
GROUPE

REGARDS

Technical Report
CG–2003/3

UCL Crypto Group Technical Report Series

http://www.dice.ucl.ac.be/crypto/

Place du Levant 3
B-1348 Louvain-la-Neuve, Belgium

Phone: (+32) 10 472541

Fax: (+32) 10 472598

An Attack Against Barua & al.

Authenticated Group Key

Agreement Protocol

Olivier Pereira, Jean-Jacques Quisquater

An Attack Against Barua & al. Authenticated

Group Key Agreement Protocol

Olivier Pereira1, Jean-Jacques Quisquater

Oct 27, 2003

Département d’Électricité (DICE), Université catholique de Louvain
Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium

Email: {pereira, quisquater}@dice.ucl.ac.be

1 Introduction

In their paper entitled “Extending Joux’s Protocol to Multi Party Key
Agreement”, Barua, Dutta and Sarkar [1] define a new authenticated group
key agreement protocol (which we will call the A-BDS protocol). The secu-
rity of the unauthenticated version of this protocol relies on the hardness of
the Decisional Hash Bilinear Diffie-Hellman problem, and the full (authen-
ticated) protocol is built from the previous one by sending authenticators
associated to the different exchanged messages.

In this report, we first describe the A-BDS protocol, then we show that
this protocol does not provide the expected key authentication properties.
Our attack exploits the lack of explicitness of the adopted authentication
mechanism: authenticating the origin of a message does not prevent mes-
sages generated during one session from being reused in an other session
with common participants.

2 The A-BDS protocol

2.1 Protocol Requirements

We summarize here the different definitions which will be used in the A-BDS
protocol description.

Let G1 and G2 be two groups of the same prime order q. We view G1 as
an additive group and G2 as a multiplicative group. Let P be an arbitrary
generator of G1. Assume that the discrete logarithm problem is hard for
both G1 and G2, e : G1 × G1 → G2 to be a cryptographic bilinear map

1O. Pereira is a Postdoctoral Researcher of the Belgian National Funds for Scientific
Research (F.N.R.S.)

CG–2003/3

c©2003 by UCL Crypto Group

For more informations, see

http://www.dice.ucl.ac.be/crypto/techreports.html

An Attack Against Barua & al. Authenticated Group Key Agreement Protocol 2

(such as a Tate pairing) and H : G2 → Z
∗

q to be a one way hash function.
These groups and functions will be used to build keys whose secrecy will rely
on the hardness of the Decisional Hash Bilinear Diffie-Hellman (DHBDH)
problem. This problem can be summarized as follows: given 5 elements
(P, aP, bP, cP, r) of G1 for some a, b, c, r chosen randomly in Z

∗

q and a hash

function H : G2 → Z
∗

q , decide whether r = H(e(P, P)abc) in a polynomial
time and with a non negligible probability.

Consider now a group M of n users {M1, . . . , Mn} who wish to agree
upon a group key. Each of these users has a long-term public key Qi ∈ G1

and has obtained from a key generation center (KGC) the corresponding
long-term private key Si ∈ G1

2 computed as Si = sQi, where s ∈ Z
∗

q is the
KGC’s long-term secret key. These keys will be used to authenticate the
different messages, in combination with the value Ppub = sP that the KGC
publishes.

The A-BDS protocol is contributive: we will assume that each user Mi ∈
M will generate a random secret contribution si ∈ Z

∗

q . Furthermore, this
protocol is recursive and builds the group key by combining partial keys
generated by subgroups U of members of M. In these subgroups, a particular
user assumes the role of representative: the representative of U, denoted
Rep(U) is defined as Mmin(i):Mi∈U. Finally, the A-BDS protocol will exploit

a second hash function: Ĥ : G1 → Z
∗

q in order to build authenticators:
the value aP will be authenticated by Mi by sending the value {|aP |}Si

=
Ĥ(aP)Si + a2P .3

2.2 Protocol Execution

The A-BDS protocol is a recursive protocol whose definition is made of three
functions. The first one, KeyAgreement, is the main function: it manages
the way the group key will be constructed from its different parts. This will
be carried out calling two other functions: CombineThree and CombineTwo.
The first one allows three groups of users sharing partial keys to generate a
common group key, while the second one does the same for two groups of
users.

The execution of the A-BDS protocol by a group M of n users will
be carried out as described in the procedure KeyAgreement(n, M), which is
defined as follows:

procedure KeyAgreement(m, Ui+1, . . . , Ui+m)
if (m = 1) then

KEY := si+1;
end if
if (m = 2) then

2We will sometimes write SMi
for Si

3We will sometimes write {|sP |}Mi
instead of {|sP |}Si

CG–2003/3

An Attack Against Barua & al. Authenticated Group Key Agreement Protocol 3

call CombineTwo(Ui+1, Ui+2, si+1, si+2);
Let KEY be the agreed key between users Ui+1 and Ui+2;

end if
n0 := 0; n1 := ⌊m

3 ⌋; n3 := ⌈m
3 ⌉; n2 := m − n1 − n3;

for i:=1 to 3 do
call KeyAgreement(nj , Ui+nj−1+1, . . . , Ui+nj−1+nj

);
Uj := {Ui+nj−1+1, . . . , Ui+nj−1+nj

}; ŝj := KEY ; nj := nj−1 + nj ;
end for
call CombineThree(U1, U2, U3, ŝ1, ŝ2, ŝ3);
end procedure

This function calls the CombineThree function which is defined as follows:

function CombineThree(U1, U2, U3, s1, s2, s3)
for all i ∈ {1, 2, 3} do

Rep(Ui) computes Pi := siP and Ti := {|siP |}Rep(Ui)

Let {j, k} := {1, 2, 3} \ {i}
Rep(Ui) sends Pi and Ti to all members of Uj and Uk

Each member of Ui verifies:
e(Tj + Tk, P) =

e(Ĥ(Pj)QRep(Uj) + Ĥ(Pk)QRep(Uk), Ppub)e(Pj , Pj)e(Pk, Pk);
Each member of Ui computes KEY := H(e(Pj , Pk)

si)
end for
end function

At the end of this function, the key computed by the members of U1,
U2 and U3 is equal to H(e(P, P)s1s2s3). The CombineTwo function is similar
and will not be used further anymore. We describe it however in order to
make the A-BDS protocol definition complete:

function CombineTwo(U1, U2, s1, s2)
for all i ∈ {1, 2} do

Rep(Ui) computes Pi := siP and Ti := {|siP |}Rep(Ui)

Rep(Ui) sends Pi and Ti to all members of U3−i

Each member of U3−i verifies:
e(Ti, P) = e(Ĥ(Pi)QRep(Ui), Ppub)e(Pi, Pi);

end for
Rep(U1) chooses s randomly in Z

∗

q

Rep(U1) sends sP and {|sP |}Rep(U1) to the rest of the users
Each member of U1 and U2 except Rep(U1) verifies:

e({|sP |}Rep(Ui), P) = e(Ĥ(sP)QRep(U1), Ppub)e(sP, sP);
for all i ∈ {1, 2} do

Each member of Ui computes KEY := H(e(P3−i, sP)si)
end for
end function

CG–2003/3

An Attack Against Barua & al. Authenticated Group Key Agreement Protocol 4

At the end of this function, the key computed by the members of U1 and
U2 is equal to H(e(P, P)s1s2s).

3 An attack against the A-BDS protocol

3.1 What ensures key authentication?

It is claimed in [1] that this protocol ensures implicit key authentication, i.e.
that all members of a group are guaranteed that only other group members
can compute the key they obtained at the end of a protocol session.

We could wonder why this security property would be guaranteed by
the A-BDS protocol. To that purpose, let us consider an example of execu-
tion of this protocol by a group M of nine participants {M1, . . . , M9}. If we
follow the KeyAgreement procedure execution, we may observe that three
instances of the CombineThree function will be started, for the subgroups
U1 = {M1, M2, M3}, U2 = {M4, M5, M6} and U3 = {M7, M8, M9} respec-
tively. Each member Mi of these subgroups will send the value siP to the
other two group members, together with the authenticators {|siP |}Si

. In our
further discussions, we will simply consider that each authenticator {|siP |}Si

guarantees that Mi really sent the value siP (we do not consider the validity
of the authentication mechanism adopted: we just consider it in an abstract
way, as a classical signature). Finally, at the end of this first round, the mem-
bers of each group Ui will share a partial key ŝi = H(e(P, P)s3i−2s3i−1s3i).

During the second round, the representatives of the three subgroups,
namely M1, M4 and M7, will use these partial keys to compute values that
will be used by the members of the other subgroups to compute the final
group key: H(e(P, P)ŝ1ŝ2ŝ3). These values will be authenticated in the same
way as during the previous step of the protocol.

Let us now examine which authentication guarantees the terms of form
{|siP |}Si

do offer to the different group members, and consider the messages
received by M1 for instance. During the first stage of the protocol, M1

receives two values together with authenticators proving that they really
have been sent by M2 and M3. However, since all protocol messages have
the same structure, these authenticators do not provide any information
about the context in which M2 and M3 generated these messages: if M1

knows that M2 and M3 know s2P and s3P , he cannot say whether they are
only known by these two users: they could have been sent during any round
of any session of the protocol to which these two users are taking part and,
in particular, they could have been generated during the second round of a
protocol session in which the attacker is a legitimate group member.

We will now sketch a scenario showing how this lack of explicitness could
be exploited by an attacker in order to undermine the implicit key authen-
tication property for this protocol.

CG–2003/3

An Attack Against Barua & al. Authenticated Group Key Agreement Protocol 5

3.2 Attack Scenario

Let us consider two sessions of the protocol, the first being executed by a
pool of users M1, where:

M1 = {Ma, Mb, Mc, Md, Me, Mf , Mg, Mh, MI}

while the second session is executed by a pool of users M2, where:

M2 = {M1, M2, Mg}

In these sessions, the attacker is MI , and the user Mg is member of the
two groups. We also assume that the random contributions to the group
key are sa, . . . , sI during the session executed by the members of M1 and
that the contributions are s′1, s′2, s′g in the second session.

We now summarize the first protocol execution.

1. Ma, Mb and Mc compute a partial key ŝ1 = H(e(P, P)sasbsc)

2. Md, Me and Mf compute a partial key ŝ2 = H(e(P, P)sdsesf)

3. Mg, Mh and MI compute a partial key ŝ3 = H(e(P, P)sgshsI)

4. Ma computes P1 = ŝ1P and {|ŝ1P |}Ma as defined in the CombineThree

function, and sends these two values to Md, Me, Mf , Mg, Mh and MI .

5. Md computes P2 = ŝ2P and {|ŝ2P |}Md
, and sends these two values to

Ma, Mb, Mc, Mg, Mh and MI .

6. Mg computes P3 = ŝ3P and {|ŝ3P |}Mg , and sends these two values to
Ma, Mb, Mc, Md, Me and Mf .

7. All members of M1 check the authenticators and compute the group
key as KEY = H(e(P, P)ŝ1ŝ2ŝ3)

We now consider the second protocol execution, during which the mes-
sage sent by Mg will be replaced by the message ŝ3P , {|ŝ3P |}Mg he sent
during the first protocol execution, its particularity being that MI knows
ŝ3:

1. M1 sends s′1P and {|s′1P |}M1
to M2 and Mg

2. M2 sends s′2P and {|s′2P |}M2
to M1 and Mg

3. The attacker intercepts the message that Mg sends to M1 and M2, and
replaces it with the values ŝ3P and {|ŝ3P |}Mg that Mg sent during the
previous protocol execution.

4. M1 and M2 check the authenticators and compute the group key as
KEY ′ = H(e(P, P)s′1s′2ŝ3) (while Mg is computing the group key as

KEY ′′ = H(e(P, P)s′1s′2s′g)).

But the value KEY ′ can easily be computed by the attacker who knows
s′1P , s′2P and ŝ3. So, at the end of this scenario, the attacker is able to
compute a key that M1 and M2 believe to be out of reach for any user that
is not included in the M2 group.

CG–2003/3

An Attack Against Barua & al. Authenticated Group Key Agreement Protocol 6

4 Concluding Remarks

In this report, we examined the authentication mechanism adopted in the
A-BDS group key agreement protocol in order to achieve the implicit au-
thentication of the group key. We showed that this mechanism lacks of
explicitness, what results in the possibility for an active attacker to under-
mine the key authentication property.

Replacing the current authentication mechanism by the use of a classi-
cal signature scheme and including each subgroup constitution in the signed
messages would prevent the exhibited attack. However, we think it would be
important to also consider freshness issues in order to prevent the replay of
messages containing old, maybe compromised, key contributions. Achieving
freshness guarantees at low cost (without using timestamps and with a lim-
ited communication overhead) would be an interesting direction for future
research.

References

[1] Rana Barua, Ratna Dutta, and Palash Sarkar. Extending joux’s proto-
col to multi party key agreement. Cryptology ePrint Archive, Report
2003/062, 2003. http://eprint.iacr.org/.

CG–2003/3

