ .

E3. Non-smooth convex function

Assumptions: f is convex, subdifferentiable with bounded varia-
tion of the subgradients:

‖g(x)− g(y)‖∗ ≤M ∀g(x) ∈ ∂f(x), g(y) ∈ ∂f(y), ∀x, y ∈ Q

Oracle: At each point x, the oracle provides f(x) and g(x) ∈ ∂f(x).

⇒ (ε, L)-oracle with arbitrary ε and L = M2

2ε (i.e. a whole family of
oracles with arbitrary value of ε)

Consequence:

Application of CGM or FGM to f with right choice of ε solves non-
smooth problem with an optimal rate of convergence Θ

(
LR√
k

)
.

E4. Smooth convex function with Hôlder continuous gradient

Assumptions: f is convex, differentiable with Hôlder continuous
gradient:

‖∇f(x)−∇f(y)‖∗ ≤ Lν ‖x− y‖
ν ∀x, y ∈ Q

for a given 0 ≤ ν < 1.
Oracle: At each point x, oracle provides f(x) and∇f(x)
⇒ (ε, L)-oracle with arbitrary ε and

L = L
2
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Consequence:

Application of FGM to f with right choice of ε solves ’weakly’
smooth problem with an optimal rate of convergence : Θ

(
LνR

1+ν

k
1+3ν

2

)
.

WE OBTAIN UNIVERSAL OPTIMAL METHOD BOTH FOR SMOOTH,
WEAKLY SMOOTH AND NON-SMOOTH CONVEX PROBLEMS.
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First-order methods with a (ε, L)-oracle
Let ε = desired accuracy for the solution (SA),
let ε = accuracy of the oracle (OA) and define R =

∥∥x0 − x∗∥∥:

1. Classical Gradient Method

f(xk)− f∗ ≤ C1LR
2

k
+ ε

• No accumulation of errors
Error asymptotically tends to ε (OA)

• OA=SA : ε = Θ(ε)

• Complexity: O
(
LR2

ε

)
(not optimal )

2. Fast Gradient Method

f(xk)− f∗ ≤ C2LR
2

k2
+ C3kε

• Accumulation of errors
Error asymptotically tends to∞
(decreases at first, then increases linearly)

• OA must be smaller than SA: ε = Θ(ε3/2)

• Optimal complexity: O
(√

L
εR
)
.

Both methods are optimal (in a different way)

1. CGM is the fastest first-order method without error accumulation

2. Any first-order method with convergence rate 1
k2 must suffer from

error accumulation, and FGM has the lowest possible error accu-
mulation for such a method: Θ(kε).
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