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Abstract. In the Probabilistic I/O Automata (PIOA) framework, non-
deterministic choices are resolved using perfect-information schedulers,
which are similar to history-dependent policies for Markov decision pro-
cesses (MDPs). These schedulers are too powerful in the setting of secu-
rity analysis, leading to unrealistic adversarial behaviors. Therefore, we
introduce in this paper a novel mechanism of task partitions for PIOAs.
This allows us to define partial-information adversaries in a systematic
manner, namely, via sequences of tasks.
The resulting task-PIOA framework comes with simple notions of exter-
nal behavior and implementation, and supports simple compositionality
results. A new type of simulation relation is defined and proven sound
with respect to our notion of implementation. To illustrate the poten-
tial of this framework, we summarize our verification of an Oblivious
Transfer protocol, where we combine formal and computational analy-
ses. Finally, we present an extension with extra expressive power, using
local schedulers of individual components.

1 Introduction

The framework of Probabilistic Input/Output Automata (PIOA) is a simple com-
bination of I/O automata [LT89] and Markov decision processes [Put94]. As
demonstrated in [LSS94,SV99,PSL00], PIOAs are well-suited for the analysis
of distributed algorithms that use randomness as a computational primitive
(e.g., [Rab82]). In this setting, distributed processes use random inputs to im-
prove complexity results for important tasks such as consensus. Thus, each pro-
cess is modeled as an automaton with randomized transitions, while the protocol
is modeled as the (asynchronous) parallel composition of all participants.

This modeling paradigm combines nondeterministic and probabilistic choices
in a very natural way. This is attractive because, in our experience, nondetermin-
ism plays several important roles in modeling and verification. First, it provides
a convincing option for modeling timing uncertainties in a distributed and highly
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unpredictable environment. Moreover, it allows us to model systems at high lev-
els of abstraction, where many details are left unspecified. These features in
turn support descriptions of system decomposition, both “horizontally” (based
on parallel composition) and “vertically” (based on levels of abstraction).

This paper presents an adaptation of the PIOA framework intended for the
analysis of cryptographic protocols. These protocols are highly specialized exam-
ples of distributed algorithms, designed to protect sensitive data when they are
transmitted over unreliable channels. Their correctness typically relies on com-
putational assumptions, which state that certain problems cannot be solved (ef-
ficiently) by an adversarial entity with bounded computation resources [Gol01].

The Interactive Turing Machine (ITM) framework can be used to analyze
cryptographic protocols on a very detailed level: participants are modeled as
ITMs and messages as bit strings written on input tapes [Can01]. In this setting,
complexity-theoretic arguments can be given rigorously, reducing the correctness
of a protocol to its underlying cryptographic primitives. However, as protocols
become more complex and involve more participants, such fine-grained analyses
are cluttered by details and thus difficult to carry out. Practical protocols and
adversaries are therefore seldom expressed in the language of ITMs. Rather, an
informal (and at times ambiguous) higher-level language is used.

We aim to provide a framework in which security analysis can be carried out
formally in the style of the ITM-based framework of [Can01], yet inessential de-
tails can be abstracted away in order to facilitate reasoning. The main challenge
we face is the reconciliation of two different notions of scheduling.

Modeling Adversarial Scheduling The standard scheduling mechanism in
the cryptographic community is that of an adversarial scheduler, namely, a
resource-bounded algorithmic entity that determines the next move to be taken
based on the adversarial view of the computation so far. In contrast, the standard
in distributed computing is a perfect-information scheduler, which has access to
local state and history of every component and has no limitations on its compu-
tation power. The latter is clearly too strong for cryptographic analysis.

Our solution is a clean separation of concerns. The adaptive adversarial
scheduler is modeled explicitly as an automaton, which acts as a message de-
livery system and thus has access to dynamic information. On the other hand,
the remaining nondeterministic choices are resolved by a sequence of tasks that
is fixed nondeterministically in advance. These tasks are equivalence classes of
action symbols, so that dynamic information is kept independent.

We believe this separation is conceptually meaningful. The high-level adver-
sarial scheduler is responsible for choices that are essential in security analysis,
such as the ordering of message deliveries. The low-level schedule of tasks re-
solves inessential choices. For example, in the Oblivious Transfer (OT) proto-
col [GMW87], discussed later, both Transmitter and Receiver invoke an appro-
priate random source, but it is inconsequential which of the two does so first.

Our Contribution We define notions of external behavior and implementation
for task-PIOAs, which are PIOAs augmented with task partitions on the set of
actions. These notions are based on the trace distribution semantics proposed
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by Segala [Seg95]. We define parallel composition in the obvious way and show
that our implementation relation is compositional.

A new type of simulation relation, which incorporates the notion of tasks,
is also proposed and proven sound. It is very different from simulation rela-
tions studied earlier [SL95,LSV03], in that it is a relation between probability
distributions. This definition style is directly motivated by proof techniques in
cryptography, where certain probability distributions are deemed “indistinguish-
able” by any resource-bounded entity.

The task-PIOA framework has been applied successfully in security analy-
sis [CCK+06]. Specifically, it is used to analyze the Oblivious Transfer protocol
mentioned above. That analysis involves a fair amount of additional work, such
as definitions of computationally bounded computation, approximate implemen-
tation and computational hardness assumptions. These details are beyond the
scope of the current paper, but we will outline and discuss the basic modeling
approach in Section 4.

Related Work The literature contains numerous models that combine nonde-
terministic and probabilistic choices (see [SdV04] for a survey). However, very
few tackle the issue of partial-information scheduling, as we do here. Exceptions
include [CH05], which models local-oblivious scheduling, and [dA99], which uses
partitions on the state space to obtain partial-information schedules. The latter
is essentially within the framework of partially observable MDPs (POMDPs),
originally studied in the context of reinforcement learning [KLA98]. All of these
accounts neglect partial information aspects of (parameterized) actions, there-
fore are not suitable in a cryptographic setting.

On the other hand, several attempts have been made in the security lit-
erature to incorporate cryptographic analysis into conventional models of con-
currency [LMMS98,PW00,Can01,PW01,MMS03]. However, scheduling is usually
determined under specific rules and assumptions, which do not always reflect
properties of real-life distributed environments. In [LMMS98], for example, a
uniform distribution is imposed on the set of possible reductions for each term.
In [MMS03], internal reductions are prioritized over external communications
and a host of independence assumptions are imposed. In [PW01], a distributed
scheduling scheme is used to avoid unrealistic dependencies, but synchronization
is modeled at a very detailed level, using explicit message buffers and scheduling
ports. In our opinion, the approach taken here (separation of high- and low-level
scheduling) is conceptually simpler and still yields a faithful model of concurrent
behavior. Moreover, the fact that we allow ingrained nondeterministic choices
allows us to apply well-established verification techniques from the area of dis-
tributed computing.

Road Map We define in Section 2 the notions of task-PIOAs, task schedules,
composition and implementation. Also a compositionality result is given. Sec-
tion 3 introduces our new simulation and the associated soundness theorem.
Section 4 summarizes a case study in security protocol verification. Section 5
discusses an extension with local schedulers and concluding discussions follow in
Section 6. Further details are available in appendices.
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2 Task-PIOAs

Basic PIOAs We assume our reader is comfortable with basic notions of prob-
ability theory, such as σ-fields and (discrete) probability measures. A summary
is provided in Appendix A.

A probabilistic I/O automaton (PIOA) P is a tuple (Q, q̄, I, O,H,D) where:
(i) Q is a countable set of states, with start state q̄ ∈ Q; (ii) I, O and H are
countable and pairwise disjoint sets of actions, referred to as input, output and
internal actions, respectively; (iii) D ⊆ (Q×(I∪O∪H)×Disc(Q)) is a transition
relation, where Disc(Q) is the set of discrete probability measures on Q.

An action a is enabled in a state q if (q, a, µ) ∈ D for some µ. The set
A := I ∪ O ∪ H is called the action alphabet of P. If I = ∅, then P is said to
be closed. The set of external actions of P is E := I ∪ O and the set of locally
controlled actions is O∪H. We assume that P satisfies the following conditions.

– Input enabling: For every q ∈ Q and a ∈ I, a is enabled in q.
– Transition determinism: For every q ∈ Q and a ∈ A, there is at most

one µ ∈ Disc(Q) such that (q, a, µ) ∈ D. If there is exactly one such µ, it is
denoted by µq,a, and we write tranq,a for the transition (q, a, µq,a).

An execution fragment of P is a sequence α = q0 a1 q1 a2 . . . of alternating
states and actions, such that (i) if α is finite, then it ends with a state; (ii) for
every non-final i, there exists a transition (qi, ai+1, µ) ∈ D with qi+1 ∈ supp(µ),
where supp(µ) denotes the support of µ. We write fstate(α) for q0, and, if α is
finite, we write lstate(α) for its last state. We use Frags(P) (resp. Frags∗(P)) to
denote the set of all (resp. finite) execution fragments of P. An execution of P
is an execution fragment beginning from the start state q̄. Similarly, Execs(P)
(resp. Execs∗(P)) denotes the set of all (resp. finite) executions of P.

The trace of an execution fragment α, written trace(α), is the restriction of
α to the set of external actions of P. We say that β is a trace of P if there is an
execution α of P with trace(α) = β. The symbol ≤ denotes the prefix relation
on sequences, which applies in particular to execution fragments and traces.

Nondeterministic choices in P are resolved by means of a scheduler, which is
a function σ : Frags∗(P) −→ SubDisc(D) such that (q, a, µ) ∈ supp(σ(α)) implies
q = lstate(α). Here SubDisc(D) is the set of discrete sub-probability distributions
on D. Loosely speaking, σ decides (probabilistically) which transition to take
after each finite execution fragment α. Since this decision is a discrete sub-
probability measure, it may be the case that σ chooses to halt after α with
non-zero probability: 1− σ(α)(D) > 0.

A scheduler σ and a finite execution fragment α generate a measure εσ,α on
the σ-field FP generated by cones of execution fragments, where each cone Cα′

is the set of execution fragments that have α′ as a prefix. Detailed constructions
can be found in Appendix B. The measure of a cone Cα′ is defined recursively
as follows:

εσ,α(Cα′) :=

0 if α′ 6≤ α and α 6≤ α′

1 if α′ ≤ α
εσ,α(Cα′′)µσ(α′′)(a, q) if α′ = α′′aq and α ≤ α′′,

(1)
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where µσ(α′′)(a, q) := σ(α′′)(tranlstate(α′′),a) · µlstate(α′′),a(q). That is, µσ(α′′)(a, q)
is the probability that σ(α′′) chooses a transition labeled by a and that the
reached state is q. Standard measure theoretic arguments ensure that εσ,α is
well-defined. We call the state fstate(α) the first state of εσ,α and denote it by
fstate(εσ,α). If α consists of the start state q̄ only, we call εσ,α a probabilistic
execution of P.

Let µ be a discrete probability measure over Frags∗(P). We denote by εσ,µ

the measure
∑

α µ(α)εσ,α and we say that εσ,µ is generated by σ and µ. We call
the measure εσ,µ a generalized probabilistic execution fragment of P. If every
execution fragment in supp(µ) consists of a single state, then we call εσ,µ a
probabilistic execution fragment of P.

Finally, we note that the trace function is a measurable function from FP to
F , where F is the σ-field generated by cones of traces. Thus, given a probability
measure ε on FP , we define the trace distribution of ε, denoted tdist(ε), to be
the image measure of ε under trace. We denote by tdists(P) the set of trace
distributions of (probabilistic executions of) P.

Task-PIOAs We now augment the PIOA framework with task partitions, as
a means to restrict resolution of nondeterminism. Unlike [CCK+05], we do not
require that a task-PIOA has an equivalence relation on its states, nor that it
satisfies the random-choice consistency, transition consistency and enabling con-
sistency conditions that appear in [CCK+05]. The notion given here is also used
in [CCK+06]. A task-PIOA is a pair T = (P, R) where (i) P = (Q, q̄, I, O,H,D)
is a PIOA (satisfying transition determinism) and (ii) R is an equivalence rela-
tion on the locally-controlled actions (O ∪ H). For clarity, we sometimes write
RT for R. The equivalence classes of R are referred to as tasks. A task T is
enabled in a state q if some a ∈ T is enabled in q. It is enabled in a set S of
states provided it is enabled in every q ∈ S. Unless otherwise stated, technical
notions for task-PIOAs are inherited from those for PIOAs. Exceptions include
those of probabilistic executions and trace distributions.

For the time being, we impose the following assumption. This assumption will
be removed in Section 5, when we introduce local schedulers. At the moment,
it simplifies our technical development, because a sequence of tasks is sufficient
to remove all nondeterministic choices. To make the later extensions easier, we
will indicate explicitly where we are using the action-determinism hypothesis.

– Action determinism: For every state q ∈ Q and every task T ∈ R, there
is at most one action a ∈ T that is enabled in q.

A task schedule for T is a finite or infinite sequence ρ = T1T2 . . . of tasks in R.
Such a task schedule resolves nondeterministic choices by repeatedly scheduling
tasks, each of which determines at most one transition of the given task-PIOA.
It is static (or oblivious), in the sense that it does not depend on dynamic
information generated during execution. In general, one could define various
classes of task schedules by specifying what dynamic information may be used
in choosing the next task. Here, however, we opt for the oblivious version because
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we intend to model system dynamics separately, via high-level nondeterministic
choices (cf. Section 1).

We claim that, under action determinism, every task schedule uniquely deter-
mines a probabilistic execution (and hence a trace distribution) in the underlying
PIOA. To prove this, we define an operation that “applies” a task schedule to a
task-PIOA.

Definition 1. Let T = (P, R) be an action-deterministic task-PIOA where P =
(Q, q̄, I, O,H,D). Given µ ∈ Disc(Frags∗(P)) and a task schedule ρ, apply(µ, ρ)
is a probability measure on Frags(P). It is defined recursively as follows.

1. apply(µ, λ) := µ. Here λ denotes the empty sequence.
2. For T ∈ R and α ∈ Frags∗(P), apply(µ, T )(α) := p1(α) + p2(α), where:

p1(α) =

{
µ(α′)η(q) if α = α′aq, a ∈ T, (lstate(α′), a, η) ∈ D,

0 otherwise;

p2(α) =

{
µ(α) if T is not enabled in lstate(α)
0 otherwise.

3. If ρ is finite and of the form ρ′T , then apply(µ, ρ) := apply(apply(µ, ρ′), T ).
4. If ρ is infinite, let ρi denote the length-i prefix of ρ and let εi be apply(µ, ρi).

Then apply(µ, ρ) := limi→∞(εi).

It is routine to check that the limit in Case (4) is well-defined. More interesting
is Case (2). The term p1(α) represents the probability that α is executed as
the result of applying task T at the end of α′. Due to transition- and action-
determinism, the transition (lstate(α′), a, η) is unique and thus p1 is well-defined.
The term p2(α) is the original probability µ(α), in case T is not enabled after α.

Proposition 1 below states that apply(µ, ρ) is a generalized probabilistic ex-
ecution fragment generated by µ and a scheduler σ for P in the usual sense. In
other words, a task schedule for a task-PIOA is just a special kind of scheduler
for the underlying PIOA. The proof can be found in Appendix B.4.

Proposition 1. Let T = (P, R) be an action-deterministic task-PIOA. For each
measure µ on Frags∗(P) and task schedule ρ, there is scheduler σ for P such that
apply(µ, ρ) is the generalized probabilistic execution fragment εσ,µ.

Any such apply(µ, ρ) is said to be a generalized probabilistic execution frag-
ment of T . Probabilistic execution fragments and probabilistic executions are de-
fined as for basic PIOAs. We write tdist(µ, ρ) as shorthand for tdist(apply(µ, ρ))
and tdist(ρ) for tdist(apply(δ(q̄), ρ)), where δ(q̄) denotes the measure that assigns
probability 1 to q̄. A trace distribution of T is any tdist(ρ). We use tdists(T ) to
denote the set {tdist(ρ) : ρ is a task scheduler for T }.

Composition Two PIOAs Pi = (Qi, q̄i, Ii, Oi,Hi, Di), i ∈ {1, 2}, are said to be
compatible if Ai ∩ Hj = Oi ∩ Oj = ∅ whenever i 6= j. In that case, we define
their composition P1‖P2 to be the PIOA (Q1 × Q2, (q̄1, q̄2), (I1 ∪ I2) \ (O1 ∪
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O2), O1∪O2, H1∪H2, D), where D is the set of triples ((q1, q2), a, µ1×µ2) such
that (i) a is enabled in some qi, and (ii) for every i, if a ∈ Ai then (qi, a, µi) ∈ Di,
otherwise µi = δ(qi). Given a state q = (q1, q2) in the composite and i ∈ {1, 2},
we use qdPi to denote qi. Note that our definition of composition, as well as
restriction d, can be generalized to any finite number of arguments.

Two task-PIOAs Ti = (Pi, Ri), i ∈ {1, 2}, are said to be compatible provided
the underlying PIOAs are compatible. In this case, we define their composition
T1‖T2 to be the task-PIOA (P1‖P2, R1∪R2). Note that R1∪R2 is an equivalence
relation because compatibility requires disjoint sets of locally controlled actions.
It is also easy to check that action determinism is preserved under composition.

Implementation We now define the notion of external behavior for a task-
PIOA and the induced implementation relation between task-PIOAs. Unlike
previous definitions of external behavior, the one we use here is not simply an
amorphous set of trace distributions. Rather, it is a mapping that takes every
possible “environment” for the given task-PIOA to sets of trace distributions
that can arise when the task-PIOA is composed with the given environment.
Then our notion of implementation is formulated in terms of inclusion of sets of
trace distributions for each environment automaton.

Let T and E be action-deterministic task-PIOAs. We say that E is an environ-
ment for T if (i) E is compatible with T and (ii) the composition T ‖E is closed.
Note that E may introduce new output actions that are not in the signature of
T . The external behavior of T , denoted by extbeh(T ), is the total function that
maps each environment E to the set of trace distributions tdists(T ‖E). Thus,
for each environment, we consider the set of trace distributions that arise from
a choice of a global task schedule σ. Note that these traces may include new
external actions of E in addition to the external actions already present in T .

Our definition of implementation is influenced by common notions in the
security literature [Can01]. Namely, the implementation must “look like” the
specification from the perspective of every possible environment. This style of
definition enables us to prove simple compositionality results (Theorem 1).

Definition 2. Let T1 and T2 be comparable action-deterministic task-PIOAs,
that is, I1 = I2 and O1 = O2. We say that T1 implements T2, written T1 ≤0 T2,
if extbeh(T1)(E) ⊆ extbeh(T2)(E) for every environment E for both T1 and T2. In
other words, we require tdists(T1||E) ⊆ tdists(T2||E) for every E.

The subscript “0” refers to the fact that every trace distribution in tdists(T1||E)
must have an identical match in tdists(T2||E). For security analysis, this notion
of implementation can be weakened to allow for negligible discrepancies between
matching trace distributions [CCK+06].

Compositionality Here we give a simple compositionality result for our imple-
mentation relation. Since we formulate external behavior and implementation in
terms of a mapping from environments to sets of trace distributions, this result
is quite immediate.
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Theorem 1. Let T1, T2 be comparable action-deterministic task-PIOAs such
that T1 ≤0 T2, and let T3 be an action-deterministic task-PIOA compatible with
each of T1 and T2. Then T1‖T3 ≤0 T2‖T3.

Proof. Let T4 = (P4, R4) be any environment (action-deterministic) task-
PIOA for both T1‖T3 and T2‖T3. Fix any task schedule σ1 for (T1‖T3)‖T4. Let τ
be the trace distribution of (T1‖T3)‖T4 generated by σ1. It suffices to show that
τ is also generated by some task schedule σ2 for (T2‖T3)‖T4.

Note that σ1 is also a task schedule for T1‖(T3‖T4), and that σ1 generates
the same trace distribution τ in the composed task-PIOA T1‖(T3‖T4).

Now, T3‖T4 is an (action-deterministic) environment task-PIOA for each of
T1 and T2. Since, by assumption, T1 ≤0 T2, we infer the existence of a task
schedule σ2 for T2‖(T3‖T4) such that σ2 generates the same trace distribution
τ in the task-PIOA T2‖(T3‖T4). Since σ2 is also a task schedule for (T2‖T3)‖T4

and σ2 generates τ , this suffices to show that T1‖T3 ≤0 T2‖T3. 2

3 Simulation Relations

Here, we define a new kind of simulation relation for closed, action-deterministic
task-PIOAs, and show that simulation relations of this kind are sound for show-
ing implementation. Our definition is based on three operations involving proba-
bility measures: flattening, lifting, and expansion. All of these have been defined
elsewhere, for example, in [LSV03].

The first operation, which we call “flattening”, takes a discrete probability
measure over probability measures and “flattens” it into a single probability
measure. Formally, let η be a discrete probability measure on Disc(X). Then the
flattening of η, denoted by flatten(η), is the discrete probability measure on X
defined by flatten(η) =

∑
µ∈Disc(X) η(µ)µ.

The second operation, which we call “lifting”, takes a relation R between two
domains X and Y and “lifts” it to a relation between discrete measures over X
and Y . Intuitively, a measure µ1 on X is related to a measure µ2 on Y if µ2

can be obtained by “redistributing” the probabilities masses assigned by µ1, in
such a way that the relation R is respected. Formally, the lifting of R, denoted
by L(R), is a relation from Disc(X) to Disc(Y ) defined by: µ1 L(R) µ2 iff there
exists a weighting function w : X × Y → R≥0 such that

1. for each x ∈ X and y ∈ Y , w(x, y) > 0 implies x R y,
2. for each x ∈ X,

∑
y w(x, y) = µ1(x), and

3. for each y ∈ Y ,
∑

x w(x, y) = µ2(y).

The third operation, called “expansion”, takes a relation between discrete
measures on two domains and returns a relation of the same kind that relates
two measures whenever they can be decomposed into two L(R)-related measures.
Formally, let R be a relation from Disc(X) to Disc(Y ). The expansion of R,
written E(R), is a relation from Disc(X) to Disc(Y ) defined by: µ1 E(R) µ2 iff
there exist two discrete measures η1 and η2 on Disc(X) and Disc(Y ), respectively,
such that µ1 = flatten(η1), µ2 = flatten(η2), and η1 L(R) η2.
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We use expansions directly in our definition of simulation. Intuitively, µ1 R µ2

means that it is possible to simulate from µ1 what happens from µ2. Furthermore,
µ′1 E(R) µ′2 means that we can decompose µ′1 and µ′2 into pieces that can simulate
each other, and thus also from µ′2 it is possible to simulate what happens from µ′2.
This intuition is at the base of the proof of our soundness result (cf. Theorem 1).

We need two other auxiliary definitions. The first definition is used to avoid
useless proof obligations in our definition of simulation and expresses a consis-
tency condition between a distribution over finite execution fragments and a
task schedule. Informally, a distribution ε over finite execution fragments is said
to be consistent with a task schedule ρ if it assigns non-zero probability only to
those executions fragments that are possible under the task schedule ρ.

Definition 3. Let T = (P, R) be a closed, action-deterministic task-PIOA, ε be
a discrete distribution over finite execution fragments of P, and ρ be a finite task
schedule for T . Then we say that ε is consistent with ρ provided that supp(ε) ⊆
supp(apply(fstate(ε), ρ)), where fstate(ε) is the image measure of ε under fstate.

For the second definition, suppose we have a mapping c that, given a finite
task schedule ρ and a task T of a task-PIOA T1, yields a task schedule of another
task-PIOA T2. The idea is that c(ρ, T ) describes how T2 matches task T provided
that it has matched already the task schedule ρ. We define a new function full(c)
that, given a task schedule ρ, iterates c on all the elements of ρ, thus producing
a “full” task schedule of T2 that matches all of ρ.

Definition 4. Let T1 = (P1, R1) and T2 = (P2, R2) be two task-PIOAs, and
let c : (R1

∗ × R1) → R2
∗ be a function that assigns a finite task schedule of

T2 to each finite task schedule of T1 and task of T1. Define full(c) : R1
∗ → R2

∗

recursively as follows: full(c)(λ) := λ, and full(c)(ρT ) := (full(c)(ρ))(c(ρ, T )).

We now define our new notion of simulation for task-PIOAs and establish its
soundness for the ≤0 relation.

Definition 5. Let T1 = (P1, R1) and T2 = (P2, R2) be two comparable closed
action-deterministic task-PIOAs. Let R be a relation from Disc(Frags∗(P1)) to
Disc(Frags∗(P2)), satisfying the condition: if ε1 R ε2 then tdist(ε1) = tdist(ε2).
We say that R is a simulation from T1 to T2 if there exists c : (R1

∗×R1) → R2
∗,

called a Skolem function for R, such that the following properties hold:

1. Start condition: δ(q̄1) R δ(q̄2).
2. Step condition: If ε1 R ε2, ρ1 ∈ R1

∗, ε1 is consistent with ρ1, ε2 is consis-
tent with full(c)(ρ1), and T ∈ R1, then ε′1 E(R) ε′2 where: ε′1 = apply(ε1, T )
and ε′2 = apply(ε2, c(ρ1, T )).

Theorem 2. Let T1 and T2 be two closed action-deterministic task-PIOAs. If
there exists a simulation relation from T1 to T2, then tdists(T1) ⊆ tdists(T2).

As a corollary we derive our main soundness result for task-PIOAs that are
not necessarily closed.
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Corollary 1. Let T1 and T2 be two comparable action-deterministic task-PIOAs.
Suppose that, for every environment E for both T1 and T2, there exists a simu-
lation relation R from T1‖E to T2‖E. Then T1 ≤0 T2.

4 Application to Security Protocols

In [CCK+06] the task-PIOAs of this paper are used to model and verify, in de-
tail, the Oblivious Transfer (OT) protocol of Goldreich et al. [GMW87]. The
analysis is based on the framework of [Can01]. The protocol uses trap-door per-
mutations (and hard-core predicates for them) as the underlying cryptographic
primitive. Even though the analyzed protocol and functionality are relatively
simple, our exercise is interesting. OT is a powerful primitive that has been
shown to be complete for multi-party secure protocols, in the sense that one
can construct protocols for securely realizing any functionality using OT as the
only cryptographic primitive. It is also interesting because it imposes secrecy
requirements when either party is corrupted, in addition to correctness require-
ments. The protocol uses cryptographic primitives and computational hardness
assumptions in an essential way, and the analysis requires general modeling for-
mulations and verification methods that can be used in cryptographic analysis
of any cryptographic protocol.

At a very high-level the analysis proceeds as follows. We define two PIOAs
that represent the “real system”, which captures the protocol execution, and the
“ideal system”, which captures the ideal specification for OT. We show that the
real system implements the ideal system with respect to a notion of approximate,
time-bounded, implementation for which our simulation relations are sound. The
complete proof consists of four cases, depending on the set of parties that are
corrupted. When only the transmitter is corrupted, and when both parties are
corrupted, it is possible to show that the real system implements the ideal sys-
tem unconditionally. However, in the other two cases, implementation can be
shown only in a “computational” sense, namely, (i) for resource-bounded adver-
saries, (ii) up to negligible differences, and (iii) under computational hardness
assumptions. Modeling these cases requires adding some structure to the basic
task-PIOA framework of this paper. Still, the methods of this paper alone suffice
for much of the analysis of OT.

We list some interesting technical aspects of the proof. First, the notion of
correctness of [Can01] is based on adversaries whose behavior is arbitrary; thus,
the proof of correctness should deal with any possible behavior of the adversary.
In our framework we view an adversary as a task-PIOA that is composed in
parallel with the real and ideal systems, respectively. Simulation relations, and
their compositionality properties, work perfectly in this case since the adversary
components of the two levels are mapped via the identity function, which is
trivially a simulation. Thus, we do not need to explore the structure of the
adversary while proving correctness. The adversary may use randomness, which
leads us to extend earlier definitions of simulation relations [SL95,LSV03].
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In a common pattern that appears in our OT proofs, a lower-level system
chooses a random value y and then computes a new value z by applying a trap-
door permutation f to y or by combining y with an input value provided by
the environment, e.g., using XOR. At the higher level, a random value is simply
chosen, without any use of permutations or input values. However, applying a
permutation or a XOR operation to a random value yields the same result as
just choosing a random value. These examples motivated our extension of the
simulation relation definition to relate distributions to distributions, rather than
just states to distributions as in [LSV03].

In our OT models, typical tasks include “choose a random y value”, “send
the round 1 message”, and “deliver the round 1 message”, as well as arbitrary
tasks of incompletely-specified components such as environment and adversary
automata. These tasks do not specify exactly what action occurs; for example,
the send task above does not specify the contents of the first round message, but
just the fact that some round 1 message is being sent. The message contents are
selected by the Transmitter process, based on its own internal state. The task
mechanism provides a convenient way to specify such choices.

5 Adding Local Schedulers

The action-determinism property may prove to be more restrictive than we would
like for applications. To obtain extra expressive power, we add a notion of “local
scheduler” for each individual component. A local scheduler of a given compo-
nent can be used to resolve nondeterministic choices among actions of the same
task, using only information about the past computation of that component. In
this section, we sketch one way of doing this, with local scheduling based on
the current state only, and indicate how our results for the action-deterministic
case carry over to this setting. We are currently investigating the use of local
schedulers in our case study.

Our notion of local scheduler is simply a “sub-automaton”. We say that task-
PIOA T = (P, R) is a sub-task-PIOA of task-PIOA T ′ = (P ′, R′) provided that
all components are identical except that D′ ⊆ D, where D and D′ are the sets
of discrete transitions of P and P ′, respectively. Thus, the only difference is that
T ′ may have a smaller set of transitions.

A local scheduler for a task-PIOA T is an action-deterministic sub-task-PIOA
of T . A scheduled task-PIOA is a pair (T , T ′) consisting of a task-PIOA T and a
local scheduler T ′ for T . A probabilistic system is a pair M = (T ,S), where P is
a task-PIOA and S is a set of local schedulers for P. A probabilistic execution of
a probabilistic system M = (T ,S) is defined to be any probabilistic execution
of any task-PIOA T ′, where T ′ ∈ S.

Suppose that (T1, T ′1 ) and (T2, T ′2 ) are two scheduled compatible task-PIOAs.
Then define their composition (T1, T ′1 )‖(T2, T ′2 )to be the pair (T1‖T2, T ′1‖T ′2 ).
Suppose that M1 = (T1,S1) and M2 = (T2,S2) are probabilistic systems, and
T1 and T2 are compatible. Then define their composition M1‖M2 to be the
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probabilistic system (T1‖T2,S), where S is the set of local schedulers T ′ for
T1‖T2 such that T ′ = T ′1‖T ′2 for some T ′1 ∈ S1 and T ′2 ∈ S2.

If M = (T , S) is a scheduled task-PIOA, then an environment for M is any
environment (action-deterministic task-PIOA) for the underlying task-PIOA P.
Likewise, if M = (T ,S) is a probabilistic system, an environment for M is any
environment for T .

If M = (T ,S) is a probabilistic system, then define the external behavior of
M, written as extbeh(M), to be the total function that maps each environment
task-PIOA E for M to the set

⋃
T ′∈S tdists(T ′‖E). Thus, for each environment,

we consider the set of trace distributions that arise from choices of a local sched-
uler of M and a global task schedule σ.

Implementation is then defined in the same style as for task-PIOAs.

Definition 6. Let M1 = (T1,S1) and M2 = (T2,S2) be two comparable proba-
bilistic systems (i.e., T1 and T2 are comparable). Then we say that M1 imple-
ments M2, written M1 ≤0 M2, provided that extbeh(M1)(E) ⊆ extbeh(M2)(E)
for every environment (action-deterministic) task-PIOA E for both M1 and M2.

We get a sufficient condition for implementation of probabilistic systems, in
which each local scheduler for the low-level system always corresponds to the
same local scheduler of the high-level system.

Theorem 3. Let M1 = (T1,S1) and M2 = (T2,S2) be two comparable proba-
bilistic systems. Suppose that f is a total function from S1 to S2 such that, for
every S1 ∈ S1, S1 ≤0 f(S1). Then M1 ≤0 M2.

Simulation Relations It would be nice to get a simulation relation for prob-
abilistic systems whose soundness follows from that for the simulation relation
we have already studied, above, for task-PIOAs. Here are some thoughts:

The quantification of the implementation definition, system M1 implementing
M2, goes as follows: “Forall E for M1 and M2, forall local schedulers S1 for M1,
for all global task schedules sigma1, exists a local scheduler S2 for M2, exists a
task schedule sigma2, such that the trace dist of S1‖E with sigma1 = trace dist
of S2‖E with sigma2.”

For a simulation relation, we pre-compose with E, which should take care of
the universal quantification over E. Basically, after pre-composing, we get new,
closed probabilistic systems N1 and N2. The remaining quantification looks like:
“Forall local schedulers S1 for N1 for all global task schedules sigma1, exists a
local scheduler S2 for N2, exists a task schedule sigma2, such that trace dist of
S1 with sigma1 = trace dist of S2 with sigma2.”

Now, if we try to use the simulation relation definition we have already, the
mappings of steps of a local scheduler S1 would not automatically be consistent
with a single local scheduler S2. To get consistency with some S2, all I can think
of right now is to instead show: “Forall local schedulers S1 for N1 exists a local
scheduler S2 for N2, for all global task schedules sigma1, exists a task schedule
sigma2, such that trace dist of S1 with sigma1 = trace dist of S2 with sigma2.”
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This suggests that, in showing that M1 implements M2, we should hypoth-
esize a function that maps from S1 to S2. That leaves us with two action-
deterministic task-PIOAs S1 and S2. Then use our ordinary simulation relation
to show that S1 implements S2. That will yield that M1 implements M2. The
following theorem expresses this strategy.

Theorem 4. Suppose M1 = (T1,S1) and M2 = (T2,S2) are two comparable
probabilistic systems. Suppose that f is a total function from S1 to S2.
Suppose that, for every environment E for both T1 and T2, and for every S1 ∈ S1,
there exists a simulation relation R from S1‖E to f(S1)‖E.
Then M1 ≤0 M2.

We also get a compositionality result for local schedulers. The proof is a
straightforward generalization of the one for the action-deterministic case.

Theorem 5. Let M1, M2 be comparable probabilistic systems such that M1 ≤0

M2, and let M3 be a probabilistic system compatible with each of M1 and M2.
Then M1‖M3 ≤0 M2‖M3.

Proof. Let T4 = (P4, R4) be any environment (action-deterministic) task-
PIOA for bothM1‖M3 andM2‖M3. LetM4 be the trivial probabilistic system
(T4, {T4}). Fix any task schedule σ1 for (T1‖T3)‖T4 and local scheduler P ′13 of
M1‖M3. Let τ be the trace distribution of (T1‖T3)‖T4 generated by σ1 and
P ′13. It suffices to show that τ is also generated by some task schedule σ2 for
(T2‖T3)‖T4, local scheduler P ′23 of M2‖M3, and P4.

Note that σ1 is also a task schedule for T1‖(T3‖T4). Since P ′13 is a local
scheduler of M1‖M3, it can be expressed in the form P ′1‖P ′3, where P ′1 ∈ S1

and P ′3 ∈ S3. Let P ′34 = P ′3‖P4. Then P ′34 is a local scheduler of M3‖M4.
Then, σ1, P ′1, and P ′34 generate the same trace distribution τ in the composed
task-PIOA T1‖(T3‖T4).

Define T5 to be the task-PIOA T3‖T4. Note that T5 is an environment task-
PIOA for each of T1 and T2. Define the probabilistic systemM5 to be (T5, {P ′34}),
that is, we consider just a singleton set of local schedulers, containing the one
scheduler we are actually interested in.

Now, by assumption, M1 ≤0 M2. Therefore, there exists a task schedule σ2

for T2‖T5 and a local scheduler P ′2 for P2 such that σ2, P ′2, and P ′34 generate
the same trace distribution τ in the task-PIOA T2‖T5. Note that σ2 is also a
task schedule for (T2‖T3)‖T4. Let P ′23 = P ′2‖P ′3. Then P ′23 is a local scheduler of
M2‖M3. Also, P ′4 is a local scheduler of M4. Then σ2, P ′23 and P ′4 also generate
τ , which suffices to show the required implementation relationship. 2

6 Conclusions

In order to define partial-information adversaries more systematically, we extend
the PIOA framework with a mechanism of task partitions. Basic machineries for
verification are provided, including a compositional trace-based semantics and a
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sound notion of simulation relation. The utility of these tools is illustrated via
the OT case study.

Although our development is largely motivated by concerns in cryptographic
analysis, the notion of partial-information scheduling is of independent interest.
In particular, partial-information adversaries are widely used to defeat lower
bound results proven for perfect-information adversaries [Cha96,Asp03,AB04].
We intend to explore applications in this area, possibly extending the present
task-PIOA framework.

Another good direction to pursue is a full treatment of Canetti’s Universal
Composability results [Can01] in terms of task-PIOAs. This will provide a full-
featured modeling framework for security protocols, which is built upon the
rigorous computational foundations of [Can01] and at the same time inherits the
simplicity and modularity of task-PIOAs. Our OT case study confirms that it is
indeed possible to carefully separate high- and low-level nondeterminism. This
allows us to use low-level nondeterministic choices as a means of abstraction, as
commonly done in the verification of non-cryptographic algorithms.

Finally, we list two technical improvements that are currently under investi-
gation. First, our notion of implementation is currently defined by quantifying
over all possible environment automata. We would like to reduce the complex-
ity of this definition by identifying a (minimal) subclass of environments that
is sufficient to characterize our implementation relation. Here we may use the
idea of principal contexts of [Seg95]. Second, we would like to develop further
the notion of local schedulers and evaluate via case studies the tradeoff between
expressivity and usability.
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A Mathematical Foundations

A.1 Sets, functions etc.

We write R≥0 and R+ for the sets of nonnegative real numbers and positive real
numbers, respectively.

If X is any set, then we denote the set of finite sequences and infinite se-
quences of elements from X by X∗ and Xω, respectively. If ρ is a sequence then
we use |ρ| to denote the length of ρ. We use λ to denote the empty sequence
(over any set).

A.2 Probability measures

We present the basic definitions that we need for probability measures. For
completeness, we recall from Section 3 the definitions of flattening, lifting, and
expansion, and we prove several related lemmas.

Basic definitions A σ-field over a set X is a set F ⊆ 2X that contains the
empty set and is closed under complement and countable union. A pair (X,F)
where F is a σ-field over X, is called a measurable space. A measure on a measur-
able space (X,F) is a function µ : F → [0,∞] that is countably additive: for each
countable family {Xi}i of pairwise disjoint elements of F , µ(∪iXi) =

∑
i µ(Xi).

A probability measure on (X,F) is a measure on (X,F) such that µ(X) = 1. A
sub-probability measure on (X,F) is a measure on (X,F) such that µ(X) ≤ 1.

A discrete probability measure on a set X is a probability measure µ on
(X, 2X), such that, for each C ⊆ X, µ(C) =

∑
c∈C µ({c}). A discrete sub-

probability measure on a set X, is a sub-probability measure µ on (X, 2X), such
that for each C ⊆ X, µ(C) =

∑
c∈C µ({c}). We define Disc(X) and SubDisc(X)
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to be, respectively, the set of discrete probability measures and discrete sub-
probability measures on X. In the sequel, we often omit the set notation when
we denote the measure of a singleton set.

A support of a probability measure µ is a measurable set C such that µ(C) =
1. If µ is a discrete probability measure, then we denote by supp(µ) the set of
elements that have non-zero measure; supp(µ) is a support of µ. We let δ(x)
denote the Dirac measure for x, the discrete probability measure that assigns
probability 1 to {x}.

Given two discrete measures µ1, µ2 on (X, 2X) and (Y, 2Y ), respectively, we
denote by µ1 × µ2 the product measure, that is, the measure on (X × Y, 2X×Y )
such that µ1 × µ2(x, y) = µ1(x)× µ2(y) for each x ∈ X, y ∈ Y .

If {ρi}i∈I is a countable family of measures on (X,FX) and {pi}i∈I is a
family of non-negative values, then the expression

∑
i∈I piρi denotes a measure

ρ on (X,FX) such that, for each C ∈ FX , ρ(C) =
∑

i∈I piρi(C).
A function f : X → Y is said to be measurable from (X,FX) → (Y,FY )

if the inverse image of each element of FY is an element of FX , that is, for
each C ∈ FY , f−1(C) ∈ FX . In such a case, given a measure µ on (X,FX),
the function f(µ) defined on FY by f(µ)(C) = µ(f−1(C)) for each C ∈ Y is a
measure on (Y,FY ) and is called the image measure of µ under f .

Flattening The first operation, which we call “flattening”, takes a discrete
probability measure over probability measures and “flattens” it into a single
probability measure.

Let η be a discrete probability measure on Disc(X). Then the flattening of
η, denoted by flatten(η), is the discrete probability measure on X defined by
flatten(η) =

∑
µ∈Disc(X) η(µ)µ.

Lemma 1. Let η be a discrete probability measure on Disc(X) and let f be a
function from X to Y . Then f(flatten(η)) = flatten(f(η)).

Proof. By the definition of flattening, f(flatten(η)) = f(
∑

µ∈Disc(X) η(µ)µ).
By distributing f , we obtain that this is equal to

∑
µ∈Disc(X) η(µ)f(µ). By rear-

ranging terms in this last expression, we obtain that

f(flatten(η)) =
∑

σ∈Disc(Y )

∑
µ∈f−1(σ)

η(µ)σ.

Now,
∑

µ∈f−1(σ) η(µ) = f(η)(σ), which implies that

f(flatten(η)) =
∑

σ∈Disc(Y )

f(η)(σ)σ.

But the right-hand expression is the definition of flatten(f(η)), as needed. 2

Lemma 2. Let {ηi}i∈I be a countable family of measures on Disc(X), and
let {pi}i∈I be a family of probabilities such that

∑
i∈I pi = 1. Then we have

flatten(
∑

i∈I piηi) =
∑

i∈I piflatten(ηi).
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Lifting The second operation, which we call “lifting”, takes a relation R between
two domains X and Y and “lifts” it to a relation between discrete measures over
X and Y . Intuitively, a measure µ1 on X is related to a measure µ2 on Y if µ2

can be obtained by “redistributing” the probabilities masses assigned by µ1, in
such a way that the relation R is respected.

Formally, the lifting of R, denoted by L(R), is a relation from Disc(X) to
Disc(Y ) defined by: µ1 L(R) µ2 iff there exists a weighting function w : X×Y →
R≥0 such that

1. for each x ∈ X and y ∈ Y , w(x, y) > 0 implies x R y,
2. for each x ∈ X,

∑
y w(x, y) = µ1(x), and

3. for each y ∈ Y ,
∑

x w(x, y) = µ2(y).

Expansion Finally, we have the third operation, called “expansion”, which we
use directly in our new definition of simulation relations. Let R be a relation from
Disc(X) to Disc(Y ). The expansion of R, denoted by E(R), is again a relation
from Disc(X) to Disc(Y ). It is defined by: µ1 E(R) µ2 iff there exist two discrete
measures η1 and η2 on Disc(X) and Disc(Y ), respectively, such that

1. µ1 = flatten(η1),
2. µ2 = flatten(η2), and
3. η1 L(R) η2.

Intuitively, we enlarge R by adding pairs of measures that can be “decom-
posed” into weighted sums of measures, in such a way that the weights can be
“redistributed” in an R-respecting manner. Taking this intuition one step fur-
ther, the following lemma provides a very useful characterization of the expansion
relation.

Lemma 3. Let R be a relation on Disc(X)×Disc(Y ). Then µ1 E(R) µ2 iff there
exists a countable index set I, a discrete probability measure p on I, and two
collections of probability measures {µ1,i}I ,{µ2,i}I such that

1. µ1 =
∑

i∈I p(i)µ1,i,
2. µ2 =

∑
i∈I p(i)µ2,i, and

3. for each i ∈ I, µ1,i R µ2,i.

Proof. Let µ1 E(R) µ2, and let η1, η2 and w be the measures and weighting
functions used in the definition of E(R). Let {(µ1,i, µ2,i)}i∈I be an enumeration
of the pairs for which w(µ1,i, µ2,i) > 0, and let p(i) be w(µ1,i, µ2,i). Then p,
{(µ1,i)}i∈I , and {(µ2,i)}i∈I satisfy Items 1, 2, and 3.

Conversely, given p, {(µ1,i)}i∈I , and {(µ2,i)}i∈I , we define η1(µ) to be the
sum

∑
i|µ=µ1,i

p(i) and η2(µ) to be
∑

i|µ=µ2,i
p(i). Moreover, define w(µ′1, µ

′
2) to

be
∑

i|µ′1=µ1,i,µ′2=µ2,i
p(i). Then, η1, η2 and w satisfy the properties required in

the definition of E(R). 2
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B Probabilistic I/O Automata

In Section 2, we saw basic definitions of the PIOA framework. Here we provide
more details.

B.1 σ-Fields of Execution Fragments and Traces

In order to define probability measures on executions and traces, we need ap-
propriate σ-fields. We begin with a σ-field over the set of execution fragments
of a PIOA P:

Definition 7. The cone of a finite execution fragment α, denoted by Cα, is the
set {α′ ∈ Frags(P) |α ≤ α′}. Then FP is the σ-field generated by the set of cones
of finite execution fragments of P.

A probability measure on execution fragments of P is then simply a probability
measure on the σ-field FP .

Since Q, I, O, and H are countable, Frags∗(P) is countable, and hence the
set of cones of finite execution fragments of P is countable. Therefore, any union
of cones is measurable. Moreover, for each finite execution fragment α, the set
{α} is measurable since it can be expressed as the intersection of Cα with the
complement of ∪α′:α<α′Cα′ . Thus, any set of finite execution fragments is mea-
surable; in other words, the discrete σ-field of finite executions is included in
FP .

We often restrict our attention to probability measures on finite execution
fragments, rather than those on arbitrary execution fragments. Thus, we define:

Definition 8. Let ε be a probability measure on execution fragments of P. We
say that ε is finite if Frags∗(P) is a support for ε.

Since any set of finite execution fragments is measurable, any finite prob-
ability measure on execution fragments of P can also be viewed as a discrete
probability measure on Frags∗(P). Formally, given any finite probability mea-
sure ε on execution fragments of P, we obtain a discrete probability measure
finite(ε) on Frags∗(P) by simply defining finite(ε)(α) = ε({α}) for every finite
execution fragment α of P. The difference between finite(ε) and ε is simply that
the domain of ε is FP , whereas the domain of finite(ε) is Execs∗(P). Henceforth,
we will ignore the distinction between finite(ε) and ε.

Definition 9. Let ε and ε′ be probability measures on execution fragments of
PIOA P. Then we say that ε is a prefix of ε′, denoted by ε ≤ ε′, if, for each
finite execution fragment α of P, ε(Cα) ≤ ε′(Cα).

Definition 10. A chain of probability measures on execution fragments of PIOA
P is an infinite sequence, ε1, ε2, · · · of probability measures on execution frag-
ments of P such that, for each i ≥ 0, εi ≤ εi+1. Given a chain ε1, ε2, . . . of
probability measures on execution fragments of P, we define a new function ε on
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the σ-field generated by cones of execution fragments of P as follows: for each
finite execution fragment α,

ε(Cα) = lim
i→∞

εi(Cα).

Standard measure theoretic arguments ensure that ε can be extended uniquely to
a probability measure on the σ-field generated by the cones of finite execution
fragments. Furthermore, for each i ≥ 0, εi ≤ ε. We call ε the limit of the chain,
and we denote it by limi→∞ εi.

If α is a finite execution fragment of a PIOA P and a is an action of P, then
Cαa denotes the set of execution fragments of P that start with αa.

The cone construction can also be used to define a σ-field of traces:

Definition 11. The cone of a finite trace β, denoted by Cβ, is the set {β′ ∈
E∗∪Eω | β ≤ β′}, where ≤ denotes the prefix ordering on sequences. The σ-field
of traces of P is simply the σ-field generated by the set of cones of finite traces
of P.

Again, the set of cones is countable and the discrete σ-field on finite traces is
included in the σ-field generated by cones of traces. We often refer to a proba-
bility measure on the σ-field generated by cones of traces of a PIOA P as simply
a probability measure on traces of P.

Definition 12. Let τ be a probability measure on traces of P. We say that τ is
finite if the set of finite traces is a support for τ . Any finite probability measure
on traces of P can also be viewed as a discrete probability measure on the set of
finite traces.

Definition 13. Let τ and τ ′ be probability measures on traces of PIOA P. Then
we say that τ is a prefix of τ ′, denoted by τ ≤ τ ′, if, for each finite trace β of
P, τ(Cβ) ≤ τ ′(Cβ).

Definition 14. A chain of probability measures on traces of PIOA P is an
infinite sequence, τ1, τ2, · · · of probability measures on traces of P such that,
for each i ≥ 0, τi ≤ τi+1. Given a chain τ1, τ2, . . . of probability measures on
traces of P, we define a new function τ on the σ-field generated by cones of
traces of P as follows: for each finite trace β,

τ(Cβ) = lim
i→∞

τi(Cβ).

Then τ can be extended uniquely to a probability measure on the σ-field of cones
of finite traces. Furthermore, for each i ≥ 0, τi ≤ τ . We call τ the limit of the
chain, and we denote it by limi→∞ τi.

Recall from Section 2 the definition of the trace distribution tdist(ε) of a prob-
ability measure ε on execution fragments. Namely, tdist(ε) is the image measure
of ε under the measurable function trace.
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Lemma 4. Let ε1, ε2, · · · be a chain of measures on execution fragments, and
let ε be limi→∞ εi. Then limi→∞ tdist(εi) = tdist(ε).

Proof. It suffices to show that, for any finite trace β, limi→∞ tdist(εi)(Cβ) =
tdist(ε)(Cβ). Fix a finite trace β.

Let Θ be the set of minimal execution fragments whose trace is in Cβ . Then
trace−1(Cβ) = ∪α∈ΘCα, where all the cones are pairwise disjoint. Therefore, for
i ≥ 0, tdist(εi)(Cβ) =

∑
α∈Θ εi(Cα), and tdist(ε)(Cβ) =

∑
α∈Θ ε(Cα).

Since we have monotone limits here (that is, our limit are also supremums),
limits commute with sums and our goal can be restated as showing:∑

α∈Θ

lim
i→∞

εi(Cα) =
∑
α∈Θ

ε(Cα).

Since limi→∞ εi = ε, we have limi→∞ εi(Cα) = ε(Cα) for each finite execution
fragment α. Therefore, the two sums above are in fact equal. 2

The lstate function is a measurable function from the discrete σ-field of finite
execution fragments of P to the discrete σ-field of states of P. If ε is a probability
measure on execution fragments of P, then we define the lstate distribution of
ε, lstate(ε), to be the image measure of ε under the function lstate.

B.2 Probabilistic Executions and Trace Distributions

Having established some groundwork in Section B.1, we now turn to our behav-
ioral semantics based on probability measures on executions and traces. Recall
from Section 2 that nondeterministic choices in a PIOA is resolved by means of
a scheduler. The following lemmas give some simple equations expressing basic
relationships involving the probabilities of various sets of execution fragments.

Lemma 5. Let σ be a scheduler for PIOA P, µ be a discrete probability measure
on finite execution fragments of P, and α be a finite execution fragment of P.
Then

εσ,µ(Cα) = µ(Cα) +
∑

α′<α

µ(α′)εσ,α′(Cα).

Proof. By definition of εσ,µ, εσ,µ(Cα) =
∑

α′ µ(α′)εσ,α′(Cα). Since, by defi-
nition, εσ,α′(Cα) = 1 whenever α ≤ α′, the equation above can be rewritten
as

εσ,µ(Cα) =
∑

α′:α≤α′

µ(α′) +
∑

α′<α

µ(α′)εσ,α′(Cα).

Observe that
∑

α′:α≤α′ µ(α′) = µ(Cα). Thus, by substitution, we get the state-
ment of the lemma. 2

Lemma 6. Let σ be a scheduler for PIOA P, µ be a discrete probability measure
on finite execution fragments of P, and α be a finite execution fragment of P.
Then

εσ,µ(Cα) = µ(Cα − {α}) +
∑

α′≤α

µ(α′)εσ,α′(Cα).
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Proof. Follows directly from Lemma 5 after observing that εσ,α(Cα) = 1. 2

Lemma 7. Let σ be a scheduler for PIOA P, and µ be a discrete measure on
finite execution fragments of P. Let α = α̃aq be a finite execution fragment of
P. Then

εσ,µ(Cα) = µ(Cα) + (εσ,µ(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(tranα̃,a)µα̃,a(q).

Proof. By Lemma 5, by definition of εσ,α′(Cα), and by definition of µσ(α̃)(a, q),
εσ,µ(Cα) = µ(Cα)+

∑
α′<α µ(α′)εσ,α′(Cα̃)σ(α̃)(tranα̃,a)µα̃,a(q). Observe that the

factor σ(α̃)(tranα̃,a)µα̃,a(q) is a constant with respect to α′, and thus can be
moved out of the sum, so

εσ,µ(Cα) = µ(Cα) + (
∑

α′<α

µ(α′)εσ,α′(Cα̃))(σ(α̃)(tranα̃,a)µα̃,a(q)).

Since α′ ≤ α̃ if and only if α′ < α, this yields

εσ,µ(Cα) = µ(Cα) + (
∑

α′≤α̃

µ(α′)εσ,α′(Cα̃))(σ(α̃)(tranα̃,a)µα̃,a(q)).

It suffices to show that
∑

α′≤α̃ µ(α′)εσ,α′(Cα̃) = εσ,µ(Cα̃)−µ(Cα̃−{α̃}). But
this follows immediately from Lemma 6 (with α instantiated as α̃). 2

As a notational convention we introduce a new symbol ⊥ to denote termi-
nation. Given scheduler σ and finite execution fragment α, we write σ(α)(⊥) to
denote the probability of terminating after α, namely, 1− σ(α)(D).

Lemma 8. Let σ be a scheduler for PIOA P, µ be a discrete probability measure
on finite execution fragments of P, and α be a finite execution fragment of P.
Then

εσ,µ(α) = (εσ,µ(Cα)− µ(Cα − {α}))(σ(α)(⊥)).

Proof. By definition of εσ,µ, εσ,µ(α) =
∑

α′ µ(α′)εσ,α′(α). The sum can be re-
stricted to α′ ≤ α since for all other α′, εσ,α′(α) = 0. Then, since for each α′ ≤ α,
εσ,α′(α) = εσ,α′(Cα)σ(α)(⊥), we derive εσ,µ(α) =

∑
α′≤α µ(α′)εσ,α′(Cα)σ(α)(⊥).

Observe that σ(α)(⊥) is a constant with respect to α′, and thus can be moved
out of the sum, yielding εσ,µ(α) = (

∑
α′≤α µ(α′)εσ,α′(Cα))(σ(α)(⊥)).

It suffices to show that
∑

α′≤α µ(α′)εσ,α′(Cα) = εσ,µ(Cα)−µ(Cα−{α}). But
this follows immediately from Lemma 6. 2

Lemma 9. Let σ be a scheduler for PIOA P, and µ be a discrete probability
measure on finite execution fragments of P. Let α be a finite execution fragment
of P and a be an action of P that is enabled in lstate(α). Then

εσ,µ(Cαa) = µ(Cαa) + (εσ,µ(Cα)− µ(Cα − {α}))σ(α)(tranα,a).
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Proof. Observe that Cαa = ∪qCαaq. Thus, εσ,µ(Cαa) =
∑

q εσ,µ(Cαaq). By
Lemma 7, the right-hand side is equal to∑

q

(µ(Cαaq) + (εσ,µ(Cα)− µ(Cα − {α}))σ(α)(tranα,a)µα,a(q)) .

Since
∑

q µ(Cαaq) = µ(Cαa) and
∑

q µα,a(q) = 1, this is in turn equal to

µ(Cαa) + (εσ,µ(Cα)− µ(Cα − {α}))σ(α)(tranα,a).

Combining the equations yields the result. 2

Next, we consider limits of generalized probabilistic execution fragments.

Proposition 2. Let ε1, ε2, . . . be a chain of generalized probabilistic execution
fragments of a PIOA P, all generated from the same discrete probability measure
µ on finite execution fragments. Then limi→∞ εi is a generalized probabilistic
execution fragment of P generated from µ.

Proof. Let ε denote limi→∞ εi. For each i ≥ 1, let σi be a scheduler such that
εi = εσi,µ, and for each finite execution fragment α, let pi

α = εσi,µ(Cα)−µ(Cα−
{α}). For each finite execution α and each action a, let pi

αa = εσi,µ(Cαa)−µ(Cαa).
By Lemma 9, if a is enabled in lstate(α) then pi

ασi(α)(tranα,a) = pi
αa, and

so, if pi
αa 6= 0, then σi(α)(tranα,a) = pi

αa/pi
α.

For each finite execution fragment α, let pα = ε(Cα)−µ(Cα−{α}). For each
finite execution fragment α and each action a, let pαa = ε(Cαa)−µ(Cαa). Define
σ(α)(tranα,a) to be pαa/pα if pα > 0; otherwise define σ(α)(tranα,a) = 0. By
definition of ε and simple manipulations, limi→∞ pi

α = pα and limi→∞ pi
αa = pαa.

It follows that, if pα > 0, then σ(α)(tranα,a) = limi→∞ σi(α)(tranα,a).
It remains to show that σ is a scheduler and that εσ,µ = ε. To show that σ

is a scheduler, we must show that, for each finite execution fragment α, σ(α)
is a sub-probability measure. Observe that, for each i ≥ 1,

∑
tran σi(α)(tran) =∑

a σi(α)(tranαa). Similarly,
∑

tran σ(α)(tran) =
∑

a σ(α)(tranαa). Since each σi

is a scheduler, it follows that, for each i ≥ 0,
∑

a σi(α)(tranαa) ≤ 1. Thus,
also limi→∞

∑
a σi(α)(tranαa) ≤ 1. By interchanging the limit and the sum, we

obtain
∑

a limi→∞ σi(α)(tranαa) ≤ 1.
We claim that σ(α)(tranα,a) ≤ limi→∞ σi(α)(tranα,a), which immediately

implies that σ(α)(tranαa) ≤ 1, as needed. To see this claim, we consider two
cases: If pα > 0, then as shown earlier, σ(α)(tranα,a) = limi→∞ σi(α)(tranα,a),
which implies the claim. On the other hand, if pα = 0, then σ(α)(tranα,a) is
defined to be zero, so that σ(α)(tranα,a) = 0, which is less than or equal to
limi→∞ σi(α)(tranα,a), which again implies the claim.

To show that εσ,µ = ε, we show by induction on the length of a finite execution
fragment α that εσ,µ(Cα) = ε(Cα). For the base case, let α consist of a single
state q. By Lemma 5, εσ,µ(Cq) = µ(Cq), and for each i ≥ 1, εσi,µ(Cq) = µ(Cq).
Thus, ε(Cq) = limi→∞ εσi,µ(Cq) = µ(Cq), as needed.
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For the inductive step, let α = α̃aq. By Lemma 7,

lim
i→∞

εσi,µ(Cα) = lim
i→∞

(µ(Cα) + (εσi,µ(Cα̃)− µ(Cα̃ − {α̃}))σi(α̃)(tranα̃,a)µα̃,a(q)) .

Observe that the left-hand side is ε(Cα). By algebraic manipulation, the right-
hand side becomes

µ(Cα) +
((

lim
i→∞

εσi,µ(Cα̃)
)
− µ(Cα̃ − {α̃})

) (
lim

i→∞
σi(α̃)(tranα̃,a)

)
µα̃,a(q).

By definition of ε, limi→∞ εσi,µ(Cα̃) = ε(Cα̃), and by inductive hypothesis,
ε(Cα̃) = εσ,µ(Cα̃). Therefore,

ε(Cα) = µ(Cα) + (εσ,µ(Cα̃)− µ(Cα̃ − {α̃}))
(

lim
i→∞

σi(α̃)(tranα̃,a)
)

µα̃,a(q).

Also by Lemma 7, we obtain that

εσ,µ(Cα) = µ(Cα) + (εσ,µ(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(tranα̃,a)µα,a(q).

We claim that the right-hand sides of the last two equations are equal. To
see this, consider two cases. First, if pα̃ > 0, then we have already shown that
limi→∞ σi(α̃)(tranα̃,a) = σ(α̃(tranα̃,a)). Since these two terms are the only dif-
ference between the two expressions, the expressions are equal.

On the other hand, if pα̃ = 0, then by definition of pα̃, we get that ε(Cα̃) =
µ(Cα̃ − {α̃}). Then the second terms of the two right-hand sides are both equal
to zero, which implies that both expressions are equal to the first term µ(Cα).
Again, the two right-hand sides are equal.

Since the right-hand sides are equal, so are the left-hand sides, that is,
εσ,µ(Cα) = ε(Cα), as needed to complete the inductive hypothesis. 2

B.3 Hiding

We define a hiding operation for PIOAs, which hides output actions.

Definition 15. Let P = (Q, q̄, I, O,H,D) be a PIOA and let S ⊆ O be given.
Then hide(P, S) is the PIOA P ′ that is the same as P except that OP′ = OP−S
and HP = HP ∪ S.

B.4 Proof of Proposition 1

The proof of Proposition 1 uses a series of auxiliary lemmas.

Lemma 10. Let T = (P, R) be an action-deterministic task-PIOA. Let µ be a
discrete probability measure over finite execution fragments of P and let T be a
task. Let p1 and p2 be the functions used in the definition of apply(µ, T ). Then:

1. for each state q, p1(q) = 0;
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2. for each finite execution fragment α,

µ(α) = p2(α) +
∑

(a,q):αaq∈Frags∗(P)

p1(αaq).

Proof. Item (1) follows trivially from the definition of p1(q).
For Item (2), we observe the following facts.

– If T is not enabled from lstate(α), then, by definition of p2, µ(α) = p2(α).
Furthermore, for each action a and each state q such that αaq is an execution
fragment, we claim that p1(αaq) = 0. Indeed, if a /∈ T , then the first case
of the definition of p1(α) trivially does not apply; if a ∈ T , then, since T
is not enabled from lstate(α), there is no ρ such that (lstate(α), a, ρ) ∈ DP ,
and thus, again, the first case of the definition of p1(α) does not apply.

– If T is enabled from lstate(α), then trivially p2(α) = 0. Furthermore, we
claim that µ(α) =

∑
(a,q) p1(αaq). By action determinism, only one action

b ∈ T is enabled from lstate(α). By definition of p1, p1(αaq) = 0 if a 6= b
(either a /∈ T or a is not enabled from lstate(α)). Thus,∑

(a,q)

p1(αaq) =
∑

q

p1(αbq) =
∑

q

µ(α)µα,b(q).

This in turn is equal to µ(α) since
∑

q µα,b(q) = 1.

In each case, we get µ(α) = p2(α) +
∑

(a,q) p1(αaq), as needed. 2

Lemma 11. Let T = (P, R) be an action-deterministic task-PIOA. Let µ be
a discrete probability measure over finite execution fragments and ρ be a finite
sequence of tasks. Then apply(µ, ρ) is a discrete probability measure over finite
execution fragments.

Proof. By a simple inductive argument. The key part of the inductive step
consists of the claim that, for each measure ε on finite executions fragments and
each task T , apply(ε, T ) is a probability measure over finite execution fragments.

Let ε′ be apply(ε, T ). The fact that ε′ is a measure on finite execution frag-
ments follows directly by Item (2) of Definition 1. To show that ε′ is in fact
a probability measure, we show that

∑
α∈Frags∗(P) ε′(α) = 1. By Item (2) of

Definition 1, ∑
α∈Frags∗(P)

ε′(α) =
∑

α∈Frags∗(P)

(p1(α) + p2(α)).

Rearranging terms, we obtain∑
α∈Frags∗(P)

ε′(α) =
∑

q

p1(q) +
∑

α∈Frags∗(P)

(p2(α) +
∑

(a,q):αaq∈Frags∗(P)

p1(αaq)).

By Lemma 10, the right side becomes
∑

α∈Frags∗(P) ε(α), which equals 1 by the
inductive hypothesis. Therefore

∑
α∈Frags∗(P) ε′(α) = 1, as needed. 2
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Lemma 12. Let T = (P, R) be an action-deterministic task-PIOA and let T be
a task in R. Define µ′ = apply(µ, T ). Then, for each finite execution fragment
α:

1. If α consists of a single state q, then µ′(Cα) = µ(Cα).
2. If α = α̃aq and a /∈ T , then µ′(Cα) = µ(Cα).
3. If α = α̃aq and a ∈ T , then µ′(Cα) = µ(Cα) + µ(α̃)µα̃,a(q).

Proof. Let p1 and p2 be the functions used in the definition of apply(µ, T ),
and let α be a finite execution fragment. By definition of a cone and of µ′,
µ′(Cα) =

∑
α′|α≤α′(p1(α′) + p2(α′)). By definition of a cone and Lemma 10,

µ(Cα) =
∑

α′|α≤α′(p2(α′) +
∑

(a,q):α′aq∈Frags∗(P) p1(α′aq)) =
∑

α′|α≤α′(p1(α′) +
p2(α′))− p1(α). Thus, µ′(Cα) = µ(Cα) + p1(α). We distinguish three cases. If α
consists of a single state, then p1(α) = 0 by Lemma 10, yielding µ′(Cα) = µ(Cα).
If α = α̃aq and a /∈ T , then p1(α) = 0 by definition, yielding µ′(Cα) = µ(Cα).
Finally, if α = α̃aq and a ∈ T , then p1(α) = µ(α̃)µα̃,a(q) by definition, yielding
µ′(Cα) = µ(Cα) + µ(α̃)µα̃,a(q). 2

Lemma 13. Let T = (P, R) be an action-deterministic task-PIOA. Let µ be a
discrete measure over finite execution fragments, T a task, and µ′ = apply(µ, T ).
Then µ ≤ µ′.

Proof. Follows directly by Lemma 12. 2

Lemma 14. Let T = (P, R) be an action-deterministic task-PIOA. Let µ be a
discrete measure over finite execution fragments and let ρ1 and ρ2 be two finite
sequences of tasks such that ρ1 is a prefix of ρ2. Then apply(µ, ρ1) ≤ apply(µ, ρ2).

Proof. Simple inductive argument using Lemma 13 for the inductive step. 2

Lemma 15. Let T = (P, R) be an action-determministic task-PIOA. Let µ be
a discrete measure over finite execution fragments. Then apply(µ, λ) is a gener-
alized probabilistic execution fragment generated by µ.

Proof. Follows directly from the definitions, by defining a scheduler σ such
that σ(α)(tran) = 0 for each finite execution fragment α and each transition
tran. 2

Lemma 16. Let T = (P, R) be an action-deterministic task-PIOA. Let µ be
a discrete probability measure over finite execution fragments of P, ρ a task
scheduler for T , and q a state of T . Then apply(µ, ρ)(Cq) = µ(Cq).

Proof. We prove the result for finite ρ’s by induction on the length of ρ. The
infinite case then follows immediately. The base case is trivial since, by definition,
apply(µ, ρ) = µ. For the inductive step, let ρ = ρ′T , and let ε be apply(µ, ρ′). By
Definition 1, apply(µ, ρ) = apply(ε, T ). By induction, ε(Cq) = µ(Cq). Therefore
it suffices to show apply(ε, T )(Cq) = ε(Cq).
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Let ε′ be apply(ε, T ). By definition of cone, ε′(Cq) =
∑

α:q≤α ε′(α). By Lemma 11,
both ε and ε′ are measures over finite execution fragments; therefore we can
restrict the sum to finite execution fragments. Let p1 and p2 be the two func-
tions used for the computation of ε′(α) according to Item (2) in Definition 1.
Then ε′(Cq) =

∑
α∈Execs∗(P):q≤α(p1(α) + p2(α)). By rearranging terms, we get

ε′(Cq) = p1(q) +
∑

α∈Execs∗(P):q≤α(p2(α) +
∑

(a,s) p1(Cαas)). By Lemma 10, the
right side of the equation above is

∑
α:q≤α ε(α), which is precisely ε(Cq). 2

Lemma 17. Let T = (P, R) be an action-deterministic task-PIOA. If ε is a
generalized probabilistic execution fragment generated by a measure µ, then, for
each task T , apply(ε, T ) is a generalized probabilistic execution fragment gener-
ated by µ.

Proof. Suppose ε is generated by µ together with a scheduler σ (that is, εσ,µ =
ε). Let ε′ be apply(ε, T ). Let σ′ be a new scheduler such that, for each finite
execution fragment α,

– if ε′(Cα)− µ(Cα − {α}) = 0, then σ′(α)(tran) = 0;
– otherwise,

• if tran ∈ D(lstate(α)) and act(tran) ∈ T ,

σ′(α)(tran) =
ε(Cα)− µ(Cα − {α})
ε′(Cα)− µ(Cα − {α})

(σ(α)(tran) + σ(α)(⊥)),

• otherwise,

σ′(α)(tran) =
ε(Cα)− µ(Cα − {α})
ε′(Cα)− µ(Cα − {α})

σ(α)(tran).

Here D(lstate(α)) denotes the set of transitions of D with source state lstate(α)
and act(tran) denotes the action that occurs in tran. We first prove that σ′, thus
defined, is a scheduler. We prove by induction on the length of a finite execution
fragment α that εσ′,µ(Cα) = ε′(Cα).

For the base case, let α = q. By Lemma 5, εσ,µ(Cq) = µ(Cq) and εσ′,µ(Cq) =
µ(Cq). Thus, εσ′,µ(Cq) = εσ,µ(Cq). By definition, the right-hand-side is equal
to ε(Cq), which is equal to ε′(Cq) by Lemma 16. Thus, εσ′,µ(Cq) = ε′(Cq), as
needed.

For the inductive step, let α = α̃aq. By Lemma 5 and the definition of the
measure of a cone (Equation (1)), we get

εσ′,µ(Cα) = µ(Cα) +
∑

α′≤α̃

µ(α′)εσ′,α′(Cα̃)µσ′(α̃)(a, q).

We know that a is enabled from lstate(α̃), because α is an execution frag-
ment of P. Thus, tranα̃,a and µα̃,a are defined. By expanding µσ′(α̃)(a, q) in the
equation above, we get

εσ′,µ(Cα) = µ(Cα) +
∑

α′≤α̃

µ(α′)εσ′,α′(Cα̃)σ′(α̃)(tranα̃,a)µα̃,a(q). (2)

We distinguish three cases.
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1. ε′(Cα̃)− µ(Cα̃ − {α̃}) = 0.
By inductive hypothesis, εσ′,µ(Cα̃) = ε′(Cα̃). Then by Lemma 7, εσ′,µ(Cα) =
µ(Cα). It is therefore sufficient to show that ε′(Cα) = µ(Cα).
By Lemma 13, ε(Cα̃) ≤ ε′(Cα̃). Thus, using ε′(Cα̃)−µ(Cα̃−{α̃}) = 0, we get
ε(Cα̃)−µ(Cα̃−{α̃}) ≤ 0. On the other hand, from Lemma 6 and the fact that
ε = εσ,µ, we have ε(Cα̃)−µ(Cα̃−{α̃}) ≥ 0. Thus, ε(Cα̃)−µ(Cα̃−{α̃}) = 0.
Now, using Lemma 7 and the fact that εσ,µ = ε and ε(Cα̃)−µ(Cα̃−{α̃}) = 0,
we get ε(Cα) = µ(Cα).
Since Cα̃−{α̃} is a union of cones, we may use Lemma 13 to obtain µ(Cα̃−
{α̃}) ≤ ε(Cα̃ − {α̃}). Adding ε({α̃}) on both sides, we get µ(Cα̃ − {α̃}) +
ε({α̃}) ≤ ε(Cα̃ − {α̃}) + ε({α̃}) = ε(Cα̃). Since ε(Cα̃) = µ(Cα̃ − {α̃}), the
previous inequalities imply ε(Cα̃)+ε({α̃}) ≤ ε(Cα̃), therefore ε({α̃}) = 0. By
Lemma 12 (Items (2) and (3)), we have ε′(Cα) = ε(Cα) = µ(Cα), as needed.

2. ε′(Cα̃)− µ(Cα̃ − {α̃}) > 0 and a 6∈ T .
By Equation (2) and the definition of σ′, we know that εσ′,µ(Cα) equals

µ(Cα) +
∑

α′≤α̃

µ(α′)εσ′,α′(Cα̃)
ε(Cα̃)− µ(Cα̃ − {α̃})
ε′(Cα̃)− µ(Cα̃ − {α̃})

σ(α̃)(tranα̃,a)µα̃,a(q).

Observe that in the sum above only the factors µ(α′)εσ′,α′(Cα̃) are not con-
stant with respect to the choice of α′. By Lemma 6 and algebraic manip-
ulation,

∑
α′≤α̃ µ(α′)εσ′,α′(Cα̃) = εσ′,µ(Cα̃) − µ(Cα̃ − {α̃}). By inductive

hypothesis, εσ′,µ(Cα̃) = ε′(Cα̃). Thus, replacing
∑

α′≤α̃ µ(α′)εσ′,α′(Cα̃) with
ε′(Cα̃)− µ(Cα̃ − {α̃}) and simplifying the resulting expression, we get

εσ′,µ(Cα) = µ(Cα) + (ε(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(tranα̃,a)µα̃,a(q).

By definition, ε = εσ,µ. Therefore, by Lemma 7, the right side of the equation
above is ε(Cα). Moreover, ε(Cα) = ε′(Cα) by Lemma 12, Item (2). Thus,
εσ′,µ(Cα) = ε′(Cα), as needed.

3. ε′(Cα̃)− µ(Cα̃ − {α̃}) > 0 and a ∈ T .
As in the previous case, εσ′,µ(Cα) equals

µ(Cα) + (ε(Cα̃)− µ(Cα̃ − {α̃}))(σ(α̃)(tranα̃,a) + σ(α̃)(⊥))µα̃,a(q).

Also shown in the previous case, we have

ε(Cα) = µ(Cα) + (ε(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(tranα̃,a)µα̃,a(q).

Therefore,

εσ′,µ(Cα) = ε(Cα) + (ε(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(⊥)µα̃,a(q).

By definition, ε = εσ,µ. Using Lemma 8, we may substitute ε(α̃) for (ε(Cα̃)−
µ(Cα̃ − {α̃}))σ(α̃)(⊥). Now we have

εσ′,µ(Cα) = ε(Cα) + ε(α̃)µα̃,a(q).

The desired result now follows from Lemma 12, Item (3).
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2

Lemma 18. Let T = (P, R) be an action-deterministic task-PIOA. For each
probability measure µ on finite execution fragments and each finite sequence of
tasks ρ, apply(µ, ρ) is a generalized probabilistic execution fragment generated by
µ.

Proof. Simple inductive argument using Lemma 15 for the base case and
Lemma 17 for the inductive step. 2

Lemma 19. Let T = (P, R) be an action-deterministic task-PIOA. For each
measure µ on finite execution fragments and each infinite sequence of tasks ρ,
apply(µ, ρ) is a generalized probabilistic execution fragment generated by µ.

Proof. For each i ≥ 0, let ρi denote the length-i prefix of ρ and let εi be
apply(µ, ρi). By Lemmas 18 and 14, the sequence ε0, ε1, . . . is a chain of gen-
eralized probabilistic execution fragments generated by µ. By Proposition 2,
limi→∞ εi is a generalized probabilistic execution fragment generated by µ. This
suffices, since apply(µ, ρ) is limi→∞ εi by definition. 2

Now we can prove Proposition 1, our main target. It says that, for any µ
and ρ, the probability measure on execution fragments generated by apply(µ, ρ)
is “standard”, in that it can be obtained from µ and a scheduler as defined in
Section 2 for basic PIOAs.

Proof of Proposition 1. Follows directly by Lemmas 18 and 19. 2

C Soundness of Simulation

We begin with some auxiliary results.

Lemma 20. Let T = (P, R) be an action-deterministic task-PIOA. Let ρ1, ρ2, · · ·
be a finite or infinite sequence of finite task schedulers and let µ be a discrete
probability measure on finite execution fragments. For each i > 0, let εi =
apply(µ, ρ1ρ2 · · · ρi), where ρ1 · · · ρi denotes the concatenation of the sequences
ρ1 through ρi. Let ρ be the concatenation of all the ρi’s, and let ε = apply(µ, ρ).
Then the εi’s form a chain and ε = limi→∞ εi.

Proof. The fact that the εi’s form a chain follows from Lemma 13. For the
limit property, if the sequence ρ1, ρ2, . . . is finite, then the result is immediate.
Otherwise, simply observe that the sequence ε1, ε2, . . . is a sub-sequence of the
sequence used in the definition of apply(µ, ρ1ρ2 . . .), therefore they have the same
limit. 2

Lemma 21. Let T1 and T2 be two comparable closed action-deterministic task-
PIOAs, R a simulation from T1 to T2. Let ε1 and ε2 be discrete distributions on
finite execution fragments of T1 and T2, respectively, such that ε1 E(R) ε2. Then
tdist(ε1) = tdist(ε2).
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The next proposition states that apply(·, ρ) distributes over convex combina-
tions of probability measures. We start with a few preliminary lemmas.

Lemma 22. Let {µi}i be a countable family of discrete probability measures on
finite execution fragments and let {pi}i be a countable family of probabilities such
that

∑
i pi = 1. Let T be a task. Then, apply(

∑
i piµi, T ) =

∑
i pi apply(µi, T ).

Proof. Let p1 and p2 be the functions used in the definition of apply(
∑

i piµi, T ),
and let, for each i, pi

1 and pi
2 be the functions used in the definition of apply(µi, T ).

Let α be a finite execution fragment. We show that p1(α) =
∑

i pip
i
1(α) and

p2(α) =
∑

i pip
i
2(α). Then it follows that apply(

∑
i piµi, T )(α) =

∑
i pi apply(µi, T )(α)

since apply(
∑

i piµi, T )(α) is defined to be p1(α)+p2(α), and
∑

i pi apply(µi, T )(α) =∑
i pi(pi

1(α) + pi
2(α)) =

∑
i pip

i
1(α) +

∑
i pip

i
2(α) = p1(α) + p2(α).

To prove our claim about p1 we distinguish two cases. If α can be written
as α′ a q, where α′ ∈ supp(µ), a ∈ T , and (lstate(α′), a, ρ) ∈ DP , then, by
Definition 1, p1(α) = (

∑
i piµi)(α′)ρ(q), and, for each i, pi

1(α) = µi(α′)ρ(q).
Thus, p1(α) =

∑
i pip

i
1(α) trivially. Otherwise, again by Definition 1, p1(α) = 0,

and, for each i, pi
1(α) = 0. Thus, p1(α) =

∑
i pip

i
1(α) trivially.

To prove our claim about p2 we also distinguish two cases. If T is not enabled
in lstate(α), then, by Definition 1, p2(α) = (

∑
i piµi)(α), and, for each i, pi

2(α) =
µi(α). Thus, p2(α) =

∑
i pip

i
2(α) trivially. Otherwise, again by Definition 1,

p2(α) = 0, and, for each i, pi
2(α) = 0. Thus, p2(α) =

∑
i pip

i
2(α) trivially. 2

Proposition 3. Let {µi}i be a countable family of discrete probability measures
on finite execution fragments and let {pi}i be a countable family of probabilities
such that

∑
i pi = 1. Let ρ be a finite sequence of tasks. Then, apply(

∑
i piµi, ρ) =∑

i pi apply(µi, ρ).

Proof. We proceed by induction on the length of ρ. If ρ = λ, then the result
is trivial since apply(·, λ) is defined to be the identity function, which distributes
over convex combinations of probability measures. For the inductive step, let ρ be
ρ′T . By Definition 1, apply(

∑
i piµi, ρ

′T ) = apply(apply(
∑

i piµi, ρ
′), T ). By in-

duction, apply(
∑

i piµi, ρ
′) =

∑
i pi apply(µi, ρ

′). Thus, we obtain apply(
∑

i piµi, ρ
′T ) =

apply(
∑

i pi apply(µi, ρ
′), T ). By Lemma 11, for each i, apply(µi, ρ

′) is a discrete
probability measure over finite execution fragments. By Lemma 22, apply(

∑
i pi apply(µi, ρ

′), T ) =∑
i pi apply(apply(µi, ρ

′), T ), and by Definition 1, for each i, apply(apply(µi, ρ
′), T ) =

apply(µi, ρ
′T ). Thus, apply(

∑
i piµi, ρ

′T ) =
∑

i pi apply(µi, ρ
′T ) as needed. 2

Lemma 23. Let R be a relation from Disc(X) to Disc(Y ), and let f, g be two
endo-functions on Disc(X) and Disc(Y ), respectively, that distribute over convex
combinations of measures, that is, for each countable family {ρi}i of discrete
measures on X and each countable family of probabilities {pi}i such that

∑
i pi =

1, f(
∑

i piρi) =
∑

i pif(ρi), and similarly, for each countable family {ρi}i of
discrete measures on Y and each countable family of probabilities {pi}i such that∑

i pi = 1, g(
∑

i piρi) =
∑

i pig(ρi). Let µ1 and µ2 be two measures on X and
Y respectively, such that µ1 E(R) µ2, and let η1, η2, and w be a pair of measures
and a weighting function witnessing that µ1 E(R) µ2. Suppose further that, for
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any two distributions ρ1 ∈ supp(η1) and ρ2 ∈ supp(η2) such that w(ρ1, ρ2) > 0,
f(ρ1) E(R) g(ρ2).
Then f(µ1) E(R) g(µ2).

Proof. For each ρ1 ∈ supp(η1) and ρ2 ∈ supp(η2) such that w(ρ1, ρ2) > 0, let
(η1)ρ1,ρ2 , (η2)ρ1,ρ2 , and wρ1ρ2 be a pair of measures and a weighting function
that prove that f(ρ1) E(R) g(ρ2). We know that these are well-defined since, by
assumption, f(ρ1) E(R) g(ρ2) whenever w(ρ1, ρ2) > 0. Let W denote the set of
pairs (ρ1, ρ2) such that w(ρ1, ρ2) > 0.

Let η′1 =
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)(η1)ρ1,ρ2 and let η′2 =
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)(η2)ρ1,ρ2 .
Let w′ =

∑
(ρ1,ρ2)∈W w(ρ1, ρ2)wρ1,ρ2 .

We show that η′1, η′2, and w′ prove that f(µ1) E(R) g(µ2).

1. f(µ1) = flatten(η′1).
By definition of η′1, flatten(η′1) = flatten(

∑
(ρ1,ρ2)∈W w(ρ1, ρ2)(η1)ρ1,ρ2). By

Lemma 2, this is in turn equal to
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)flatten((η1)(ρ1,ρ2)).
By definition of (η1)(ρ1,ρ2), we know that flatten((η1)(ρ1,ρ2)) = f(ρ1), so we
obtain that flatten(η′1) =

∑
(ρ1,ρ2)∈W w(ρ1, ρ2)f(ρ1).

We claim that the right side is equal to f(µ1): Since µ1 = flatten(η1),
by the definition of flattening, µ1 =

∑
ρ1∈Disc(X) η1(ρ1)ρ1. Then, by dis-

tributivity of f , f(µ1) =
∑

ρ1∈Disc(X) η1(ρ1)f(ρ1). By definition of lifting,
η1(ρ1) =

∑
ρ2∈Disc(Y ) w(ρ1, ρ2).

Therefore, f(µ1) =
∑

ρ1∈Disc(X)

∑
ρ2∈Disc(Y ) w(ρ1, ρ2)f(ρ1), and this last ex-

pression is equal to
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)f(ρ1), as needed.
2. g(µ2) = flatten(η′2).

Analogous to the previous case.
3. η′1 L(R) η′2 using w′ as a weighting function.

We verify that w′ satisfies the three conditions in the definition of a weighting
function:
(a) Let ρ′1, ρ

′
2 be such that w′(ρ′1, ρ

′
2) > 0. Then, by definition of w′, there

exists at least one pair (ρ1, ρ2) ∈R such that wρ1,ρ2(ρ
′
1, ρ

′
2) > 0. Since

wρ1,ρ2 is a weighting function, ρ′1 R ρ′2 as needed.
(b) By definition of w′,

∑
ρ′2∈Disc(Y ) w′(ρ′1, ρ

′
2) =

∑
ρ′2∈Disc(Y )

∑
(ρ1,ρ2)

w(ρ1, ρ2)wρ1,ρ2(ρ
′
1, ρ

′
2).

By rearranging sums and using the fact that wρ1,ρ2 is a weighting func-
tion, we obtain that

∑
ρ′2∈Disc(Y ) w′(ρ′1, ρ

′
2) =

∑
(ρ1,ρ2)

w(ρ1, ρ2)(η1)ρ1,ρ2(ρ
′
1).

(Specifically, this uses the fact that
∑

ρ′2∈Disc(Y ) wρ1,ρ2(ρ
′
1, ρ

′
2) = (η1)ρ1,ρ2(ρ

′
1).)

This suffices since the right-hand side is the definition of η′1(ρ
′
1).

(c) Symmetric to the previous case.

2

Lemma 24. Let T1 and T2 be two comparable closed task-PIOAs, let R be a
simulation relation from T1 to T2, and let c be a mapping that satisfies the con-
ditions required for a simulation relation.
Let ρ1 and ρ2 be finite task schedulers of T1 and T2 respectively, such that
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ρ2 = full(c)(ρ1). Let ε1 = apply(δ(q̄1), ρ1) and ε2 = apply(δ(q̄2), ρ2) be the re-
spective discrete distributions on finite executions of T1 and T2 generated by ρ1

and ρ2. Suppose that ε1 E(R) ε2.

Let T be a task of T1. Let ε′1 = apply(δ(q̄1), ρ1T ) and let ε′2 = apply(δ(q̄2), ρ2 c(ρ1, T )).
Then ε′1 E(R) ε′2.

Proof. Let η1, η2 and w be the measures and weighting function that witness
ε1 E(R) ε2. Observe that ε′1 = apply(ε1, T ) and ε′2 = apply(ε2, c(ρ1, T )).

We apply Lemma 23: Define the function f on discrete distributions on finite
execution fragments of T1 by f(ε) = apply(ε, T ), and the function g on discrete
distributions on finite execution fragments of T2 by g(ε) = apply(ε, c(ρ1, T )).
We show that the hypothesis of Lemma 23 is satisfied, which implies that, by
Lemma 23, ε′1 E(R) ε′2, as needed.

Distributivity of f and g follows directly by Proposition 3. Let µ1, µ2 be two
measures such that w(µ1, µ2) > 0. We must show that f(µ1) E(R) g(µ2). Since w
is a weighting function for ε1 E(R) ε2, µ1 R µ2. Observe that supp(µ1) ⊆ supp(ε1)
and supp(µ2) ⊆ supp(ε2); thus, µ1 is consistent with ρ1 and µ2 is consistent
with ρ2. By the step condition for R, apply(µ1, T ) E(R) apply(µ2, c(ρ1, T )). Ob-
serve that apply(µ1, T ) = f(µ1) and that apply(µ2, c(ρ1, T )) = g(µ2). Thus,
f(µ1) E(R) g(µ2), as needed. 2

Proof of Theorem 2. Let R be the assumed simulation relation from T1 to
T2. Let ε1 be the probabilistic execution of T1 generated by q̄1 and a (finite or
infinite) task schedule, T1, T2, · · · . For each i > 0, define ρi to be c(T1 · · ·Ti−1, Ti).
Let ε2 be the probabilistic execution generated by q̄2 and the concatenation
ρ1ρ2 · · · . We claim that tdist(ε1) = tdist(ε2), which suffices.

For each j ≥ 0, let ε1,j = apply(q̄1, T1 · · ·Tj), and ε2,j = apply(q̄2, ρ1 · · · ρj).
By Lemma 20, for each j ≥ 0, ε1,j ≤ ε1,j+1 and ε2,j ≤ ε2,j+1, and further-
more, limj→∞ ε1,j = ε1 and limj→∞ ε2,j = ε2. Also, note that for every j ≥ 0,
apply(ε1,j , Tj+1) = ε1,j+1 and apply(ε2,j , ρj+1) = ε2,j+1.

Observe that ε1,0 = δ(q̄1) and ε2,0 = δ(q̄2). By the start condition for a
simulation relation and a trivial expansion, we see that ε1,0 E(R) ε2,0. Then by
induction, using Lemma 24 for the inductive step, for each j ≥ 0, ε1,j E(R) ε2,j .
Then, by Lemma 21, for each j ≥ 0, tdist(ε1,j) = tdist(ε2,j). By Lemma 4,
tdist(ε1) = limj→∞ tdist(ε1,j), and tdist(ε2) = limj→∞ tdist(ε2,j). Since for each
j ≥ 0, tdist(ε1,j) = tdist(ε2,j), we conclude tdist(ε1) = tdist(ε2), as needed. 2

The lemma below captures a special case of the simulation relation definition
we have given above. Any relation that satisfies the hypotheses of this lemma is
a simulation relation. We use this special case in proving the correctness of the
OT protocol.

Lemma 25. Let T1 = (P1, R1) and T2 = (P2, R2) be two comparable closed
action-deterministic task-PIOAs. Let R be a relation from discrete distributions
over finite execution fragments of P1 to discrete distributions over finite exe-
cutions fragments of P2, satisfying: If ε1 R ε2 then tdist(ε1) = tdist(ε2). Let
c : (R1

∗ ×R1) → R2
∗. Suppose further that the following conditions hold:
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1. Start condition: δ(q̄1) R δ(q̄2).
2. Step condition: If ε1 R ε2, ρ1 ∈ R1

∗, ε1 is consistent with ρ1, ε2 is consis-
tent with full(c)(ρ1), and T ∈ R1, then there exist
– a probability measure p on a countable index set I,
– probability measures ε′1j, j ∈ I, on finite execution fragments of P1, and
– probability measures ε′2j, j ∈ I, on finite execution fragments of P2,

such that:
– for each j ∈ I, ε′1j R ε′2j,
–

∑
j∈I p(j)(ε′1j) = apply(ε1, T ), and

–
∑

j∈I p(j)(ε′2j) = apply(ε2, c(ρ1, T )).

Then R is a simulation relation from T1 to T2 using c.

Proof. By a straightforward application of Lemma 3. See[CCK+05] for details.
2

D Early/Late/Toss Examples

We use the following example to illustrate features of our task-PIOA framework.

·Early t1
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Fig. 1. Probabilistic automata Early, Late and Toss

Example 1. Task-PIOAs: Early, Late and Toss.
Automaton Early first performs either internal action t1 or t2, then output action
a, and finally, either output action b or output action c, depending on whether
it first performed t1 or t2.

Early:
Signature:

Input:
none

Output:
a, b1, b2

Internal:
t1, t2
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Tasks:
T1 = {t1}, T2 = {t2}, A = {a}, B = {b1, b2}
States:
counter ∈ {0, 1, 2, 3}, initially 0.
chosen ∈ {b1, b2,⊥}, initially ⊥

Transitions:

t1
Precondition:

counter = 0
Effect:

counter := 1; chosen := b1

t2
Precondition:

counter = 0
Effect:

counter := 1; chosen := b2

a
Precondition:

counter = 1
Effect:

counter := 2

b1

Precondition:
counter = 2; chosen = b1

Effect:
counter := 3

c
Precondition:

counter = 2; chosen = b2

Effect:
counter := 3

Automaton Late first performs a, and then performs either b1 or b2, nonde-
terministically.

Late:
Signature:

Input:
none

Output:
a, b1, b2

Internal:
none

Tasks:
A = {a}, B1 = {b1}, B2 = {b2}
States:
counter ∈ {1, 2, 3}, initially 1

Transitions:
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a
Precondition:

counter = 1
Effect:

counter := 2

b1

Precondition:
counter = 2

Effect:
counter := 3

b2

Precondition:
counter = 2

Effect:
counter := 3

Finally, on input a, automaton Toss chooses d1 or d2 randomly, which enables
output either d1 or d2.

Toss:
Signature:

Input:
a

Output:
d1, d2

Internal:
none

Tasks:

D = {d1, d2}
States:

counter ∈ {1, 2, 3}, initially 1

chosen ∈ {d1, d2,⊥}, initially ⊥

Transitions:

a
Effect:

if counter = 1 then {
counter := 2;
chosen := random(unif{d1, d2})
}

d1

Precondition:
counter = 2; chosen = d1

Effect:
counter := 3

d2

Precondition:
counter = 2; chosen = d2

Effect:
counter := 3
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Example 2. Trace distributions of Early and Late.
Early has task schedules that are arbitrary finite or infinite sequences of the

tasks T1, T2, A, and B. We provide a list of “minimal” sequences, in which each
task is enabled in some state that can result after the previous schedule. For
each, we give the resulting trace distribution. (Other sequences give rise to the
same trace distribution as a reduced version that appears in the following list.)

Task schedule λ (the empty sequence of tasks) gives rise to the trace distri-
bution that is the Dirac measure for λ (the empty sequence of actions). Likewise,
task schedules T1 and T2 give rise to the Dirac measure for λ. Task schedule T1, A
and task schedule T2, A both give rise to the Dirac measure for the sequence (a).
Task schedule T1, A, B gives rise to the Dirac measure for the sequence (a, b1).
Finally, task schedule T2, A, B gives rise to the Dirac measure for the sequence
(a, b2). Thus, tdists(Early) consists of four Dirac measures, on the traces λ, a,
(a, b1) and (a, b2), respectively.

Similarly for Late. Task schedule λ gives rise to the Dirac measure for λ; task
schedule A gives rise to the Dirac measure for (a); and A,B1 and A,B2 give
rise to the Dirac measures for (a, b1) and (a, b2), respectively. Thus, tdists(Late)
consists of the same four Dirac measures as tdists(Early).

Example 3. Composition: Early, Late, and Toss: Early and Toss are com-
patible task-PIOAs, so we may compose them. The tasks of Early‖Toss are
then T1 = {t1}, T2 = {t2}, A = {a}, BC = {b, c}, and DE = {d, e}. The
trace distributions of Early‖Toss include the four trace distributions generated
by Early alone. In addition, five new trace distributions appear: First, we have
the distribution described by {1/2 : a, d; 1/2 : a, e}, which represents the sit-
uation when Toss completes its steps but Early does not. (Here the notation
refers to the probabilities with which the two traces appear.) Likewise, we have
the trace distributions {1/2 : a, b, d; 1/2 : a, b, e}, {1/2 : a, c, d; 1/2 : a, c, e},
{1/2 : a, d, b; 1/2 : a, e, b}, and {1/2 : a, d, c; 1/2 : a, e, c}, all of which represent
possible trace distributions for situations in which both components complete
their steps.

Similarly we may compose Late and Toss, with resulting tasks A, B, C, and
DE. The trace distributions of Late‖Toss are the same as for Early‖Toss.

Note that none of the trace distributions of Early‖Toss and Late‖Toss
describe correlations between the choice of b vs. c and the choice of d vs. e:
in each distribution, the choice between b or c is determined, and each of d
and e is equally likely. In contrast, in previous work based on more powerful
schedulers, the scheduler can create correlations between the choices of b vs.
c and the choice of d vs. e. Such correlations were used to demonstrate that
compositionality failed to hold in these models.

Example 4. External behavior: Early and Late: We describe the external
behavior of Early and Late; more specifically, we describe how these two au-
tomata behave when composed with three particular environments.

The first environment, E1, is the trivial environment consisting of an au-
tomaton with a single state and no transitions. Then tdists(Early‖E1) is simply
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the set tdists(Early), and tdists(Late‖E1) = tdists(Late). Since tdists(Early) =
tdists(Late), we see that Early and Late exhibit the same trace distributions in
environment E1.

The second environment, E2, is a special “reporting environment” which has
inputs a, b, and c, and outputs report(β), where β is a finite sequence of elements
of {a, b, c}. All the report actions constitute a single task. This automaton simply
records the sequence of inputs it has seen so far. From any state, it is enabled
to perform report(β), where β is the recorded sequence. Then tdists(Early‖E2)
is the set of trace distributions that can be obtained from trace distributions
in tdists(Early) by inserting appropriate report actions uniformly in all of the
traces. Again, tdists(Late‖E2) is the same set of trace distributions.

The third environment, E3, is the task-PIOA Toss. Now tdists(Early‖E3) is
described in Example 3. Again, tdists(Late‖E3) is the same set of trace distribu-
tions. We claim that, in fact, Early and Late have the same trace distributions
for any environment E .

Example 5. Implementation: Early and Late: We claimed in Example 4 that
Early and Late have the same trace distributions for any environment E ; that
is, for any environment E , tdists(Early‖E) = tdists(Late‖E). This implies that
Early ≤0 Late and Late ≤0 Early

The following slightly intricate example illustrates why it is important to
include the environments in the definition of implementation. Namely, it presents
two closed action-deterministic task-PIOAs T1 and T2 such that tdists(T1) ⊆
tdists(T2), but such that some environment can distinguish them.

Example 6. Insufficiency of trace distribution inclusion: Let T1 have out-
put actions a, b, and c, and internal action tc. Tasks are A = {a}, B = {b}, and
C = {c, tc}. Transitions are as described by the following diagram, where the a
actions are accompanied with random choices with equal probability.

The trace distributions of T1 are {1 : λ}, {1 : a}, {1/2 : a; 1/2 : ac} (produced,
for example, by schedule A,C), and {1/2 : ab; 1/2 : ac} (produced, for example,
by schedule A,C,B).

Let T2 have output actions a, b, and c, and internal actions t1, t2, and tb.
Tasks are T1 = {t1}, T2 = {t2}, A = {a}, B = {b, tb}, and C = {c}. Transitions
are described by the following diagram. Then every trace distribution of T1 is
produced by some task schedule of T2: {1 : λ} by λ, {1 : a} by T1, A, {1/2 :
a; 1/2 : ac} by T2, A, C, and {1/2 : ab; 1/2 : ac} by T1, A, B, C.

Now consider the reporting environment E2 defined in Example 4. Let R de-
note the report task. Task schedule A,R, C,R,B,R for T1‖E2 then produces the
trace distribution {1/2 : areport(a)report(a)breport(ab); 1/2 : areport(a)creport(ac)report(ac)}.

We claim that no task schedule of T2‖E2 yields this trace distribution. We
can argue this by contradiction. Suppose such a schedule σ exists. Then it must
contain either T1 or T2. If T2 occurs first, then there is no way for the output
action b to be generated, so it must be that T1 comes first. Then A must appear
before the first R, in order to generate the first report(a) action. That leads to
a random choice between the two branches leading to tb, c and to just b. Then
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before the second R, we must have a B followed by a C, in order to generate the
report(ac) that appears on one of the branches. But then on the other branch, a
b output would be generated before the second report, leading to a report that
contains the action b. Since no such report appears on the other branch, we again
obtain a contradiction.

Example 7. Simulation relation: Early and Late: It is easy to show that
tdists(Early) ⊆ tdists(Late), using a simulation relation. Namely, if ε1 and ε2
are discrete distributions over finite execution fragments of Early and Late,
respectively, then we define (ε1, ε2) ∈ R provided that the following condition
holds:
For every s ∈ lstate(ε1) and u ∈ lstate(ε2), if s.counter = 0 then u.counter = 1,
and otherwise s.counter = u.counter. This is a simulation relation from Early to
Late using the task correspondence mapping c defined by: c(σ, T1) = c(σ, T2) =
λ, c(σ,A) = A, c(σ,BC) = B,C.

This idea can be extended to show that Early ≤0 Late, again using sim-
ulation relations. Namely, fix any environment E for Early and Late. Now if
ε1 and ε2 are discrete distributions over finite execution fragments of Early‖E
and Late‖E , respectively, then we define (ε1, ε2) ∈ R provided that, for every
s ∈ lstate(ε1) and u ∈ lstate(ε2), the following hold:

1. If s.counter = 0 then u.counter = 1, and otherwise s.counter = u.counter.
2. s.E = u.E .1

The task correspondence mapping is the same as before, with the additional
clause: c(σ, T ) = T for every task T of E .

Although we also know that Late ≤0 Early, this cannot be shown using a
simulation relation of the kind we have defined. In fact, the following example
shows that we cannot even show that tdists(Late) ⊆ tdists(Early) in this way. It
remains to develop more general notions of simulation relation that are complete
for showing ≤0.

Example 8. No simulation relation: Late and Early: We show that no sim-
ulation relation exists from Late to Early. Suppose for contradiction that a
simulation relation R does exist, using task correspondence c. Then if σ1 is any
task schedule of Late, it follows that tdist(σ1) = tdist(c ∗ (σ1)).

Now let σ1 be the task schedule A,B of Late. Then tdist(σ1) is the Dirac
distribution for the sequence ab. Then c ∗ (ab) must also give the same trace
distribution in Early. So c ∗ (ab) must be some variant of T1, A, BC. (The only
variation allowed here is to insert other tasks at points where they are not
enabled.) Similarly, c ∗ (a) must be a variant of T1, A or T2, A; however, since c∗
is monotonic, we must have c ∗ (a) a variant of T1, A.

Symmetrically, c∗(ac) must be some variant of T2, A, BC; then monotonicity
implies that c ∗ (a) is a variant of T2, A. This yields a contradiction.

1 This notation refers to the entire state of E .



39

Example 9. Compositionality: Early, Late, and Toss: We claimed, in Ex-
ample 5 that Early ≤0 Late and Late ≤0 Early. Theorem 1 then implies that
Early‖Toss ≤0 Late‖Toss.

E OT Example

The following example is an abstract version of one that arises in the Oblivious
Transfer proof. This motivated our definition of simulation relations in terms of
probability distributions on execution fragments.

Example 10. Simulation relation: Trapdoor and Random We consider
two task-PIOAs, Trapdoor and Random. Random simply chooses a number
in {1, . . . , n} randomly, from the uniform distribution (using a choose internal
action), and then outputs the chosen value k (using a report(k) output action).
Trapdoor, on the other hand, first chooses a random number, then applies a
known permutation f to the chosen number, and then outputs the results. More
precisely:

Random:
Signature:

Input:
none

Output:
report(k), k ∈ {1, . . . , n}

Internal:
choose

Tasks:

Report = {report(k) : k ∈ {1, . . . , n}}, Choose = {choose}
States:

zval ∈ {1, . . . , n} ∪ {⊥}, initially ⊥

Transitions:

choose
Precondition:

zval = ⊥
Effect:

zval := random(uniform({1, . . . , n}))

report(k)
Precondition:

zval = k
Effect:

none

Trapdoor:
Signature:
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Input:
none

Output:
report(k), k ∈ {1, . . . , n}

Internal:
choose, compute

Tasks:

Report = {report(k) : k ∈ {1, . . . , n}}, Choose = {choose}, Compute = {compute}
States:

yval ∈ {1, . . . , n} ∪ {⊥}, initially ⊥
zval ∈ {1, . . . , n} ∪ {⊥}, initially ⊥

Transitions:

choose
Precondition:

yval = ⊥
Effect:

yval := random(uniform({1, . . . , n}))

compute
Precondition:

yval 6= ⊥; zval = ⊥
Effect:

zval := f(yval)

report(k)
Precondition:

zval = k
Effect:

none

We can show that tdists(Trapdoor) ⊆ tdists(Random), again using a simu-
lation relation. In defining the correspondence, it seems most natural to allow
the steps that define zval to correspond in the two automata. That means that
the step that defines yval in Trapdoor should map to an empty sequence of
steps in Random. However, after yval has been defined in Trapdoor, we have a
randomly-chosen value recorded in state of Trapdoor, whereas no correspond-
ing value is recorded in the corresponding state of Random. Thus, we are led
to correspond the entire distribution on execution fragments of Trapdoor to a
single state or Random. Our simulation relation notion allows us to do this.

Specifically, if ε1 and ε2 are discrete distributions over finite execution frag-
ments of Trapdoor and Random, respectively, then we define (ε1, ε2) ∈ R pro-
vided that the following conditions hold:

1. For every s ∈ lstate(ε1) and u ∈ lstate(ε2), s.zval = u.zval.
2. For every u ∈ lstate(ε2), if u.zval = ⊥ then either lstate(ε1).yval is every-

where undefined or else it is the uniform distribution on {1, . . . , n}.

The task correspondence mapping c is defined by: c(σ,Choose) = λ, c(σ,Compute) =
Choose, c(σ,Report) = Report.
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F Comparison of task-PIOAs with existing frameworks

In this section we compare task-PIOAs with existing frameworks for modeling
cryptographic protocols. In particular, we discuss the Secure Asynchronous Re-
active Systems of [PW01,BPW04b].

To appear: discussion of the Probabilistic Polynomial-Time Process Calculus
of [LMMS98,MMS03,RMST04].

F.1 Secure Asynchronous Reactive Systems

We first discuss the relations between task-PIOAs and the version of PIOA intro-
duced by Backes, Pfitzmann and Waidner [PW01,BPW03,BPW04b,BPW04a].

System Types The reactive systems in [PW01,BPW04b] are given by collec-
tions of machines. Each machine M is specified (in part) by a transition function
of the following form:

∆ : S × I → Disc(S ×O).

Here S is the state space and I and O denote the set of input and output signals,
respectively. Each signal is a tuple of finite strings over a fixed finite alphabet Σ.
Every tuple in I has a fixed arity, which is determined by the number of input
ports associated with M . Similarly for O.

The transition function of a PIOA defined here has a very different form (cf.
Section 2):

∆ : S × (I ∪O ∪H) → ({⊥}+ Disc(S)).

If ∆(s, a) = ⊥, then a is not enabled in s; otherwise, ∆(s, a) specifies a proba-
bility distribution on the resulting state after the execution of a.

We highlight three differences.

– Machines in [PW01,BPW04b] are of a decidedly functional character: given
a tuple of input strings, some randomized computation is performed, pro-
ducing a tuple of output strings. In contrast, the representation of a PIOA is
entirely operational : the actions in I ∪O∪H are abstractions of activities of
a system, rather than values manipulated by the system. Thus, in a PIOA,
inputs and outputs need not correspond as tightly as they do in machines.

– Machines in [PW01,BPW04b] do not have internal/hidden transitions. This
is because internal computations are abstracted away (provided the compu-
tation does not exceed certain limits on time and space).

– The only form of nondeterminism in a machine resides in the choices be-
tween inputs. In other words, nondeterminism can only be used to model
uncertainties in the external environment. PIOAs, on the other hand, allow
nondeterministic choices within a system (e.g., between different output ac-
tions enabled in the same state). Therefore, a closed system of machines is
completely specified (up to coin tosses), whereas a closed system of PIOAs
may contain many nondeterministic choices.
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Communication In [PW01,BPW04b], machines are divided into three classes:
simple machines, master schedulers and buffers. These machines communicate
with each other via ports, which are classified as: simple, buffer and clock.

Each buffer B specifies a high-level connection between a unique pair of non-
buffer machines. Messages placed in B are delivered only when B is scheduled
via its clock port. This scheduling is designated to a unique non-buffer machine
(one that “owns” the clock port of B), which also determines the order in which
messages in B are delivered.

Notice, both low-level (based on port names) and high-level (based on buffers)
connections are “handshakes”. That is, at most two machines are involved in a
synchronization (barring the machine responsible for scheduling the buffer).

In the case of PIOAs, communications may be “broadcasts”. Each action a is
“owned” by a unique PIOA P (i.e., a is an output action of P ), but any number
of other PIOAs can have a as an input action. A hiding operation is available,
which reclassifies certain output actions as hidden actions, thus preventing syn-
chronization with PIOAs outside the scope of hiding.

Also, actions in our setting need not represent messages. They can be used
to model synchronized steps of different processes.

Channels In [PW01,BPW04b], three kinds of communication channels are con-
sidered: secure, authenticated and insecure.

By default, a communication channel between two machines is secure: no
third party can access message contents. Another party might still be able to
schedule the buffer for this channel. Authenticated channels are modeled by
creating a copy of the out-port corresponding to the authenticated channel, and
by connecting this new port to the adversary. Insecure channels are directly
connected to the adversary.

In the case of PIOAs, the basic communication channels correspond to au-
thenticated channels: every output action may synchronize with several input
actions, including adversarial ones. As for machines, insecure channels are mod-
eled by routing messages through the adversary. We use two techniques to define
secure channels: the first option is to hide output actions in the composition of
the PIOAs corresponding to the sending and receiving ends of the channels,
and the second is to specify constraints on the signature of specific (adversar-
ial) PIOAs to prevent them from synchronizing with the corresponding output
actions.

In our analysis of the OT protocol, we consider a slightly different kind of
communication channels: all protocol messages are routed through the adver-
sary, but we define the adversary in such a way that it can only send messages
it received before. In the [PW01,BPW04b] communication model, this would
correspond to an authenticated channel with buffer scheduled by the adversary.

Composition In [PW01,BPW04b], collections of machines are defined as sets
of machines, with the intuition that machines in a collection will interact. These
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interactions can be the transmission of a message (through a buffer) or the
scheduling of buffers.

In the case of PIOAs, we can compose several PIOAs, yielding a new PIOA.
This enables, for instance, defining the role of a protocol participant through
several simple PIOAs, each of these PIOAs describing a different aspect of this
protocol role. Thus, decomposition of PIOAs can be used to analyze systems in
a more modular way.

Scheduling In [PW01,BPW04b], scheduling is distributed : it is performed col-
lectively by all machines via scheduling of buffers. The following algorithm is
used.

(1) The current active machine M reads all of its inputs and carries out changes
dictated by its transition function.

(2) All of the outputs produced in step (1) are copied to corresponding buffers.
(3) If in step (1) M schedules at least one buffer, then let B be the first such

buffer and M ′ be the receiving machine of B. (This is possible because an
ordering of ports is given in the specification of M .) The message scheduled
by M is delivered to M ′ and M ′ is the next active machine. If no such
message exists, then the unique master scheduler is the next active machine.

(4) If in step (1) M does not schedule a buffer, then the unique master scheduler
is the next active machine.

Under this algorithm, every closed collection of machines induces a unique
probability space on the set of runs. In essence, there is no ”real” scheduling to
be done once a collection is closed, because all scheduling decisions are already
specified by machines in the collection.

In the present paper, scheduling for task-PIOAs is centralized : it is deter-
mined by a global task sequence. Each task determines a unique component and
at most one transition in that component. If such a transition is not enabled,
then no changes take place.

In our setting, we distinguish between two kinds of nondeterministic choices:

1. High-level choices, such as timing of messages. These are resolved algorith-
mically by the adversary, which acts as the network.

2. Low-level choices representing inessential ordering of events. In the underly-
ing semantics, these are resolved by a global task sequence.

However, since we have defined a sound notion of simulation relation, these
choices can remain unresolved throughout our proofs. That is, it is sufficient to
define a simulation relation between two systems, rather than first resolving all
nondeterministic choices in one and then trying to mimic the same behavior in
the other.

Thus, PIOAs are (purposely) under-specified, so that inessential ordering
of events can be abstracted away from our proofs. We believe this is a major
difference between [PW01,BPW04b] and our work.
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Security Properties In [PW01,BPW04b], several versions of reactive simu-
latability are defined. All of them compare views of a user for complete, closed
systems, that is, systems with purely probabilistic behavior.

More precisely, a structure (M̂1, S) (that is, a set of simple machines with
specified service ports available for the user) is said to be (at least) as secure
as another structure (M̂2, S), if and only if: for every adversary A1 for (M̂1, S),
there is an adversary A2 for (M̂2, S) such that the views of any user H in the
configurations (M̂1, S,H,A1) and (M̂2, S,H,A2) cannot be distinguished. (The
quantifiers we use here are those of the universal simulatability notion, which
is closest to the one we use.) Different indistinguishability notions can be used
here, requiring the views to be equal for perfect security, or computationally
indistinguishable for computational security for instance.

Even though the security properties we prove in our task-PIOA model are
very similar to those described in [PW01,BPW04b], an important difference lies
in the fact that our definitions involve comparing task-PIOAs before resolving
the non-determinism. As a result, our implementation definitions quantify over
all possible task schedules.

A second difference is that, in our computational definition of implementa-
tion, we do not compare the views of the user, but the probabilities that the
environment (which is the task-PIOA corresponding to the user) outputs a spe-
cific accept flag. This choice, which sticks more closely to the formulation in the
UC framework [Can01], simplified the statement of some properties of our com-
putational implementation notion (see the composition property for instance).

Complexity In [PW01,BPW04b], a computational realization in terms of inter-
active probabilistic Turing machines is proposed for the machines presented. A
machine is said to be polynomial-time iff it has a realization as a polynomial-time
probabilistic Turing machine. Other complexity measures are defined, always us-
ing the notion of computational realization.

Our notion of time-bounded task-PIOAs uses a bit-strings encoding of ac-
tions, tasks and states, and requires bounds on different probabilistic Turing
machines used to decode these actions. It also requires bounds on the time
needed for determining the enabled action in a given task, and for computing
the next state from the current state and an action.

Machines have a security parameter k as input, and their computational
realization provides a single (uniform) Turing machine used for every value of
the security parameter. We conjecture that this notion is equivalent to our notion
of uniformly polynomial-time-bounded task-PIOA family.

Our notion of (non-uniform) polynomial-time-bounded task-PIOA family,
which is the one we use in practice, is more closely related to the notion of pa-
rameterized systems defined in [BPW04a]. The correspondence is not immediate
however: systems are sets of structures, which are pairs of machines and service
ports.
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Proof techniques In [BPW03], simulatability is proved by using bisimulation
with error sets. More precisely, a mapping between states of the two considered
systems is defined, and one show that the same input in corresponding states
leads to the same output and corresponding states again, except in some specific
error cases. Then, it is proved that the probability of these error cases to oc-
cur is negligible via reductions on attacks against the underlying cryptographic
primitives.

We establish our security proofs in a different way. We use two implemen-
tation relations. The first one, ≤0, guarantees that every trace distribution of
the first related task-PIOA is also a trace distribution of the second related
task-PIOA (without any error probability). We prove this by establishing sim-
ulation relations, then by using a soundness result stating that the existence of
a simulation relation between two systems guarantees that they are ≤0-related.
Rather than relating states, our simulation relation relates probability distribu-
tions of execution fragments. Also, we do not prove that probability distributions
of execution fragments are related before and after executing any input action,
but that, starting from related probability distributions of execution fragments,
we reach a countable number of related probability distributions of execution
fragments when we execute any task on the first system and a corresponding
sequence of tasks in the second system. This type of relation allows us to relate
systems with random choices performed at different times, for example. It also
allows us to manage the quantifier over all possible task-schedulers in a natural
way.

This technique in only used for relating systems in the absence of any compu-
tational assumption. Besides this, we define computational assumptions in terms
of our approximate implementation relation ≤neg,pt (and prove the equivalence
between the standard, computational, formulation of these assumptions and our
PIOA version of it). Then, using the composition properties of the ≤neg,pt rela-
tion, we prove that the larger task-PIOAs corresponding to the whole protocol
model are also ≤neg,pt-related. This step does not involve any argument “by
contradiction”.

F.2 Probabilistic Polynomial-Time Process Calculus

This section is still under construction. It should be available shortly.




