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Abstract

The A-GDH.2 and SA-GDH.2 authenticated group key agreement
protocols showed to be flawed in 2001. Even though the corresponding
attacks (or some variants of them) have been rediscovered in several
different frameworks, no fixed version of these protocols has been pro-
posed until now.

In this paper, we prove that it is in fact impossible to design a
scalable authenticated group key agreement protocol based on the same
design assumptions as the A-GDH ones. We proceed by providing a
systematic way to derive an attack against any A-GDH-type protocol
with at least four participants and exhibit protocols with two and three
participants which we cannot break using our technique. As far as we
know, this is the first generic insecurity result reported in the literature
concerning authentication protocols.

1 Introduction

The A-GDH.2 and SA-GDH.2 authenticated group key agreement protocols
[1, 2], which are part of the Cliques protocol suites, have been shown to
be flawed in 2001 [17, 18]. Even though the corresponding attacks (or some
variants of them) have been rediscovered in several different frameworks (us-
ing the Casper tool [5], rank functions [6] or the constraint solving approach
[13] for instance), no fixed version of these protocols has been proposed until
now.

∗O. Pereira is postdoctoral researcher of the Belgian National Funds for Scientific Re-
search (FNRS)



As we tried to design such fixes, i.e. authenticated group key agreement
protocols built from the same ingredients as the A-GDH protocols, we found
that the method we proposed in [18] could always be used to find attacks
against our candidates.

Actually, we prove in this paper that it is impossible to build a scalable
authenticated group key agreement protocol using the technique adopted
for the A-GDH protocols, that is, by constructing a group Diffie-Hellman
key αr1...rn through the exchange of partial group Diffie-Hellman values of
form α

Q
ri , possibly exponentiated with long-term symmetric keys shared

between the different group members. Our proof proceeds by providing a
systematic procedure allowing the building of an attack against the implicit
key authentication property for any protocol of the family we consider (pro-
vided that the protocol is executed by at least four principals). As far as
we know, this is the first such impossibility result reported in the literature
concerning authentication protocols.

In the next section, we will define the protocol family we want to an-
alyze. The next step of our analysis, exposed in Section 3, will consist in
the definition of several properties all protocols of our family must exhibit,
mainly due to the fact that the different group members must be able to
compute the same group key. The main result of this section will be the
proof that the (secret) computation that each group member performs at
the end of a protocol execution in order to obtain the group key can be
written as the composition of computations executed by honest users dur-
ing different protocol sessions, computations whose inputs and outputs can
be eavesdropped.

This result does not however guarantee that the routing of the messages
as given in the protocol definition will allow an active attacker to compose
these computations as he would like to do: we will exhibit a three-party
protocol for which we cannot use our Section 3 result to derive an attack.
However, in Section 4, we will prove that it is possible to exploit that result
in order to undermine the implicit key authentication property for at least
one member of any protocol of our family provided that it is executed by at
least four users.

2 The GDH-Protocols

2.1 Authenticated Group Key Agreement Protocols

The protocols of the family we consider, which we will call the GDH-
Protocols, are group key agreement protocols.

Definition 2.1 A Group Key Agreement Protocol is a protocol enabling a
group of n users M = {M1, . . . ,Mn} to contributively generate a key that
should be known by all group members at the end of a protocol execution.
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It can be observed that the protocols we consider are different from the
key exchange protocols usually analyzed through Dolev-Yao-type methods
(such as the Needham-Schroeder symmetric key protocol [14], the Otway-
Rees protocol [15], the Woo and Lam protocol [22], for instance), because
they are required to be contributive: no group member can choose the key
in advance.

In the presence of an active attacker, i.e. an attacker who can intercept,
reroute and send messages of his own, authentication properties are often
required. The most usual authentication property, which is the one we will
consider in this paper, is the implicit key authentication (IKA) [12].

Definition 2.2 A protocol expected to be executed by a group of users M is
said to achieve Implicit Key Authentication (IKA) if, when he completed
his role in a session of the protocol, each Mi ∈ M is assured that no party
MI /∈ M can learn the key S(Mi) (i.e. Mi’s view of the session key).

The attacker is assumed to be a regular network user (and possibly to
have several identities), and to be a regular member of some groups. His
goal is then to obtain the key computed by honest users in groups from
which he is expected to be excluded. We may observe that this property
does not mean that all group members have any knowledge of a group key
at the end of the protocol execution, nor that they agree on its value. These
last properties could be achieved through key confirmation extensions of the
protocols and will not be considered here.

Besides the IKA property, two other types of security properties are
usually desirable: forward secrecy which guarantees that the compromise
of long-term keys cannot result in the compromise of past session keys;
and resistance to known session-secret attacks which guarantees that the
compromise of old session-secrets cannot result in the compromise of future
session keys [18]. We do not discuss these properties anymore and will only
consider the IKA property in the rest of this paper.

2.2 The A-GDH.2 Protocol

A well-known example of authenticated group key agreement protocol is
the A-GDH.2 protocol [1, 2] which we will use in order to provide intuitions
about our attack methodology. The A-GDH.2 protocol is executed by a pool
of users M who agreed on performing all computations in an algebraic group
G of prime order q, group in which the Decisional Diffie-Hellman problem is
believed to be hard (the subgroup of order q of Z∗

p where p and q are large
prime numbers can be chosen to this effect). All users also agree on the use
of a specific generator α of G, and these two choices are public.

The authentication mechanism adopted in the A-GDH protocols relies
on the assumption that each pair of users (Mi,Mj) share a long-term secret
key Kij ∈ Z∗

q .
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These assumptions and notations having been introduced, we now define
the way the A-GDH.2 protocol is executed.

When starting a protocol execution, each group member Mi ∈ M selects
a random key contribution ri ∈ Z∗

q . The first group member, M1, computes
αr1 and sends 〈α, αr1〉 to M2. Then, all group members from M2 to Mn−1

perform the following sequence of actions: Mi exponentiate the i elements
of G he received with ri, inserts the last received element in the next to last
position and sends the result to the next group member. Finally, for each
but the last element of G that Mn received, he exponentiates the i-th of
them with rnKin and finally broadcasts the result. The messages transcript
is then as follows.

Protocol 1: A-GDH.2 Protocol

Round i (1 ≤ i < n):

Mi → Mi+1 : {α
r1···ri

rj |j ∈ [1, i]}, αr1···ri

Round n:

Mn → All Mi: {α
r1···rn

ri
Kin |i ∈ [1, n[}

Upon receipt of the above, every Mi ∈ M computes the group key as:

Sn(Mi) = α
r1···rn

ri
·ri·K−1

in = αr1···rn ,

except Mn who computes:

Sn(Mn) = α(r1···rn−1)·rn

from the last element of G he received during the (n− 1)-th round.

A typical run of this protocol with 3 participants is represented using the
strand space notations in Fig. 1. In this figure, →-arrows denote message
transmission and ⇒-arrows distinguish successive actions performed by a
given protocol participant. Note that both horizontal arrows on the last
line of this figure correspond to the broadcast sent by M3.

M1
α, αr1

//

��

M2

��
•

αr2 , αr1 , αr1r2

//

��
M3

��
• •

αr2r3K13 , αr1r3K23

oo •
αr2r3K13 , αr1r3K23

oo

Figure 1: A-GDH.2 Protocol Run with 3 Participants

An important feature of this protocol is that all group members do not
check anything about the sequences of elements of G they receive (except
that these sequences have the expected length) and, as a result, that the
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attacker can always generate messages with the structure expected by the
different users. This is not the case for the classical authentication protocols
usually analyzed in Dolev-Yao-type models where messages are typically
expected to be encrypted through keys the attacker does not know or to
contain secret values such as nonces that the attacker should not be able to
guess. In this protocol, and in all protocols we will consider in this paper,
the key authentication relies on the fact that the values that the different
group members are using for computing their view of the group key are not
known by the attacker.

2.3 An Attack Against the A-GDH.2 Protocol

In order to provide intuitions regarding the systematic attack construction
process we will describe further, we now describe an attack against the
A-GDH.2 protocol when it is executed by three participants.

Let us consider an attacker whose identifier is MI and who wants to
undermine the IKA property by fooling M2 into accepting a key he knows
in a session M2 thinks he is executing with M1 and M3. Since M2 computes
his view of the group key by exponentiating the second term of M3’s final
broadcast with r2K

−1
23 , the goal of the intruder consists in obtaining a pair

of elements of the form (αx, αxr2K−1
23 ) and in replacing the second term of

that broadcast with αx so that M2 will compute αxr2K−1
23 as group key.

The attacker can obtain such a pair by using the protocol participants
as oracles, that is, by exploiting the services they provide. We call service
a computation carried out by a honest user during a protocol execution;
computation of which the input and result can be eavesdropped by the
intruder. In most cases, the intruder will furthermore be able to exploit these
services in a more efficient way: he will be able to replace services’ input
with a value of his own choice and then to obtain the result of these services
provided for this chosen input. All services provided during an A-GDH.2
protocol execution are (modular) exponentiations. As it does not cause any
ambiguity, we will therefore call a service consisting in exponentiating an
element αx with a value s as providing the s-service. If we look at the
protocol execution described in Fig. 1, we may observe that M1 provides
the r1-service, that M2 provides the r2-service, and that M3 provides the
r3K13- and r3K23-services.

Let us now consider a second protocol session executed by MI , M2 and
M3. If we use r′i to denote Mi’s contribution in that session, the provided
services are r′2, r′3KI3 and r′3K23 (we do not consider the actions of MI since
they would only involve values that the intruder knows).

It can now be observed that a pair of form (αx, αxr2K−1
23 ) can be built

by exploiting the services r2, r′3KI3 and r′3K23. Actually, if the intruder
replaces the input values of these last two services with a random value he
knows, say αy, M3 will send the values αyr′3KI3 and αyr′3K23 . Then, if MI
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replaces the input of the r2-service with αyr′3KI3 , M2 will send the value
αyr′3KI3r2 . Finally, if the intruder exponentiates this last value with K−1

I3 ,
he will be in possession of the pair (αyr′3K23 , αyr′3r2) which has the desired
form. The final step of this attack consists in replacing the second term of
the broadcast sent by M3 with αyr′3K23 , in such a way that M2 will compute
αyr′3r2 as group key. So, at this point, M2 expects that only M1 and M3

could know αyr′3r2 , but it is known by MI and this is in opposition with the
implicit key authentication property.

We would like to distinguish two phases in this attack. The first one
consists in finding which services can be used in order to obtain a pair of
the desired form. This comes down to trying to write the value that M2 will
use in order to compute his view of the group key as a product of services
and values that the intruder knows: in the attack above, we found that
r2K

−1
23 = r2 · r′3KI3 · (r′3K23)

−1 · (KI3)
−1. In Section 3, we will show that,

for the family of protocols we consider, such equations can always be found,
provided that the protocol is executed by at least 3 users.

The second phase consists in finding a way to exploit the equation found
during the first step in order to obtain an attack scenario. In our example
above, it consisted in starting with a pair of form (αy, αy) and replacing
the input of services inverted in the previous equation with the first term of
the pair while the input of non-inverted services was replaced by the second
term. So, we successively constructed the pairs (αy, αy), (αyr′3K23 , αyr′3KI3)
and (αyr′3K23 , αyr′3KI3r2). This was however an easy case: if we had to use
the r1-service for instance, we would not have been able to replace the input
of this service with a value of our choice since M1 always uses α as input
value for this service. Our goal in Section 4 will be to prove that at least
one of the equations obtained during our first attack phase uses services
which can be collected in order to build an attack against the protocols we
consider, provided that they are executed by at least four users.

2.4 A Fix for the A-GDH.2 Protocol?

As we found an attack against the A-GDH.2 protocol, we now naturally
wonder how this protocol could be fixed, that is, how we could write a
protocol based on the same design assumptions as the A-GDH.2 protocol
and guaranteeing the expected implicit key authentication property.

A first design assumption we keep is that we only consider protocols
executed by exchanging elements of the public group G, those elements being
built by exponentiating a public generator α with a product of:

• random values generated during the protocol execution and only known
by the user who generated them and

• long-term shared keys of form Kij , where Kij is only known by Mi

and Mj .
So, we only consider the exchange of elements of G of form α

Q
ri
Q

Kjk
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(but not elements obtained by multiplying two other elements of G for in-
stance).

A second design assumption is that we consider protocols aiming at
building a shared group key of form αr1...rn where ri has been generated by
the i-th group member Mi. This guarantees that the protocol is contributive,
which is required for a key agreement protocol.

A third design assumption is that these protocols are constant under
member substitution: substituting member Mi with a user Mj in the group
constitution will only change the protocol execution by substituting keys
of the form Kik with Kjk. This assumption excludes protocols the defi-
nition of which would contain rules such as: “User Mi exponentiates the
term intended to Mj with Kx

ij where x is the last bit of Mj ’s identifier” for
instance.

2.5 Modelling the GDH-Protocols

The protocols based on the design assumptions we just described will be
called GDH-Protocols. Before giving a precise definition of this protocol
family and starting our analysis, we propose a second example of GDH-
Protocol, the Ex-GDH protocol, which we will use to illustrate our further
discussion.

Example 2.3 We describe the Ex-GDH protocol in a similar form as the
one commonly used in the literature and in [2] for instance. This protocol
allows a group of three users M1,M2 and M3 to contributively generate a
key αr1r2r3 .

Protocol 2: Ex-GDH Protocol
Let ri, r̂i ∈ Z∗

q be random values generated by Mi at the beginning of each
protocol session. The three group members M1, M2 and M3 then generate
the group key by exchanging the following messages:

M1 → M2 : αr̂1 , αr1

M2 → M3 : αr̂1r2K23 , αr1K23 , αr1r2

M3 → M1,M2 : αr̂1r2r3K13 , αr1r3K2
23

When executing this protocol, M1 computes αr̂1 , αr1 and sends these
values to M2, then M2 exponentiates the first term he received with r2K23,
the second with K23 and also with r2, sends the three resulting elements
of G to M3; and finally, M3 exponentiates the first term he received with
r3K13K

−1
23 and the second with r3K23.

Upon receipt of the above, M1 computes the group key αr1r2r3 from
αr̂1r2r3K13 , M2 from αr1r3K2

23 and M3 from αr1r2 .

We now present our modelling of the GDH-Protocol famils, and start by
defining the set of messages which can be exchanged.

7



Definition 2.4 Let:

1. R be the set of symbols representing random values generated during
the protocol execution.

2. K be the set of symbols representing the long-term symmetric keys
shared by pairs of users. We assume that R ∩ K = ∅ and call ele-
ments of R ∪ K atoms. Furthermore, we denote Ki the subset of keys
of K known by Mi and Kij a key of K known by Mi and Mj.

3. (P, ·) be the commutative group freely generated from R ∪ K.

4. G be defined from P through a bijection alphaexp : P → G which
represents the exponentiation of the public group generator α with a
product of random values and keys. This set will be used to model the
finite group G.

As it can be seen, we do not take any arithmetic relation that could exist
between elements of R and K into account. It can also be observed that,
according to our definitions, the set G is infinite, while G is a finite group of
prime order. It would be interesting to relate this abstraction of G with the
pseudo-freeness computational assumption introduced by S. Hohenberger
and R. Rivest [9, 19].

In order to make the use of these sets more convenient, we introduce the
following notations:

Definition 2.5 Suppose p ∈ P and g ∈ G.

1. pa denotes the projection of p on a, that is, ae where p = aeae1
1 · · · aen

n ,
a 6∈ {a1, . . . , an}, and a, a1, . . . , an are atoms.

2. pR and pK denote the projection of p on R and K respectively, that
is, are elements of P such that p = pR · pK where pR is a product of
elements of R and pK a product of elements of K.

3. αp ∈ G denotes alphaexp(p) (α1 will usually be abbreviated as α).

4. gp denotes alphaexp(alphaexp−1(g) · p)

We illustrate these definitions through the following example.

Example 2.6 If we consider our Ex-GDH protocol, {r1, r̂1, r2, r3} ⊂ R and
{K13,K23} ⊆ K; p = r1 · r3 ·K2

23 is an element of P, pR = r1 · r3, pK = K2
23,

pK23 = K2
23, pr2 = 1 and αr2K23 is an element of G.

The messages of the protocols we consider are all constituted of sequences
of elements of G (modelled as elements of G). In order to simplify our nota-
tions, and since an active attacker has complete control over concatenation,
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we can model (without loss of generality) the sending (resp. the reception)
of the concatenation of n elements of G as n sending (resp. receptions) of
elements of G. So, in our model, all messages are single elements of G. We
will call these messages GDH-Terms.

In order to describe our protocols, we now exploit the strand-space and
bundle definitions, which are given in Appendix A. A strand is a sequence of
nodes representing some party’s view of a protocol run. Associated with each
node is a GDH-Term with a sign, + or −, indicating that the GDH-Term
is sent or received, respectively, on that node. The function term(n) (resp.
uns term(n)) provides the signed (resp. unsigned) GDH-Term associated
with the node n, while 〈s, i〉 denotes the i-th node of the strand s and
strand(n) the strand to which n belongs. A bundle is a directed graph whose
edges express the causal dependencies of the nodes: a “→”-edge connects
two nodes whose associated GDH-Terms are of form +t and−t, while a “⇒”-
edge connects two consecutive nodes of a strand. We also use the notation
n ⇒+ n′ to express that n and n′ are connected through a sequence of “⇒”-
edges and “→C” and “⇒C” to denote the “→” and “⇒”-edges of the bundle
C. In a bundle, “→” and “⇒”-edges allow defining a partial order relation
between nodes: the node n precedes the node n′, written n ≺ n′ if there is
a path made of “→” and “⇒”-edges from n to n′. The following example
shows a bundle representing a session of our Ex-GDH protocol.

Example 2.7 Let s1, s2 and s3 be three strands representing the roles of
M1,M2 and M3 in the Ex-GDH protocol. A bundle containing these three
strands is represented in Fig. 2 (all four arrows of the last two rows of this
figure originate on nodes of the s3 strand).

s1 s2

• αr̂1
//

��
•
��

• αr1
//

��

•
��

s3

•
��

αr̂1r2K23
// •

��
•
��

αr1K23
// •

��
•
��

αr1r2
// •

��
•
��

•
��

αr̂1r2r3K13
oo •

��

αr̂1r2r3K13
oo

• •αr1r3K2
23oo •αr1r3K2

23oo

Figure 2: A run of the Ex-GDH protocol

Considering a bundle allows us to understand the way messages are
exchanged during a protocol run. However, it does not express how these
messages are built, which is an important property for the class of protocols
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we are analyzing. As explained in the literature concerning the A-GDH
protocols [2], the protocols we consider are executed in a very regular way:
the group members receive elements of G and exponentiate these elements
with products of known random values and keys in order to construct the
messages they send. So, for any element used by a group member to compute
his view of the group key, it is possible to write a history describing how
this element has been built from the group generator α. This history can be
described as a simple path since the combination of two elements of G into
a third one never occurs.

Definition 2.8 Given a bundle C, a path π of length m in C is a sequence
of nodes 〈n1, . . . , nm〉 of NC such that:

• term(n1) = +t and term(nm) = −t′

• (n2i+1, n2i+2) ∈→C (0 ≤ i < m/2)

• (n2i, n2i+1) ∈⇒+
C (0 < j < m/2)

We furthermore consider that each path has at its extremities two “vir-
tual” nodes n0 and nm+1 which are assumed to belong to the same strands
as n1 and nm respectively, and the associated GDH-Terms of which are
uns term(n0) = α and uns term(nm+1) = αr1···rn (for a protocol executed
by n parties).

These two virtual nodes (which do not correspond to the transmission
of any GDH-Term) are added in order to make the further notations more
convenient. They correspond to the fact that the first element of an history
is always computed from α and that the last element of an history is used
in order to compute a group key αr1···rn .

We now introduce a few more definitions about paths:

Definition 2.9 Consider a path π = 〈n1, . . . , nm〉 in a bundle C

1. π(i) = ni. As we will often be interested in the end of these paths, we
also define π(̄i) = nm+1−i

2. P (π(i)) = alphaexp−1(uns term(π(i)))

alphaexp−1(uns term(π(i−1)))
is the element of P which must

be used to compute term(π(i)) from term(π(i− 1))

3. Id(π(i)) = Mj where Mj is the user executing strand(π(i))

4. length(π) = m

From this definition, π(i) is the i-th node of π (starting from the end
of π if i is complemented). We may also note that term(π(1̄)) is the last
GDH-Term of π, which will be used for computing the group key, and that
P (π(0̄)), the element of P required for computing term(π(m + 1)) from
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term(π(m)), is the product of random values and long-term keys which will
be used to compute the group key from term(π(1̄)). The length of a path
π, denoted length(π), is defined as the number of nodes belonging to this
path, without including the two virtual nodes.

These notions are exemplified below.

Example 2.10 If we consider the bundle of Example 2.7, a path π describ-
ing the history of 〈s2, 7〉 is

π = 〈〈s1, 2〉, 〈s2, 2〉, 〈s2, 4〉, 〈s3, 2〉, 〈s3, 5〉, 〈s2, 7〉〉

This path is represented on Fig. 3, on which we added the virtual nodes at
the beginning of s1 and at the end of s2.

s1 s2

◦ α
��
• //
��

•
��

• αr1
//

��

〈s1, 2〉 • 〈s2, 2〉
��

s3

•
��

// •
��

•
��

αr1K23
//〈s2, 4〉 •

��
〈s3, 2〉

•
��

// •
��

•
��

•
��

oo •
��

oo

• •oo
��

•αr1r3K2
23oo 〈s3, 5〉

◦ αr1r2r3
〈s2, 7〉

Figure 3: Example of Path

term(π(1)) = +αr1 , term(π(4̄)) = +αr1K23

P (π(1)) = r1, P (π(2)) = 1, P (π(0̄)) = r2K
−2
23

strand(π(2)) = s2, Id(π(6)) = M2, length(π) = 6

As paths will be used in order to describe the way messages are trans-
formed along strands, they can also be used to define a notion of knowledge
expressing that a party must know specific values in order to be able to
perform the transformation required at some node. This notion will make
use of the subterm relation @ defined as follows:

Definition 2.11 Suppose a is an atom, p ∈ P and g ∈ G.

• a @ p if pa 6= 1
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• a @ g iff a @ alphaexp−1(g)
If a @ x, we say that a is a subterm of x or that x contains a.

The following example illustrates this definition.

Example 2.12 Let g = αr1K23 be an element of G. Then r1 @ g and
K13 6@ g.

We can now define our notions of knowledge.

Definition 2.13 Consider a set π = {π1, . . . , πn} of paths in C. We say
that:

1. p ∈ P is known on πi(j) iff for any atom a @ p, we have that a @
P (πi(j)),

2. p ∈ P is known on the strand s iff for any atom a @ p, there are values
for i and j such that a @ P (πi(j)) and strand(πi(j)) = s,

3. p ∈ P is locally known on the strand s of C if s is the only strand of
C on which p is known.

Example 2.14 If we consider our Ex-GDH protocol as represented in Ex-
ample 2.7 and the three paths π1, π2 and π3 defined as

π1 = 〈〈s1, 1〉, 〈s2, 1〉, 〈s2, 3〉, 〈s3, 1〉, 〈s3, 4〉, 〈s1, 3〉〉
π2 = 〈〈s1, 2〉, 〈s2, 2〉, 〈s2, 4〉, 〈s3, 2〉, 〈s3, 5〉, 〈s2, 7〉〉
π3 = 〈〈s1, 2〉, 〈s2, 2〉, 〈s2, 5〉, 〈s3, 3〉〉

then r3K13 is known on π1(5). We also have that K23 is known on s3 but
not locally known on that strand as it is also known on s2. Finally, r2 is
locally known on s2 since it is only known on π1(3), on π2(7) and on π3(3)
which all belong to s2 (note that π2(7) is the virtual node at the end of π2).

Equipped with these definitions, we can now define the GDH-Protocols.
The first part of this definition expresses how GDH-Terms are exchanged,
which is described through a bundle containing n strands; while the second
part expresses how the exchanged GDH-Terms are computed by the different
group members, which is expressed through n paths whose final element is
the element of G used by the different group members to compute their view
of the group key. The last part of this definition expresses constraints on the
use of the different protocol variables (random key contributions and long-
term keys). The first constraint expresses that the random values generated
by the protocol participants can be used on only one strand: they are never
transmitted to other users, and the probability of two users generating the
same random value can be considered negligible. The second constraint
expresses that each contribution ri included in the group key αr1···rn must
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be generated by the user Mi. Finally, the last constraint expresses that
the long-term symmetric keys can only be used by the two users who are
assumed to know them.

Definition 2.15 A GDH-Protocol on a group of n principals M = {M1,
. . . ,Mn} is a protocol aiming at enabling a key αr1...rn to be shared by the
principals in M and the regular execution of which can be described through
two elements:

1. a bundle CGDH containing n strands s1, . . . , sn, Mi being the active
principal for si.

2. a set π = {π1, . . . , πn} of n paths in CGDH . These specific paths are called
histories and express how the GDH-Terms exchanged in the CGDH bundle
are built: Id(πi(2j)) computes term(πi(2j+1)) from term(πi(2j)) and Mi

computes the group key αr1...rn from term(πi(1̄)) (so, strand(πi(1̄)) = si).

Furthermore, in a GDH-Protocol,

a. If a ∈ R is known on πi(j) then it is locally known

b. The random contribution ri ∈ R is locally known on si

c. If a ∈ K is known on πi(j) then a ∈ KId(πi(j))

We may verify that the Ex-GDH protocol, defined by the bundle repre-
sented in Fig. 2 and by the three histories given by the paths in Example 2.14,
is a GDH-Protocol.

From now on, except when specified otherwise, we always refer to GDH-
Protocols executed by a group M = {M1, . . . ,Mn} and described through a
GDH-Bundle CGDH and through histories π1, . . . , πn.

We introduce one last (and central) definition before turning to proper-
ties of GDH-Protocols: the definition of the notion of contribution. Given a
session of a GDH-Protocol, the product of the elements of P used by Mi in
order to exponentiate elements of G belonging to πj will be called the con-
tribution of Mi to Mj , denoted C(Mi → Mj). In other words, C(Mi → Mj)
is the product of the services offered by Mi on the path πj .

Definition 2.16 Given a GDH-Protocol with paths π1, . . . , πn, the contri-
bution of Mi to Mj, denoted C(Mi → Mj), is defined as∏

0<k≤length(πj)

P (πj(k))ek

where ek = 1 if Id(πj(k)) = Mi and ek = 0 otherwise.

Example 2.17 The table below indicates the value of C(Mi → Mj) for
the Ex-GDH protocol in the line Mi of column Mj .

13



M1 M2 M3

M1 r̂1 r1 r1

M2 r2K23 K23 r2

M3 r3K13K
−1
23 r3K23 1

3 Properties of GDH-Protocols

3.1 Introduction

Starting from the definitions of the previous section, we now define a few
constitutive properties of GDH-Protocols. These properties express charac-
teristics that GDH-Protocols must respect if they conform to their definition.
The goal of this section will be to achieve our first attack phase described
in Section 2.3, that is, to obtain a relation expressing the value that each
user Mi executing a session of a GDH-Protocol uses for computing his view
of the group key (i.e. P (πi(0̄))) as a product of contributions (which are
themselves a product of services) and of long-term keys the attacker knows.

In the following paragraphs, we will never precisely specify to which
session of a protocol we refer: we simply state the corresponding group
constitution when it is different from M = {M1, . . . ,Mn}. This is because
we will always consider a single protocol execution for each specified group
constitution.

3.2 Properties of GDH-Protocols

We start this subsection with two simple observations which will be useful
further.

Observation 3.1 Let p1, p2 and p3 be elements of P and a be an atom. If
p1 = p2 · p3 and a @ p1, then a @ p2 or a @ p3. Similarly, If p1 = p2 · p3 and
(p1)a = (p2)a then a 6@ p3.

These observations result from the definition of P.

Observation 3.2 From the definition of the notion of contribution,

term(πj(1̄)) = −α
Q

i=1...n C(Mi→Mj).

This observation can be verified in Example 2.17 if we keep in mind that
term(π1(1̄)) = −αr̂1r2r3K13 , term(π2(1̄)) = −αr1r3K2

23 and term(π3(1̄)) =
−αr1r2 .

We can now write a first proposition about the value of CR(Mi → Mj)
when i 6= j, where CR(Mi → Mj) denotes the projection of C(Mi → Mj)
on the free abelian group generated from R (as given in Def. 2.5).

Proposition 3.3 For any GDH-Protocol, if 1 ≤ i, j ≤ n and i 6= j, then
CR(Mi → Mj) = ri.

14



Proof. From Observation 3.2, we can write∏
i=1...n

CR(Mi → Mj) · PR(πj(0̄)) = r1 · · · rn. (1)

We observe that ri 6@ CR(Mk → Mj) when k 6= i or else ri would be
known on sk which is in contradiction with Point (b) of Def. 2.15 of GDH-
Protocols. Furthermore, ri 6@ PR(πj(0̄)) for the same reason. We can deduce
from these remarks and from Observation 3.1 that ri @ CR(Mi → Mj) and
that Cri(Mi → Mj) = (r1 · · · rn)ri = ri.

Let us now imagine that CR(Mi → Mj) = ri · p. Then ri 6@ p. Suppose
ra @ p. From Observation 3.1, ra @ CR(Mi → Mj), so ra ∈ R is locally
known on si (from Point (a) of Def. 2.15). Therefore, it is not known on
sk when k 6= i, ra 6∈ {r1, . . . , rn}, ra 6@ CR(Mk → Mj) (k 6= i) and ra 6@
PR(πj(0̄)). But this is in contradiction with Observation 3.1 and Equation
(1) and we must have that p = 1.

Concerning the value of CR(Mi → Mi), the following relation must be
valid:

Proposition 3.4 For any GDH-Protocol, CR(Mi → Mi) = ri ·PR(πi(0̄))−1.

Proof. Definition 2.9 gives us that

P (πi(0̄)) =
∏

j=1...n

rj · (alphaexp−1(uns term(πi(1̄)))−1

So, by successively exploiting Observation 3.2 and Proposition 3.3, we can
write:

PR(πi(0̄)) =
∏

j=1...n

rj ·

 ∏
j=1...n

CR(Mj → Mi)

−1

=
∏

j=1...n

rj ·

 ∏
j=1...n, j 6=i

rj

−1

· CR(Mi → Mi)−1

= ri · CR(Mi → Mi)−1

These two propositions can be checked for the Ex-GDH protocol in the
tables of Example 2.17.

Having characterized the value of CR(Mi → Mj), we will now write two
propositions concerning the value of CK(Mi → Mj).

Proposition 3.5 For any GDH-Protocol, if CKjk
(Mj → Mi) = Ka

jk (Kjk 6∈
Ki) then CKjk

(Mk → Mi) = K−a
jk .
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Proof. Observation 3.2 gives us that
∏

l=1...n CK(Ml → Mi) · PK(πi(0̄)) = 1;
so the sum of the powers of Kjk in the components of the left part of this
equation must be null. But Kjk 6@ PK(πi(0̄)) since Kjk 6∈ Ki. Just as
Kjk 6@ CK(Ml → Mi) (l 6= j, k) since Kjk 6∈ Kl. Therefore, Kjk can only be
a subterm of CK(Mj → Mi) and of CK(Mk → Mi), and the powers of Kjk

in these two contributions must be of the form a and −a since their sum is
null.

Until now, we considered the relations between values inside one session
of a protocol. Now, we would like to write a proposition concerning the use
of long-term keys in sessions executed by different groups of users. To this
purpose, we introduce a substitution operator: if p ∈ P is such that pR = 1
and is a function of the keys of a bundle corresponding to a session of a
GDH-Protocol executed by the group M, then [Mi\MI : p] (where Mi ∈ M
and MI 6∈ M) refers to the value that p would have in a session with the
same participants except that Mi is substituted with MI . More precisely:

Definition 3.6 If p =
∏

j K
eij

ij · Kx where Kij 6@ Kx (∀j) then [Mi\MI :
p] =

∏
j K

eij

Ij · Kx. More generally, if S = {Mi1 , . . . Mis}, [S\MI : p] =
[Mi1\MI : [(S− {Mi1})\MI : p]].

Example 3.7 In the Ex-GDH protocol, [M1\MI : CK(M3 → M1)] =
KI3K

−1
23 and [{M1,M2}\MI : CK(M3 → M1)] = KI3K

−1
I3 = 1

As above, MI denotes a user that is not a member of the group M and
plays the role of the intruder. This user is however considered as a legitimate
member of some other groups, KIj ∈ (KI ∩ Kj) denoting a long-term key
shared by MI and Mj .

We can now write a proposition relating the key part of the contribution
of a honest member Mj to Mi, i.e. CK(Mj → Mi), with his contribution
[S\MI : CK(Mj → Mi)] in a session where a set of honest members S ⊂ M
has been replaced with the intruder. These two values are in fact equal,
excepted that all occurrences of keys shared between Mj and users in S will
be replaced by keys shared between Mj and MI .

Proposition 3.8 Suppose S ⊂ M and Mj 6∈ S. Then,

CK(Mj → Mi) = [S\MI : CK(Mj → Mi)]

·
∏

Mk∈S

CKjk
(Mj → Mi)

·
∏

Mk∈S

[S\MI : C−1
Kjk

(Mj → Mi)].

Proof. CK(Mj → Mi) is known on sj , so it can be written as a product of
keys of the form Kjx. A possible way to write CK(Mj → Mi) is therefore
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∏
Mk∈S Kek

jk · Kx where Kjk 6@ Kx for all Mk ∈ S and Kx is a product of
keys in Kj . Definition 3.6 now implies that [S\MI : CK(Mj → Mi)] =∏

Mk∈S Kek
jI ·Kx.

This proposition now results from the fact that CKjk
(Mj → Mi) = Kek

jk

and [Mk\MI : CKjk
(Mj → Mi)] = Kek

jI .

Example 3.9 Consider the Ex-GDH protocol and S = {M1}. In this
case, CK(M3 → M1) = K13K

−1
23 , [M1\MI : CK(M3 → M1)] = KI3K

−1
23 ,

CK13(M3 → M1) = K13 and [M1\MI : CK13(M3 → M1)] = KI3. Then we
can check that K13K

−1
23 = KI3K

−1
23 ·K13 ·K

−1
I3 as expected from our previous

proposition.

All these propositions can be used to prove our main property concerning
contributions: the product P (πi(0̄)) that user Mi uses when computing his
view of the group key can be written as a product of contributions and keys
that the intruder knows.

Theorem 3.10 For any GDH-Protocol executed by a group of users M =
{M1, . . . ,Mn} where n ≥ 3, it is possible to write any secret P (πi(0̄)) as a
product of contributions C(Mj → Mk) (Mj ,Mk ∈ M ∪ {MI}) and of keys
known by MI .

Proof. (See Appendix B for details)
Let Sj and Sk be two disjoint sets of users such that Mk ∈ Sj , Mj ∈ Sk,

Mi 6∈ Sj ∪ Sk and Sj ∪ Sk ∪ {Mi} = M. Then, it can be checked that:

P (πi(0̄)) = C−1(Mi → Mi) · C(Mi → Mj)
· [Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)]

·
∏

Ml∈Sk

[Sj\MI : C−1(Ml → Mi) · C(Ml → Mk)]

·
∏

Ml∈Sj

[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)]

·
∏

Ml∈M

Kel
Il

This relation was obtained from the observation that PR(πi(0̄)) = C−1
R (Mi →

Mi) ·CR(Mi → Mj), that PK(πi(0̄)) =
∏

Ml∈M C−1
K (Ml → Mi) and from the

use of the previous propositions.

Example 3.11 If we consider the Ex-GDH Protocol with i = 1, j = 2
and k = 3, we must choose Sj = {Mk} and Sk = {Mj} and, applying
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Theorem 3.10, we have that:

r1r̂
−1
1 K−1

13 = r̂−1
1 · r1

· (r′1)−1 · r′1
· (r′2K2I)

−1 · r′2
· (r′′3K13K

−1
I3 )−1 · r′′3KI3

·K−2
I3 ·K2I .

where we considered ri to be contributions sent in the session executed by
the group {M1,M2,M3}, r′i to be contributions in the session executed by
the group {M1,M2,MI}, and r′′i to be contributions in the session executed
by the group {M1,MI ,M3}.

3.3 Conclusion

We have shown that, for any GDH-Protocol executed by at least three users,
it is possible to write the secret value that each group member will use when
computing the group key (i.e. P (πi(0̄))) as a product of contributions of
different group members during different sessions of the protocol.

In other words, we have shown that the first phase of Section 2.3’s attack
process can always succeed, provided that we consider at least three group
members and some well chosen protocol sessions.

A natural question comes about the security of two-party GDH-Protocols.
In fact, it is easy to exhibit a GDH-Protocol for which this first attack phase
cannot succeed: the A-GDH.2 protocol with two participants. With our
usual notations, this protocol executes as described in Fig. 4.

M1
αr1

//

��
M2

��
• •αr2K12

oo

Figure 4: A-GDH.2 Protocol with two parties

Considering the role of M1, we try to write P (π1(0̄)) = r1K
−1
12 as a prod-

uct of services and keys the adversary knows. The only service containing
r1 is the service provided by M1 during the session we try to attack, so we
have no choice but using that service. The key part of P (π1(0̄)), i.e. K−1

12 ,
appears only in services provided by users in sessions executed by the group
{M1,M2} and in sessions executed by the group {M2,M1}. However, this
key always comes together with a random value (r2 in Fig. 4) which only
appears in that service, so we will never find another service allowing us to
cancel it. This shows that it is impossible to write P (π1(0̄)) as a product of
services and keys known by the adversary when we only consider the services
provided during sessions of the A-GDH.2 protocol with two participants.

18



It can be easily verified that the same problem occurs with the role of
M2.

4 Collecting Contributions

4.1 Introduction

At this point, we know that the first phase of our attack process described in
Section 2.3 always succeed for protocols executed by at least three parties.

We come now to the second phase and will now see how (and if) the
required services can be exploited by an intruder who wants to undermine
the IKA property. More precisely, we will examine how an intruder who
wants to attack Mi can obtain a pair (g1, g2) of elements of G such that
g2 = g

P (πi(0̄))
1 and send g1 to the node πi(1̄).

4.2 Collecting Pairs of Contributions

If we look at Theorem 3.10, we can observe that we are interested in collect-
ing pairs (g1, g2) such that g2 = gp

1 where p is a product of terms of the form
C−1(Mi → Mj) · C(Mi → Mk). The following proposition is a first step in
the obtention of such pairs.

Proposition 4.1 For any session of a GDH-Protocol executed by a group
of users M of cardinality n, an active attacker can obtain a pair (g1, g2) of
elements of G such that g2 = g

C−1(Mi→Mj)·C(Mi→Mk)
1 .

Proof. Consider a session of a GDH-Protocol executed by the members
of the group M. If we initialize g1 and g2 to α, Algorithm 1 gives the
intruder a pair (g1, g2) of the desired form (actually, in order to prevent
the message recipient to observe that the message he receives is simply the
group generator α, we also can initialize g1 and g2 to any random elements
of G, say αx and αy, and, at the end of the algorithm, exponentiate g1 with
x−1 and g2 with y−1).

This algorithm can be explained as follows. Let si be a strand that
corresponds to Mi’s role in an execution by the group M of the considered
protocol. We proceed by constructing a strand sI matching si (i.e. a strand
such that term(〈si, x〉) = −term(〈sI , x〉)), while collecting the services on
πj belonging to si into g1 and the services on πk belonging to si into g2

(excepted for the common parts of πj and πk). So, by executing this strand,
the intruder will have a conversation with Mi at the end of which Mi will
have completed his role in the considered session of the protocol without
interacting with any other member of M.

The sI strand is constructed by receiving the messages Mi sends and by
sending a random element of G when Mi is waiting for a message, except
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Algorithm 1 Defines a strand sI which, when executed together with si,
provides a pair (g1, g2) such that g2 = g

C−1(Mi→Mj)·C(Mi→Mk)
1 (Mj 6= Mk) if

the precondition g1 = g2 is verified.
for z := 1 to length(si) do

if ∃t : term(〈si, z〉) = +t then
term(〈sI , z〉) := −t
if ∃x : 〈si, z〉 = πj(x) and πj(x) 6= πk(x) then

g1 := uns term(πj(x))
end if
if ∃y : 〈si, z〉 = πk(y) and πj(y) 6= πk(y) then

g2 := uns term(πk(y))
end if

else
t := a random element of G
if ∃x : 〈si, z〉 = πj(x) and πj(x + 1) 6= πk(x + 1) then

t := g1

end if
if ∃y : 〈si, z〉 = πk(y) and πj(y + 1) 6= πk(y + 1) then

t := g2

end if
term(〈sI , z〉) = +t

end if
end for
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when the considered nodes of si are nodes of the histories πj or πk. In this
last case, different actions are performed according to the sign of the term
on the considered node of si (to which we will refer as n) and the histories
we consider:

• if
– term(n) is negative and
– n belongs to πj (resp. πk), that is, term(n) is the input of a

service that is part of C(Mi → Mj) (resp. C(Mi → Mk)) and
– the next node on πj (resp. on πk) is not part of both πj and πk

(i.e. the output of the corresponding service(s) is not part of both
πj and πk)

then the term in the corresponding node of sI is set to g1 (resp. g2),
that is, the intruder provides g1 (resp. g2) as input for this service

• if
– term(n) is positive and
– n belongs to πj (resp. πk) (that is, term(n) is the output of a

service that is part of C(Mi → Mj) (resp. C(Mi → Mk))) and
– the output of the considered service is not part of both πj and

πk,

then the intruder assigns the output of this service to g1 (resp. g2).

In fact, when n = πj(x) (resp. n = πk(x)), this process allows to perform
the operation g1 := g

P (πj(x+1))
1 (resp. g2 := g

P (πk(x+1))
2 ), which eventually

provides the expected values, as it can be checked from the definition of
contributions (Def. 2.16).

Example 4.2 We apply Algorithm 1 in order to obtain a pair (g1, g2)
such that g2 = g

C−1(M2→M2)·C(M2→M3)
1 in our Ex-GDH protocol. For that

protocol,

π2 = 〈〈s1, 2〉, 〈s2, 2〉, 〈s2, 4〉, 〈s3, 2〉, 〈s3, 5〉, 〈s2, 7〉〉
π3 = 〈〈s1, 2〉, 〈s2, 2〉, 〈s2, 5〉, 〈s3, 3〉〉

where s1, s2 and s3 are executed by M1, M2 and M3 respectively.
Our algorithm assumes g1 and g2 have been initialized to α and suc-

cessively considers all the nodes of s2 in order to build sI , the variable z
indicating the index of the node of si which is examined.
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z = 1 term(〈s2, 1〉) is negative, so we define t := 〈αr〉 (where αr is a random
element of G). The next two tests are false, so term(〈sI , 1〉) := +t.

z = 2 term(〈s2, 2〉) is also negative but 〈s2, 2〉 is part of both π2 and π3, so
term(〈sI , 2〉) is defined as +α, that is, the value to which g2 has been
initialized.

z = 3 term(〈s2, 3〉) is positive, so we define term(〈sI , 3〉) := −t. The next
two tests are false.

z = 4 term(〈s2, 4〉) is positive, so we define term(〈sI , 4〉) := −t, where t =
〈αK23〉. Since the choice x = 3 matches the first if clause, we update
the value of g1 to αK23 .

z = 5 term(〈s2, 5〉) is positive, so we define term(〈sI , 5〉) := −t, where t =
〈αr2〉. Since the choice y = 3 matches the first if clause, we update
the value of g2 to αr2 .

z = 6 term(〈s2, 6〉) is negative, and 〈s2, 6〉 does not belong to π2 nor π3, so
we define term(〈sI , 6〉) := +αr.

z = 7 term(〈s2, 7〉) is also negative, but 〈s2, 7〉 is part of π2, so we define
term(〈sI , 7〉) := +αK23 .

We can easily verify that g2 = g
r2K−1

23
1 = g

C−1(M2→M2)·C(M2→M3)
1 as ex-

pected. The strands s2 and sI are represented in Fig. 5.

sI s2

• αr
//

��
•
��

• α //
��

•
��

•
��

•αrr2K23
oo

��
•
��

•αK23
oo

��
•
��

•αr2
oo

��
•
��

αr
// •

��
• αK23

// •

Figure 5: Representation of sI and s2

4.3 Composing Contributions

In the previous subsection, we have shown that we can obtain pairs (g1, g2)
of elements of G such that g2 = gp

1 where p is a product of terms of the
form C−1(Mi → Mj) · C(Mi → Mk). Now, we would like to be able to reuse
Algorithm 1 with the obtained values of g1 and g2 as starting values in order
to obtain a pair of the more complex form described in Theorem 3.10.

Unfortunately, this is not always possible, as we will show through the
following example.
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Example 4.3 We introduce a new protocol, which we call the Tri-GDH
protocol. This protocol can be defined through three strands and three
histories:

Protocol 3: Tri-GDH Protocol

s1 = 〈+αr1 ,−αr3 ,+αr1r3K12 ,−αr2r3K13〉
s2 = 〈+αr2 ,−αr1 ,+αr1r2K23 ,−αr1r3K12〉
s3 = 〈+αr3 ,−αr2 ,+αr2r3K13 ,−αr1r2K23〉
π1 = 〈〈s2, 1〉, 〈s3, 2〉, 〈s3, 3〉, 〈s1, 4〉〉
π2 = 〈〈s3, 1〉, 〈s1, 2〉, 〈s1, 3〉, 〈s2, 4〉〉
π3 = 〈〈s1, 1〉, 〈s2, 2〉, 〈s2, 3〉, 〈s3, 4〉〉

A run of this protocol is represented in Fig. 6 (we do not used the classical
strand notation in order to avoid crossing arrows). During the first round
of the protocol, the three central messages are exchanged, while the three
external ones are computed from those just received and sent during the
second round.

M1

αr1

��8
88

88
88

88
88

88

αr1r3K12

��8
88

88
88

88
88

88

M3

αr3

CC�������������

αr2r3K13

CC�������������
M2

αr2
oo

αr1r2K23

oo

Figure 6: A run of the Tri-GDH protocol

An application of Theorem 3.10 for this protocol with i = 1, j = 2 and
k = 3 gives:

r1 ·K−1
13 = 1 · r1K12 · (r′1K12)−1 · r′1

· r′2
−1 · r′2K2I · (r′′3K13)

−1 · r′′3 ·K−1
2I

where ri, r′i, r′′i represent random values generated during three sessions of
the protocol, the participants of these sessions being {M1,M2,M3},
{M1,M2,MI} and {M1,MI ,M3} respectively.

Among these contributions we first consider r′1, r′2
−1 and r′′3 . These

three services are provided as first elements of histories: the values αr′1 , αr′2

and αr′′3 are provided independently of any input value that the intruder
could choose. Unfortunately, in order to build a pair (g1, g2) such that
g2 = gp

1 where p = r′1r
′
2
−1r′′3 , we would need to submit αr′1 as input of the

r′′3 -service or, conversely, to submit αr′′3 as input of the r′1-service, which is
unfortunately impossible.
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Guided by this example, we can more generally observe that we are
usually unable to compose two contributions containing initial parts of the
corresponding histories if we have to collect these contributions in the same
variable, which occurs when their powers have the same sign in the expres-
sion of P (πi(0̄)). This problem could not occur in the case we considered in
the previous section since we had to collect contributions with exponents of
different signs.

Another kind of services can be problematic: if two services have the
same input and two distinct outputs, we may observe that πj(x) = πk(y)
for these service’s input and that the corresponding element of the GDH-
Term t will be affected twice in Algorithm 1. This was not a problem when
the precondition g1 = g2 was verified, but becomes awkward when we try
to reuse this algorithm in order to build more complex pairs. Indeed we
will lose any non trivial relation that could exist between g1 and g2 before
starting Algorithm 1. We illustrate this problem in the following example.

Example 4.4 Suppose we applied Algorithm 1 and obtained two values
g1 = α and g2 = αp. Now, we would like to reuse the same algorithm with
the product of contributions C−1(M1 → M2) · C(M1 → M3) (in order to
obtain a pair (g1, g2) where g2 = g

p·C−1(M1→M2)·C(M1→M3)
1 ), the strand s1

being defined as
αx

// s1

��
• αxr1

//
��
• αxr̂1

//

and given that π2(2) = π3(2) = 〈s1, 1〉, π2(3) = 〈s1, 2〉 and π3(3) = 〈s1, 3〉.
Applying Algorithm 1 anew provides the following conversation:

sI

��

αp
// s1

��
•
��

•
��

αpr1
oo

• •αpr̂1
oo

The resulting pair will be (g1, g2) = (αpr1 , αpr̂1), so we will have g2 = g
r−1
1 r̂1

1

instead of the relation g2 = g
pr−1

1 r̂1
1 we need to obtain.

We now define the notions of starting and splitting points of histories,
which will be useful to describe the problems we just described. We will use
these notions in the next proposition, which gives sufficient conditions for
products of contributions to be collectible by the intruder.

Definition 4.5 Consider a GDH-Protocol executed by n participants and
let s1, . . . , sn be the n strands and π1, . . . , πn be the n histories given in
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this protocol’s definition. We define start(πi) as the first node of πi, that is,
πi(1).

We then say that the product of contributions
∏

i∈I Cei(Mji → Mki
)

(with I a set of indices, ei ∈ {−1, 1}, 1 ≤ ji, ki ≤ n) contains x start+

(resp. start−) if there exist x indices in I such that ei = 1 (resp. ei = −1)
and start(πki

) belongs to sji.
By extension, we say that

∏
i∈I Cei(Mji → Mki

) contains x starts (or
starting points) if it contains x1 start+, x2 start− and x1 + x2 = x.

Definition 4.6 Consider a GDH-Protocol executed by n participants and let
s1, . . . , sn be the n strands and π1, . . . , πn be the n histories given in this
protocol’s definition. We define split(πi, πj) as the last node which is part
of both πj and πk, that is, πi(k) where k = maxl(πi(l) = πj(l)) ( split(πi, πj)
is undefined if πi(k) 6= πj(k) ∀k).

We say that the product of contributions
∏

i∈I C−1(Mji → Mki
)·C(Mji →

Mli) (with I a set of indices, 1 ≤ ji, ki, li ≤ n) contains x splits (or splitting
points) if there exist x indices in I such that split(πki

, πli) belongs to sji.

One last notion will be useful for our next proposition: the notion of
precedence of contributions. We say that contribution C(Mi → Mj) pre-
cedes contribution C(Mi → Mk) if every node of πk belonging to si is
preceded by a node of πj belonging to the same strand.

Definition 4.7 Consider a GDH-Protocol executed by n participants and
let s1, . . . , sn be the n strands and π1, . . . , πn be the n histories given in
this protocol’s definition. We say that C(Mi → Mj) precedes (written �)
C(Mi → Mk) iff

∀y such that πk(y) belongs to si,
∃x : πj(x) belongs to si and πj(x) � πk(y).

Given a node n on si, we also write that C(Mi → Mj) � n if ∃x : πj(x)
belongs to si and πj(x) � n, and that n � C(Mi → Mj) when ∀x : πj(x)
belongs to si, n � πj(x).

The strict precedence relation ≺ corresponds to the precedence relation
except that we replace “�” with “≺” in its definition.

These definitions are used in the following proposition in which we state
sufficient conditions for the possibility of building more complex pairs of
elements of G than those described in Proposition 4.1.

Proposition 4.8 Consider a GDH-Protocol with n participants and let p =∏
i∈I C−1(Mji → Mki

) ·C(Mji → Mli) (with 1 ≤ ji, ki, li ≤ n and I being a
set of indices) be a product of contributions such that all pairs of contribu-
tions are provided on different strands. Then an active attacker can obtain
a pair (g1, g2) of elements of G such that g2 = gp

1 if one of the following
conditions is verified:
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1. p contains at most one splitting point and no starting point,
2. p contains no splitting point, one start+ and no start−,
3. p contains no splitting point, no start+ and one start−,
4. p contains no splitting point, one start+ (for the index i+ ∈ I), one

start− (for the index i− ∈ I), ki+ = ki− and li+ = li−.

Proof. Our proof of this proposition proceeds by using Algorithm 1 (or
slight variants of it) and by verifying that, when any condition stated above
is respected, the resulting pair (g1, g2) has the expected form.
1. p contains at most one splitting point and no starting point
Let m ∈ I be the index such that split(πkm , πlm) belongs to sjm , or m be a
random element of I if p does not contain any splitting point. If we initialize
g1 and g2 to α (or to any random value) and execute Algorithm 1 for the
product C−1(Mjm → Mkm) ·C(Mjm → Mlm), we obtain a first pair (g1, g2).

Then, we may successively apply Algorithm 1 for all products of contri-
butions corresponding to indexes in i ∈ I − {m}, using the values obtained
for g1 and g2 at the end of each execution as input for the next one.

This procedure provides the expected values because Algorithm 1 will
transform pairs (g1, g2) such that g2 = gpx

1 into pairs (g1, g2) such that

g2 = g
px·C−1(Mji

→Mki
)·C(Mji

→Mli
)

1 for each value of i ∈ I − {m} as long as
the considered product of contributions does not contain any splitting or
starting point.

2. p contains no splitting point, one start+ and no start−

The process is nearly identical to the one above. Let m ∈ I be the index
such that start(πlm) belongs to sjm . If we initialize g1 and g2 to α and
execute Algorithm 1 for the product C−1(Mjm → Mkm) · C(Mjm → Mlm),
we obtain a first pair (g1, g2).

Then, we may successively execute Algorithm 1 for all products of con-
tributions corresponding to indexes in i ∈ I − {m}, providing the values
obtained for g1 and g2 at the end of each execution as input for the next
one.

The correctness of this procedure relies on the same observations as
above.

3. p contains no splitting point, no start+ and one start−

The procedure is the same as the previous one.

4. p contains no splitting point, one start+ (for the index i+ ∈ I), one
start− (for the index i− ∈ I), ki+ = ki− and li+ = li−.
Suppose first i+ = i−. In that case, the process described for the first
condition applies.

Suppose now i+ 6= i−, k = ki+ = ki− and l = li+ = li− . Suppose also
C(Mji−

→ Mk) ≺ C(Mji−
→ Ml). If this condition holds and if we define

πk(1) = 〈sji−
, ẑ〉, we can proceed as follows. First, initialize g1 and g2 to α
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and apply Algorithm 1 for the product C−1(Mji−
→ Mk) · C(Mji−

→ Ml)
until z = ẑ (we also execute this algorithm for this value of z). At this
point, our precedence assumption guarantees us that g1 = uns term(πk(1))
and g2 = α. Then, with the current values of g1 and g2, execute the same
algorithm for the product C−1(Mji+

→ Mk) · C(Mji+
→ Ml), obtaining a

pair (g1, g2) = (uns term(πk(1))
C(Mji+

→Mk)
, α

C(Mji+
→Ml)). Now complete

the first execution of the algorithm for the values of z going from ẑ + 1
to length(sj) with the updated values of g1 and g2. Finally, execute Algo-
rithm 1 for the indexes i ∈ I − {i+, i−}, always updating g1 and g2. This
provides the desired pair.

Suppose now C(Mji−
→ Mk) 6≺ C(Mji−

→ Ml). This means that there
is an index y such that πl(y) belongs to sji−

and such that πl(y) � πk(x)
for every index x such that πk(x) belongs to sji−

. So, in particular, we have
that πl(y) � πk(1) since πk(1) belongs to sji−

. But this last observation
guarantees us that πl(1), which belongs to sji+

, strictly precedes all nodes of
πk belonging to that strand, and therefore that C(Mji+

→ Mk) ≺ C(Mji+
→

Ml). This precedence relation is symmetric to the one above, and allows us
to collect g1 and g2 by using a symmetric treatment.

All these sufficient conditions can be verified by checking on which strands
histories split and start and are independent of the other aspects of the rout-
ing of the messages. This will be very convenient to check whether a pair of
the form given in Theorem 3.10 can be obtained by the attacker, as we will
see.

Unfortunately, in some cases, it will not be possible to be sure that one of
these conditions is verified. So, we will define one more sufficient condition.
Its verification will be slightly more demanding as it will require to check
precedence relations on contributions.

Proposition 4.9 The following condition is sufficient to make the wording
of Proposition 4.8 correct:

5. p contains no splitting point, one start+ (for the index i+ ∈ I), one
start− (for the index i− ∈ I, i+ 6= i−) and C(Mji−

→ Mki−
) ≺

C(Mji−
→ Mli−

) or C(Mji+
→ Mli+

) ≺ C(Mji+
→ Mki+

)

Proof. This condition explicitly states that one of the precedence condi-
tions we proved when examining the fourth condition of Prop. 4.8 is valid.
The desired pair (g1, g2) can therefore be built by using exactly the same
technique.

An example of the treatment described in these proofs is provided in the
full attack process example we propose in Appendix C.
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4.4 Attacking GDH-Protocols with four and five participants

We will now prove that, when considering GDH-Protocols with four or five
participants, the product of contributions given in the proof of Theorem 3.10
respects one of the conditions of Proposition 4.8 and Proposition 4.9 for at
least one choice of the users Mi, Mj , Mk and of the sets Sj and Sk. In order
to make it easier to extend this result to an unbounded number of protocol
participants, we will in fact consider only two possible choices for the set Sj

and Sk:
• Sj = {Mk} and Sk = M− {Mi,Mk} and
• Sj = M− {Mi,Mj} and Sk = {Mj}.

It is easy to check that these two choices of Sj and Sk respect the conditions
given in the proof of Theorem 3.10.

This will prove that the attacker is always able to obtain a pair of values
(g1, g2) such that Mi would compute g2 as his view of the group key if he uses
g1 as input value for this computation. We are not sure however whether
the attacker can complete his attack by submitting g1 to Mi:

1. building g1 could require the use of services that Mi provides after
having computed his view of the group key or

2. MI could need to use the value that Mi will use to compute the group
key in order to build the pair (g1, g2).

We can check that the first problem cannot occur: when building g1, the
only contribution that uses the strand from which Mi is computing his view
of the group key is C(Mi → Mi) and we know that all nodes which have
to be exploited when collecting C(Mi → Mi) by using Algorithm 1 strictly
precede πi(1̄), that is, the node on which g1 has to be sent to Mi.

Let us now consider the second problem. We already know (from our
treatment of the first problem) that we will never need to submit a specific
value instead of the last element of πi when computing g1. It is however
possible that this element has to be used when computing g2. The only
contribution that uses the strand from which Mi is computing his view of
the group key in order to build g2 is C(Mi → Mj). We can also observe
that if the last element of πi has to be affected to some specific value when
collecting C(Mi → Mj), then the last element of πi is also part of πj and,
therefore, split(πi, πj) belongs to si.

For that reason, instead of simply checking if there is a choice of users
Mi, Mj ,Mk and of sets Sj and Sk such that the product of contributions
given in the proof of Theorem 3.10 respects one of the conditions of Propo-
sition 4.8 and 4.9, we will also require this choice of indices and sets to be
such that split(πi, πj) does not belong to si.

Obtaining such a result will allow us to conclude that it is impossible to
build a secure GDH-Protocol with four or five participants. In Section 4.5,
we will show how to extend this result to GDH-Protocols with more than
five participants.
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Theorem 4.10 For any GDH-Protocol with four or five participants, it is
possible for an active attacker to obtain a pair (g1, g2) of elements of G such
that g2 = gp

1 where

p = C−1(Mi → Mi) · C(Mi → Mj)
·[Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)]

·
∏

Ml∈Sk

[Sj\MI : C−1(Ml → Mi) · C(Ml → Mk)]

·
∏

Ml∈Sj

[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)]

·
∏

l∈1...n

Kel
Il

for some choice of Mi, Mj, Mk, Sj, Sk and el; where Mi, Mj and Mk are
three different members of the group M while Sj and Sk are two disjoint sets
of users defined either as

• Sj = {Mk} and Sk = M− {Mi,Mk} or
• Sj = M− {Mi,Mj} and Sk = {Mj}.
Furthermore, it is possible to select Mi and Mj in such a way that

split(πi, πj) does not belong to si.

Proof. If we suppress the factor
∏

l∈1...n Kel
Il which is known by MI from the

product p, we can check that p has the form considered in Proposition 4.8.
We will therefore try to verify that all GDH-Protocols with at least four
participants respect at least one of the four sufficient condition of Propo-
sition 4.8 for an adequate choice of Mi, Mj , Mk, Sj and Sk. We will also
require this choice to be such that split(πi, πj) does not belong to si, which
guarantees us that the attacker will also be able to replace πi(1̄) with g1 in
the session from which he is excluded. There will be cases for which it will
not be possible to verify one condition of Proposition 4.8. For those cases,
we will verify the condition stated in Proposition 4.9.

The verification of the conditions of Proposition 4.8 will be carried out
by considering all possible ways for four histories (say π1, π2, π3 and π4)
to split and start in four and five-parties GDH-Protocols. In fact, it can be
verified that there are only six ways of making these four histories split and
start: we represented them on Fig. 7.1

On this figure, we represented the nodes on which these histories start
(i.e. πi(1)) on the left of each subfigure, then, when it occurs, the nodes on

1This comes down to generating all binary forests with four leaves. A way to proceed
consists in generating all partitions of these four leaves into trees (there are five possible
such partitions as 4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 2 + 2 = 1 + 3; they respectively
correspond to one tree with 4 leaves, four trees with 1 leaf, two trees with 1 leaf and one
tree with 2 leafs, . . . ) and, for each of these partitions into trees, generating all trees
with the desired number of leaves (the number of such trees is given by the Wedderburn-
Etherington numbers).
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Figure 7: Six varieties of binary forests with four leafs.

which they split and, finally, the nodes on which they finish (i.e. πi(1̄)). As
an example, the representation of the three histories of the Ex-GDH protocol
according to this convention is given in Fig. 8.

Then, for the four histories we consider, we select Mi, Mj and Mk among
the four corresponding group members (that is, M1, M2, M3 and M4) and
consider the two possible choices for Sj and Sk described in this theorem’s
statement.

We then perform an exhaustive search, considering all possible strands
for the splitting and starting points and verifying for each of them if one
of the sufficient conditions stated in Prop. 4.8 could be verified for at least
one specific choice of Mi, Mj , Mk, Sj and Sk. This exhaustive search was
performed automatically with the assistance of a small program described
in Algorithm 2.

This program provided us with an adequate choice in all cases, except
nine.

As an example, if we look at the Ex-GDH protocol, such an adequate
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〈s1, 1〉 〈s1, 3〉

〈s1, 2〉 〈s2, 2〉
III

III
〈s2, 7〉

〈s3, 3〉

Figure 8: Spitting and starting points in the Ex-GDH Protocol.

choice is Mi = M3, Mj = M2, Mk = M1, Sj = {M1} and Sk = {M2}: in
that case, the product

P (π3(0̄)) = C−1(M3 → M3) · C(M3 → M2)
· [M1\MI : C−1(M3 → M2) · C(M3 → M1)]
· [M1\MI : C−1(M2 → M3) · C(M2 → M1)]
· [M2\MI : C−1(M1 → M3) · C(M1 → M2)]

contains no splitting point and two starting points in the term [M2\MI :
C−1(M1 → M3) · C(M1 → M2)]. Actually, a more detailed analysis shows
that these two starting points do not raise any difficulty as π2 and π3 have
a splitting point on s2, which implies that we do not have to use the two
corresponding starting services when applying Algorithm 1.

As we said, our automatic treatment allowed us to obtain adequate
choices for all configurations of histories, except in nine cases, all of them in
the forests represented in Fig. 7(a). The strands on which π1, π2, π3 and π4

start in these nine cases are given in Table 1.

Table 1: Problematic strands for the starting points of π1, π2, π3 and π4.

π1 π2 π3 π4

1) s2 s1 s4 s3

2) s2 s3 s4 s1

3) s2 s4 s1 s3

4) s3 s1 s4 s2

5) s3 s4 s1 s2

6) s3 s4 s2 s1

7) s4 s1 s2 s3

8) s4 s3 s1 s2

9) s4 s3 s2 s1

Unfortunately, in these nine cases, it is not possible to exhibit a choice of
Mi, Mj , Mk, Sj and Sk respecting one of the conditions of Proposition 4.8.
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Algorithm 2 Returns a list of the forests and values of splitting and starting
points for which we cannot find a choice of Mi, Mj , Mk, Sj and Sk such that
split(πi, πj) does not belong to si and the product p defined in the wording
of Thm. 4.10 respects one of the conditions of Proposition 4.8.

for all Forest in Fig. 7 do
for all strands (sa, sb, sc, sd) in {s1, s2, s3, s4, s5} on which the histories
of the current forest can split and start do

SolutionFound := False
for all distinct Mi, Mj , Mk selected in {M1,M2,M3,M4} do

Sj := {M1,M2,M3,M4,M5}\{Mi,Mj} Sk := {Mj}
if one of the conditions of Prop. 4.8 is verified for this choice of Mi,
Mj , Mk, Sj and Sk and split(πi, πj) does not belong to si then

SolutionFound := True
end if
Sj := {Mk} Sk := {M1,M2,M3,M4,M5}\{Mi,Mk}
if one of the conditions of Prop. 4.8 is verified for this choice of Mi,
Mj , Mk, Sj and Sk and split(πi, πj) does not belong to si then

SolutionFound := True
end if

end for
if SolutionFound = False then

Write “The forest Forest with splitting and starting points on sa,
sb, sc, sd is problematic.”

end if
end for

end for

So, we treated them by hand, each time exhibiting two possible choices of
Mi, Mj , Mk, Sj and Sk and verifying that at least one of them verifies the
sufficient condition described in Proposition 4.9. As an example, we explain
our treatment of the ninth case, where start(π1) belongs to s4, start(π2)
belongs to π3, start(π3) belongs to s2 and start(π4) belongs to s1. The
treatment of the other cases is similar, and appropriate choices of Mi, Mj ,
Mk, Sj and Sk are given in Appendix D.

Since the four histories represented on Fig. 7(a) have no splitting point,
split(πi, πj) does obviously not belong to si. If we look at the possible
choices for Mi, Mj , Mk, Sj and Sk in the case we are examining, we observe
that we always have to choose one start+ and one start−. Unfortunately,
there is no possible choice verifying the fourth condition of Proposition 4.8.
We now show that it is however possible to verify the condition given in
Proposition 4.9.

Suppose we choose Mi = M1, Mj = M2, Mk = M4, Sj = {M4} and
Sk = M−{M1,M4}. This choice implies that the product p of this theorem’s
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statement contains one start+ (in the term C−1(M1 → M2) ·C(M1 → M4)),
one start− (in the term C−1(M4 → M1) · C(M4 → M2)), and no splitting
point.

Assume first that C(M1 → M4) ≺ C(M1 → M2). This relation is one
of those described in Prop. 4.9, so it is possible to obtain a pair (g1, g2) of
the form desired. The same technique can be adopted if C(M4 → M1) ≺
C(M4 → M2).

Suppose now that C(M1 → M4) 6≺ C(M1 → M2) and C(M4 → M1) 6≺
C(M4 → M2). From these assumptions, the definition of paths, and the fact
that C(M4 → M1) contains a start+, we can write:

π2(1) ≺ C(M4 → M2) � π1(1).

We suggest now a second choice of the parameters for p: Mi = M2,
Mj = M1, Mk = M3, Sj = {M3} and Sk = M − {M2,M3}. This choice
implies that the product p contains one start+ (in the term C−1(M2 →
M1)·C(M2 → M3)), one start− (in the term C−1(M3 → M2)·C(M3 → M1))
and no splitting point.

If C(M2 → M3) ≺ C(M2 → M1) or if C(M3 → M2) ≺ C(M3 → M1),
the condition described in Prop. 4.9 is verified and obtain a pair (g1, g2)
of the form desired. Suppose now that both these precedence relations are
false. Then, the definition of paths and the fact that C(M3 → M2) contains
a start− implies that:

π1(1) ≺ C(M3 → M1) � π2(1),

which is in contradiction with the relation π2(1) ≺ π1(1) obtained above.
Therefore, one of the two choices of Mi, Mj , Mk, Sj and Sk we proposed

can be adopted.
A similar reasoning has been carried out for the eight remaining prob-

lematic cases. So, we found adequate choices for Mi, Mj , Mk, Sj and Sk for
any GDH-Protocol executed by four or five principals.

4.5 Attacking GDH-Protocols with more than five partici-
pants

We now try to extend the result we just obtained to an unbounded number of
protocol participants. This unbounded number of participants implies that
we have to check the five sufficient conditions of Prop. 4.8 and Prop. 4.9 for
an unbounded number of contributions and histories. We will see however
that the specific choices of Sj and Sk we made will make this difficulty
much easier to solve. The following theorem is the same as Theorem 4.10,
except that it claims the insecurity of any GDH-Protocols with at least four
participants.
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Theorem 4.11 For any GDH-Protocol with n ≥ 4 participants, it is possible
for an active attacker to obtain a pair (g1, g2) of elements of G such that
g2 = gp

1 where

p = C−1(Mi → Mi) · C(Mi → Mj)
·[Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)]

·
∏

Ml∈Sk

[Sj\MI : C−1(Ml → Mi) · C(Ml → Mk)]

·
∏

Ml∈Sj

[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)]

·
∏

l∈1...n

Kel
Il

for some choice of Mi, Mj, Mk, Sj, Sk and el; where Mi, Mj and Mk are
three different members of the group M while Sj and Sk are two disjoint sets
of users defined either as

• Sj = {Mk} and Sk = M− {Mi,Mk} or
• Sj = M− {Mi,Mj} and Sk = {Mj}.
Furthermore, it is possible to select Mi and Mj in such a way that

split(πi, πj) does not belong to si.

Proof. We already proved this theorem for four and five participants. We
now prove that the four and five-party case implies the validity of the result
for any larger number of protocol participants.

Consider a GDH-Protocol GDH1 with n > 5 participants and consider
its first four histories π1, π2, π3 and π4.

Consider now a five-party GDH-Protocol GDH2, the first four histories
of which split and start on the same strands as the GDH1 protocol, except
that all histories splitting or starting on strands in the set {s6, . . . , sn} in
the GDH1 protocol rather split or start on s5.

For this protocol, we know from Theorem 4.10 that there is a choice of
Mi, Mj and Mk as disjoint users in the set {M1,M2,M3,M4} and a choice
of Sj and Sk such that

• Sj = {Mk} and Sk = M− {Mi,Mk} or
• Sj = M− {Mi,Mj} and Sk = {Mj}

respecting one of the sufficient conditions of Prop. 4.8 and 4.9 and such that
split(πi, πj) does not belong to si. We call p′ the expression of the product
p in the GDH2 protocol, call S the set in {Sj ,Sk} containing more than one
protocol participant and Ms the user of the set in {Sj ,Sk} containing one
protocol participant.

We now observe that the product∏
Ml∈{M5,...,Mn}

[S\MI : C−1(Ml → Mi) · C(Ml → Ms)]
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in the GDH1 protocol contains at most one split, one start+ and one start−.
Furthermore, these numbers of splitting and starting points are equal to
those in the product

[M5\MI : C−1(M5 → Mi) · C(M5 → Ms)]

in the GDH2 protocol, and the splitting and starting points occur in con-
tributions intended to the same users in the two cases.

So, we know that the products p and p′ contain the same number of
splitting and starting points, and that these points are part of contributions
intended to the same users. This implies that if one of the conditions of
Prop. 4.8 is verified in p′, it is also verified in p and the selection of Mi,
Mj , Mk, Sj and Sk made for the GDH2 protocol is also valid for the GDH1

protocol.
This is only valid for protocols for which we found a choice of Mi, Mj ,

Mk, Sj and Sk respecting one of the conditions of Prop. 4.8. On the other
hand, the protocols which required to use the condition of Prop. 4.9 are such
that all splitting and starting points of the first four histories belong to the
first four strands and, so, the arguments we used in the proof for four and
five participants remain valid. Therefore, at least one of the two possible
choices of Mi, Mj , Mk, Sj and Sk we suggest in Appendix D is also valid for
the GDH1 protocol.

This concludes our proof that it is never possible to guarantee the IKA
property for all participants of a GDH-Protocol executed by at least four
parties.

5 Concluding Remarks

5.1 Summary

In this paper, we analyzed a family of authenticated group key agreement
protocols defined as a generalization of the A-GDH protocols proposed in
the context of the Cliques project [1, 2].

Our main result is the proof that it is impossible to define a protocol
of this family providing implicit key authentication for all group members
if it is executed by at least four participants. As we established this proof
throughout all the paper, we gather its main points here.

We prove our result by providing a systematic way to set up a scenario
that undermines the implicit key authentication property. The process is as
follows.

Consider a GDH-Protocol executed by a group M of n users such that
n ≥ 4 and MI 6∈ M. If MI wants to undermine the IKA property in that
session, he can select:
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• three members of the group M: Mi, Mj and Mk and

• two disjoint sets of users Sj and Sk such that Mk ∈ Sj , Mj ∈ Sk,
Mi 6∈ Sj ∪ Sk and Sj ∪ Sk ∪ {Mi} = M.

This selection must also respect the two following conditions:

• the product

p = C−1(Mi → Mi) · C(Mi → Mj)
· [Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)]

·
∏

Ml∈Sk

[Sj\MI : C−1(Ml → Mi) · C(Ml → Mk)]

·
∏

Ml∈Sj

[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)]

·
∏

Ml∈M

Kel
Il

respects at least one of the conditions described in Propositions 4.8
and 4.9.

• split(πi, πj) does not belong to si

Theorem 4.11 guarantee that the choice of such Mi, Mj , Mk, Sj and Sk

is always possible.
After having selected these values, MI can build a pair (g1, g2) such that

g2 = gp
1 by exploiting a procedure similar to the one described in Algorithm 1

and described in the proof of Prop. 4.8 and 4.9, and replace the value that
Mi will use to compute the group key with g1.

At this time, and given that p = P (πi(0̄)) as we proved in Theorem 3.10,
Mi will compute g2 as his view of the group key, which is in contradiction
with the implicit key authentication property.

A detailed example of this attack process is given in Appendix C.

5.2 Cardinality of the group

Unexpectedly, and even though the three-party version of the Cliques
A-GDH.2 and SA-GDH.2 protocols have been shown to be flawed, our result
is found to be only valid for protocols executed by at least four users. This
shows that the attacks we discovered are really attacks against group pro-
tocols and emphasizes the need to consider these protocols differently than
simple extensions of two-party ones.

We think this limit is minimal: we are not able to find any attack against
the implicit key authentication property for the two-party version of the
A-GDH.2 protocol, nor against our Tri-GDH protocol defined in Section 4.3.
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Our method fails to find attacks against these two protocols for two different
reasons: we are not able to break the two-party version of the A-GDH.2
protocol because we are not able to find services which could be exploited
in order to build a pair of the form desired. This is not the case for the
Tri-GDH protocol as Theorem 3.10 provides several choices for such services.
However, for this last protocol, we are not able to combine these services
in a useful way, as we have always need to use the starting point of three
histories.

5.3 Conclusion

We think our contribution in this paper has two main aspects.
A first aspect is that we now know that the A-GDH protocols cannot

be corrected without changing the design assumptions at their basis. One
possible direction to solve this problem would consist in considering the use
of a signature scheme or of message authentication codes, what would to
separate the key generation part of the protocol (i.e. the sending of the par-
tial Diffie-Hellman values) from the authentication mechanisms. This would
allow to make the authentication more explicit, by including the identifiers
of the protocol participants and freshness guarantees such as nonces for in-
stance. Such a method has already been exploited in [16] for instance, or by
Katz and Yung in [10] for an extension of the Burmester-Desmedt protocol
[3] and studied from a more theoretical point of view by Datta & al. in [4]
for instance.

A more theoretical aspect concerns the form of our result. While several
papers (such as [7, 8, 11, 20]) describe systematic ways to analyze well-
defined families of authentication protocols, we do not know any other gen-
eral impossibility result for such families. It would be interesting to inves-
tigate in which measure our result could be transposed to other families of
protocols. As our attacks are based on the absence of explicitness of the
messages in GDH-Protocols, it would be interesting to see which degree of
explicitness would be necessary to obtain secure authenticated group key
agreement protocols.

Probably the most closely related results are those concerning the secu-
rity of ping-pong protocols [7, 8]: as ping-pong protocols, GDH-Protocols
are executed by successively applying well-defined transformations on the
messages the different users receive (without checking anything about their
content). In that sense, we could have used a method similar as their one,
but only for obtaining the results of Section 3, i.e. for expressing the secrets
of the different users as products of contributions and keys the intruder
knows. On the other hand, the routing problems we considered in Section 4
have no correspondence in ping-pong protocols: these protocols consider
only one history, and so do not raise the problems we encountered with
splitting and starting points.
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Our developments rely on several particularities which are only present in
Dolev-Yao-type analysis of security protocols (as opposed to computational
approaches): we consider a highly restricted set of actions which the intruder
can perform, and our analysis method indicates attack scenarios for incorrect
protocols rather than leading the analyst to the impossibility of finding a
proof. Therefore, we think that our result emphasizes the advantages of
using high-level models in the analysis of security protocols.
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A Strand Spaces and Bundles

The following definitions and lemma are taken from [21], Definitions 2.1-2.6
and Lemma 2.7.

Definition A.1 A signed GDH-Term is a pair 〈σ, t〉 with t ∈ G and σ is
one of the symbols +,−. We will write a signed GDH-Term as +t or −t.
(±G)∗ is the set of finite sequences of signed GDH-Terms. We will denote
a typical element of (±G)∗ by 〈〈σ1, t1〉, . . . , 〈σn, tn〉〉 or in a shorter way by
〈σ1t1, . . . , σntn〉.

Definition A.2 A strand space over G is a set Σ with a trace mapping
tr : Σ → (±G)∗.

By abuse of language, we will still treat signed GDH-Terms as ordinary
GDH-Terms. For instance, we shall refer to subterms of signed GDH-Terms.
We will also usually refer to GDH-Terms simply as terms.

A strand space will usually be represented by its underlying set of strands
Σ.

Definition A.3 Fix a strand space Σ.

1. A node is a pair 〈s, i〉, with s ∈ Σ and i an integer satisfying 1 ≤
i ≤ length(tr(s)). The set of nodes is denoted N . We will say the
node 〈s, i〉 belongs to strand s. Clearly, every node belongs to a unique
strand.

2. If n = 〈s, i〉 ∈ N then index(n) = i and strand(n) = s. Define
term(n) to be (tr(s))(i), i.e. the i-th signed term in the trace of s.
Similarly, uns term(n) is ((tr(s))(i))2, i.e. the unsigned part of the
i-th signed term in the trace of s.
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3. There is an edge n1 → n2 if and only if term(n1) = +t and term(n2) =
−t for some t ∈ G. Intuitively, the edge means that n1 sends the
message t, which is received by n2, recording a potential causal link
between those strands.

4. When n1 = 〈s, i〉 and n2 = 〈s, i + 1〉 are members of N , there is an
edge n1 ⇒ n2. Intuitively, the edge expresses that n1 is an immediate
causal predecessor of n2 on the strand s. We write n′ ⇒+ n to mean
that n′ precedes n (not necessarily immediately) on the same strand.

N together with both sets of edges n1 → n2 and n1 ⇒ n2 is a directed
graph 〈N , (→ ∪ ⇒)〉.

A bundle is a finite subgraph of 〈N , (→ ∪ ⇒)〉 for which we can regard
the edges as expressing the causal dependencies of the nodes.

Definition A.4 Suppose →C⊂→; suppose ⇒C⊂⇒; and suppose that C =
〈NC , (→C ∪ ⇒C)〉 is a subgraph of 〈N , (→ ∪ ⇒)〉. C is a bundle if:

1. NC and →C ∪ ⇒C are finite;

2. if n2 ∈ NC and term(n2) is negative, then there is a unique n1 such
that n1 →C n2;

3. if n2 ∈ NC and n1 ⇒ n2 then n1 ⇒C n2;

4. C is acyclic.

In conditions (2) and (3), it follows that n1 ∈ NC , because C is a graph.

Definition A.5 A node n is in a bundle C = 〈NC , (→C ∪ ⇒C)〉, written
n ∈ C, if n ∈ NC; a strand s is in C if all of its nodes are in NC.

If C is a bundle, then the C-height of a strand s is the largest i such that
〈s, i〉 ∈ C.

Example A.6 The scheme of Example 2.7 represents a bundle C and it
remains a bundle if we suppress 〈s1, 4〉 from NC as well as the arrows leading
to this node from →C and ⇒C . However, it is not a bundle anymore if 〈s2, 1〉
and the arrows leading to and starting from this node are suppressed from
NC , →C and ⇒C since 〈s2, 2〉 ∈ C and 〈s2, 1〉 ⇒ 〈s2, 2〉.

Definition A.7 If S is a set of edges, i.e. S ⊂→ ∪ ⇒, then ≺S is the
transitive closure of S and �S is the reflexive, transitive closure of S.

The relations ≺S and �S are each subsets of NS ×NS , where NS is the
set of nodes incident with any edge in S.

Lemma A.8 Suppose C is a bundle. Then �C is a partial order, i.e. a
reflexive, antisymmetric, transitive relation. Every non-empty subset of the
nodes in C has �C-minimal members.
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We regard �C as expressing causal precedence, because n �C n′ holds
only when n’s occurrence causally contributes to the occurrence of n′. When
a bundle C is understood, we will simply write �. Similarly, we will say that
a node n precedes a node n′ if n � n′.

B Proof of Theorem 3.10

Several lemmas will be useful to prove Theorem 3.10, which comes down to
proving that, for any GDH-Protocol,

P (πi(0̄)) =C−1(Mi → Mi) · C(Mi → Mj)

· [Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)]

·
∏

Ml∈Sk

[Sj\MI : C−1(Ml → Mi) · C(Ml → Mk)]

·
∏

Ml∈Sj

[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)]

·
∏

Ml∈M

Kel
Il

(2)

if Sj and Sk are two disjoint sets of users such that Mk ∈ Sj , Mj ∈ Sk,
Mi 6∈ Sj ∪ Sk and Sj ∪ Sk ∪ {Mi} = M.

Our first lemma says that the key part of the contribution of Mi to Mj

in a session executed by the group of users M is a product of keys that Mi

shares with the other group members, and only of such keys (that is, it does
not contain keys which Mi shares with users outside the group).

Lemma B.1 For any GDH-protocol, if i 6= j,

CK(Mi → Mj) =
∏

k=1...n,k 6=i

CKik
(Mi → Mj).

Proof. CK(Mi → Mj) can only contain keys of the form Kix ∈ Ki since
these are the only known on si. From Proposition 3.5, we can observe that
CKii(Mi → Mj) = 1. Furthermore, the same proposition guarantees that
CKik

(Mi → Mj) = 1 when k 6∈ {1 . . . n} (that is, that CK(Mi → Mj) does
not contain keys shared between Mi and users which are not expected to
take part to the protocol execution) since CKik

(Mk → Mi) is undefined
when Mk 6∈ M.

Our second lemma provides a relation which will be very useful when we
will have to prove Lemma B.3. This third lemma will provide an expression
of PK(πi(0̄)) as a product of contributions which are a subset of the contri-
butions included in the expression of p given in Equation (2). So, our goal
after having proved that lemma will be to prove that the product of the
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key part of all other contributions included in the product of Equation 2 is
known by MI .

Lemma B.2 Consider a GDH-Protocol executed by a group of users M =
{M1, . . . ,Mn} where n ≥ 3 and let Sj and Sk be two disjoint sets of users
such that Mi 6∈ Sj ∪ Sk and Sj ∪ Sk ∪ {Mi} = M. Then∏

Ml∈Sk

[Sj\MI : CK(Ml → Mi)] =
∏

Ml∈Sk

CKli
(Ml → Mi) ·

∏
l∈1...n

Kel
Il

Proof. Let Ml ∈ Sk. From Lemma B.1, [Sj\MI : CK(Ml → Mi)] = [Sj\MI :∏
Mm∈M−{Ml} CKlm

(Ml → Mi)]. If Mm ∈ Sj , then [Sj\MI : CKlm
(Ml →

Mi)] is a term of the form Kel
lI , and is therefore known by MI . So, [Sj\MI :∏

Mm∈M−{Ml} CKlm
(Ml → Mi)] = [Sj\MI :

∏
m∈Sk∪{Mi}\{Ml} CKlm

(Ml →
Mi)] ·Kel

lI .
Finally, if we simplify the terms in∏

Ml∈Sk

[Sj\MI :
∏

Mm∈Sk∪{Mi}\{Ml}

CKlm
(Ml → Mi)]

by using Proposition 3.5, we can observe that the only remaining terms are
those of the form CKli

(Ml → Mi), which proves our identity.

Lemma B.3 Consider a GDH-Protocol executed by a group of users M =
{M1, . . . ,Mn} where n ≥ 3. Let Mi, Mj and Mk be three different members
of the group M. Let Sj and Sk be two disjoint sets of users such that Mk ∈ Sj,
Mj ∈ Sk, Mi 6∈ Sj, Mi 6∈ Sk and Sj ∪ Sk ∪ {Mi} = M. Then

PK(πi(0̄))−1 = CK(Mi → Mi)

·
∏

Ml∈Sk

[Sj\MI : CK(Ml → Mi)]

·
∏

Ml∈Sj

[Sk\MI : CK(Ml → Mi)] ·
∏

m∈1...n

Kem
Im

Proof. Observation 3.2 tells us that

PK(πi(0̄))−1 =
∏

j=1...n

CK(Mj → Mi)

Then we observe that∏
Mj∈M−{Mi}

CK(Mj → Mi) =
∏

Mj∈M−{Mi}

CKij (Mj → Mi)

Actually, from Lemma B.1, CK(Mj → Mi) =
∏

Mm∈M−{Mj} CKjm(Mj →
Mi) and, from Prop. 3.5, CKjm(Mj → Mi) = C−1

Kjm
(Mm → Mi). So, the only
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terms that are not inverted in
∏

Mj∈M−{Mi}
∏

Mm∈M−{Mj} CKjm(Mj → Mi)
are those of the form CKji(Mj → Mi) (for Mj ∈ M − {Mi}), what proves
our identity.

The last step of our proof consists in observing that∏
Mj∈M−{Mi}

CKij (Mj → Mi) =
∏

Mj∈Sj

CKij (Mj → Mi)·
∏

Mj∈Sk

CKij (Mj → Mi)

and in using Lemma B.2 on the two terms of the product on the right of
this equation.

As we proved that

PK(πi(0̄))−1 = CK(Mi → Mi)

·
∏

Ml∈Sk

[Sj\MI : CK(Ml → Mi)]

·
∏

Ml∈Sj

[Sk\MI : CK(Ml → Mi)] ·
∏

m∈1...n

Kem
Im

we now have to prove that the product

CK(Mi → Mj) · [Sj\MI : C−1
K (Mi → Mj)]

·
∏

Ml∈(M−Sj)

[Sj\MI : CK(Ml → Mk)]

·
∏

Ml∈Sj

[Sk\MI : CK(Ml → Mj)]

containing the remaining contributions in the expression of P (πi(0̄)) we try
to prove, is a product of keys that MI knows.

To this purpose, we prove one last expression, which is very close from
the one we proved in Lemma B.2.

Lemma B.4 Consider a GDH-Protocol executed by a group of users M =
{M1, . . . ,Mn} where n ≥ 3 and let S ⊂ M be a subgroup of M such that
Mi ∈ S. Then ∏

Mj∈M\S

[S\MI : CK(Mj → Mi)] =
∏

j∈1...n

K
ej

Ij

Proof. We first note that∏
Mj∈M\S

[S\MI : CK(Mj → Mi)] =
∏

Mj∈M

[S\MI : CK(Mj → Mi)] ·
∏

j∈1...n

K
e′j
Ij

as, if Mj ∈ S, we can be sure that [S\MI : CK(Mj → Mi)] is a product of
keys known by MI .
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Then, we note that∏
Mj∈M

[S\MI : CK(Mj → Mi)] = [S\MI : PK(πi(0̄))−1]

which proves our lemma since Mi ∈ S.

This lemma proves that the term
∏

Ml∈(M−Sj)
[Sj\MI : CK(Ml → Mk)]

in the product above is a product of keys the adversary knows.
We now provide a proof of Theorem 3.10.

Theorem B.5 For any GDH-Protocol executed by a group of users M =
{M1, . . . ,Mn} where n ≥ 3, if Sj and Sk are two disjoint sets of users such
that Mk ∈ Sj, Mj ∈ Sk, Mi 6∈ Sj ∪ Sk and Sj ∪ Sk ∪ {Mi} = M. Then,

P (πi(0̄)) = C−1(Mi → Mi) · C(Mi → Mj)
· [Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)]

·
∏

Ml∈Sk

[Sj\MI : C−1(Ml → Mi) · C(Ml → Mk)]

·
∏

Ml∈Sj

[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)]

·
∏

Ml∈M

Kel
Il

Proof. We proceed in two steps. In the first one, we prove that the expression
above is true for the random part of the product (i.e. PR(πi(0̄))), then we
prove that it is correct for the key part of the product (i.e. PK(πi(0̄))).

1. R-part
If we except the last line of the expression of P (πi(0̄)) above which is

a product of keys, this expression only contains products of pairs of con-
tributions. Proposition 3.3 guarantees us that the random part of the last
three lines of products of contributions must be equal to one. Finally, com-
bining the expressions proved in Propositions 3.3 and 3.4 for the product
C−1

R (Mi → Mi) · CR(Mi → Mj) guarantees us that it is equal to PR(πi(0̄)).

1. K-part
The use of Lemma B.3 combined with the use of Lemma B.4 says us

that our result is proved if the product

CK(Mi → Mj) · [Sj\MI : C−1
K (Mi → Mj)]

·
∏

Ml∈Sj

[Sk\MI : CK(Ml → Mj)] (3)

only contains keys known by MI .
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Using Lemma B.1 with the first two terms of this product provides

CK(Mi → Mj) · [Sj\MI : C−1
K (Mi → Mj)]

=
∏

k=1...n,k 6=i

CKik
(Mi → Mj) · [Sj\MI :

∏
k=1...n,k 6=i

C−1
Kik

(Mi → Mj)]

=
∏

Mk∈Sj

CKik
(Mi → Mj) ·

∏
Ml∈M

K
e′l
Il

= [Sk\MI : CK(Mi → Mj)] ·
∏

Ml∈M

K
e′′l
Il

Inserting this last expression in 3 provides:

(3) = [Sk\MI : CK(Mi → Mj)]

·
∏

Ml∈Sj

[Sk\MI : CK(Ml → Mj)] ·
∏

Ml∈M

K
e′′l
Il

=
∏

Ml∈M−Sk

[Sk\MI : CK(Ml → Mj)] ·
∏

Ml∈M

K
e′′l
Il

and this last product is a product of keys MI knows, as we proved in
Lemma B.4.

C Illustration of the Attack Process

We illustrate the full attack construction process developed all along this
paper. To this purpose, we define a deliberately intricate protocol, the
Int-GDH protocol, which will allow us to illustrate our attack construction
process more completely than if we considered a simple, regular protocol.

A typical execution of the Int-GDH protocol is represented in the strand
space of Fig. 9, where, in order to keep our figure in a reasonable dimen-
sion, we represented the transmission of a sequence of elements of G as a
single arrow between two nodes instead of splitting these transmissions into
sequences of transmissions of a single element of G.

Even though the five corresponding histories can be easily deduced from
the strand definitions, we provide them in Table 2, where the notation
(〈si, j〉, k) refers to the k-th element of G transmitted on 〈si, j〉.

We now have a complete definition of the Int-GDH protocol: strands
inform us about the way messages are (normally) exchanged, while histories
indicate us how they are computed.

We will now build an attack against this protocol.
We first have to select:

• three group members: Mi, Mj and Mk
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M1 M2 M3 M4

•

��

Fl1,1 // •
��

•
��

•

��

Fl1,2oo

•
��

•
��

Fl2,1oo

•
��

Fl2,2 // •
��

•
��

•
Fl3,1oo

��

M5 •

��

Fl3,2 // •

��
•

��

Fl4,1 // •
��
•
��

•
��

Fl4,2oo

• •Fl5oo •Fl5oo Fl5 // • Fl5 // •

Fl1,1 = αr1 , αr1K15

Fl1,2 = αr4

Fl2,1 = αr4 , αr3

Fl2,2 = αr2K12K25 , αr1 , αr1r2K15K25

Fl3,1 = αr2r4 , αr2r3

Fl3,2 = αr2r3K12K25 , αr1r3 , αr1r2r3K15K25K35

Fl4,1 = αr1r2r4 , αr1r2r3

Fl4,2 = αr2r3r4K12K25 , αr1r3r4 , αr1r2r3r4K15K25K35K45

Fl5 = αr2r3r4r5K15 , αr1r3r4r5K25 , αr1r2r4r5K35 , αr1r2r3r5K45

Figure 9: A run of the Int-GDH protocol

• two disjoint sets of users Sj and Sk such that Mk ∈ Sj , Mj ∈ Sk,
Mi 6∈ Sj ∪ Sk, Sj ∪ Sk ∪ {Mi} = M.

This selection must also respect the two following conditions:

• split(πi, πj) does not belong to si

• the product

p = C−1(Mi → Mi) · C(Mi → Mj)
· [Sj\MI : C−1(Mi → Mj) · C(Mi → Mk)]

·
∏

Ml∈Sk

[Sj\MI : C−1(Ml → Mi) · C(Ml → Mk)]

·
∏

Ml∈Sj

[Sk\MI : C−1(Ml → Mi) · C(Ml → Mj)] ·
∏

Ml∈M

Kel
Il

respects at least one of the sufficient conditions described in Proposi-
tion 4.8.
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Table 2: Histories in the Int-GDH Protocol

π1 π2 π3 π4 π5

(〈s2, 3〉, 1) (〈s1, 1〉, 1) (〈s4, 1〉, 1) (〈s3, 2〉, 2) (〈s1, 1〉, 2)
(〈s3, 3〉, 1) (〈s2, 1〉, 2) (〈s3, 1〉, 1) (〈s2, 2〉, 2) (〈s2, 1〉, 2)
(〈s3, 4〉, 1) (〈s2, 3〉, 2) (〈s3, 2〉, 1) (〈s2, 4〉, 2) (〈s2, 3〉, 3)
(〈s4, 2〉, 1) (〈s3, 3〉, 2) (〈s2, 2〉, 1) (〈s1, 2〉, 2) (〈s3, 3〉, 3)
(〈s4, 3〉, 1) (〈s3, 4〉, 2) (〈s2, 4〉, 1) (〈s1, 3〉, 2) (〈s3, 4〉, 3)
(〈s5, 2〉, 1) (〈s4, 2〉, 2) (〈s1, 2〉, 1) (〈s5, 1〉, 2) (〈s4, 2〉, 3)
(〈s5, 3〉, 1) (〈s4, 3〉, 2) (〈s1, 3〉, 1) (〈s5, 3〉, 4) (〈s4, 3〉, 3)
(〈s1, 4〉, 1) (〈s5, 2〉, 2) (〈s5, 1〉, 1) (〈s4, 4〉, 4) (〈s5, 2〉, 3)

(〈s5, 3〉, 2) (〈s5, 3〉, 3)
(〈s2, 5〉, 2) (〈s3, 5〉, 3)

We first observe that the five histories of the Int-GDH protocol have no
common part, so that there are no splitting point.

As a first try, we consider the choice Mi = M1, Mj = M2 and Mk = M3.
Whatever choice we do for Sj and Sk, we can verify that the product p will
contain at least three starting points: C(M1 → M2), [Sj\MI : C−1(M1 →
M2)] and [Sj\MI : C−1(M2 → M1)]. These values of Mi, Mj and Mk are
therefore not admissible.

As a second attempt, we consider the choice Mi = M1, Mj = M3, Mk =
M2 while Sj = {M2} and Sk = {M3,M4,M5}. This solution implies that
p contains one start+: [Sj\MI : C(M1 → M2)] and one start−: [Sk\MI :
C−1(M2 → M1)]. As expressed in our fifth condition, this is acceptable
only if C(M1 → M2) ≺ C(M1 → M3) or C(M2 → M1) ≺ C(M2 → M3).
Checking these conditions in Table 2 shows that C(M2 → M1) 6≺ C(M2 →
M3) because 〈s2, 2〉 ≺ 〈s2, 3〉. However, we can verify that C(M1 → M2) ≺
C(M1 → M3) since 〈s1, 1〉 strictly precedes all nodes of α3 belonging to s1.
We are therefore able to build an attack for this selection of values.

A simple way to construct our attack consist in following the procedure
explained in Proposition 4.9’s proof.

The first step in this procedure consists in defining ẑ as the index of the
starting point of α2 in s1 (given that C(M1 → M2) ≺ C(M1 → M3)). A
simple examination shows that ẑ = 1.

We now have to execute Algorithm 1 for the product of contributions
[M2\MI : C−1(M1 → M3) · C(M1 → M2)] and for values of z ranging
from 1 to ẑ, what means that we will execute this algorithm for only one
step of the for loop. The values g1 and g2 are initialized to α and, for
the simplicity of the writings, we always select αx as random element of
G. The random contribution of Mi during the session we are attacking will
be written ri, while his contribution during the session where the intruder
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replaces the users included in Sj will be denoted r′i, and we will use the
letter r′′i to write the contribution Mi generated during the session where
the intruder replaces the users included in Sk. The strand space resulting
from this partial execution of Algorithm 1 is represented in Fig. 10. The
current values of g1 and g2 are indicated as well.

M1
αr′1 , αr′1K15

// MI

g1 = α, g2 = αr′1

Figure 10: First Step

Always following the procedure indicated in the fifth part of the proof
of Proposition 4.8, we now have to execute Algorithm 1 for the product
[{M3,M4,M5}\MI : C−1(M2 → M1) · C(M2 → M3)], keeping the current
values of g1 and g2 as initial values. The resulting strand space is represented
in Fig. 11.

M2

��
MI

αx, αx
oo

��
•
��

•
αr′1 , αx

oo

��
•

αr′′2 K12K2I , αx, αxr′′2 K2I

//

��
•
��

•
αr′1r′′2 , αxr′′2

//

��
•
��

• •
αx, αx, αx, αx

oo

g1 = αr′′2 K12K2I , g2 = αr′1r′′2

Figure 11: Second Step

The next step in the procedure described in the fifth part of the proof
of Proposition 4.8 consists in completing the execution of Algorithm 1 for
the product [M2\MI : C−1(M1 → M3) · C(M1 → M2)]. The result of this
execution (with the updated values of g1 and g2) is represented in Fig. 12.

We now have to execute Algorithm 1 for the remaining products of pairs
of contributions in

p = C−1(M1 → M1) · C(M1 → M3)
· [M2\MI : C−1(M1 → M3) · C(M1 → M2)]

·
∏

Ml∈{M3,M4,M5}

[M2\MI : C−1(Ml → M1) · C(Ml → M2)]

· [{M3,M4,M5}\MI : C−1(M2 → M1) · C(M2 → M3)] ·
∏

Ml∈M

Kel
Il
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M1
αr′1 , αr′1K15

//

��
MI

��
•
��

•
��

αr′′2 K12K2I , αx
oo

•
αr′1r′′2 K12K2I , αxr′1

//

��
•
��

• •
αx, αx, αx, αx

oo

g1 = αr′1r′′2 K12K2I , g2 = αr′1r′′2

Figure 12: Third Step

A direct observation however shows that

[M2\MI : C−1(M3 → M1) · C(M3 → M2)] = 1

[M2\MI : C−1(M4 → M1) · C(M4 → M2)] = 1

so we do not need to apply Algorithm 1 for these products in our protocol.
We however have to collect the products [M2\MI : C−1(M5 → M1) ·

C(M5 → M2)] and C−1(M1 → M1) · C(M1 → M3) by applying the same
process as before. Always keeping the current values of g1 and g2, the strand
space obtained for the product [M2\MI : C−1(M5 → M1) ·C(M5 → M2)] is
represented in Fig. 13.

M5

��
MI

αx, αx
oo

��
•
��

•
αr′1r′′2 K12K2I , αr′1r′′2

oo

��
•

αr′1r′′2 r′5K12K15 , αr′1r′′2 r′5KI5 , αxK35 , αxK45

// •

g1 = αr′1r′′2 r′5K12K15 , g2 = αr′1r′′2 r′5KI5

Figure 13: Fourth Step

In order to complete our attack, we still have to execute Algorithm 1 for
the product C−1(M1 → M1) ·C(M1 → M3) and to send g1 as the value M1

will use to compute the group key. This is represented in Fig. 14.
At the end of this process, when M1 will compute his view of the group

key, he will exponentiate g1 = αr′1r′′2 r′5K12K15 with r1K
−1
12 K−1

15 and obtain

αr1r′1r′′2 r′5 = g
K−1

I5
2 . The intruder can therefore compute a key that would

normally have to be kept secret.
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M1
αr1 , αr1K15

//

��
MI

��
•
��

•
��

αr′1r′′2 r′5KI5 , αx
oo

•
αr1r′1r′′2 r′5KI5 , αxr1

//

��
•
��

• •
αr′1r′′2 r′5K12K15 , αx, αx, αx

oo

g1 = αr′1r′′2 r′5K12K15 , g2 = αr1r′1r′′2 r′5KI5

Figure 14: Last Step

D Possible choices for Mi, Mj, Mk, Sj and Sk

The following table provides adequate choices for Mi, Mj , Mk, Sj and Sk in
the nine problematic cases discussed in the proof of Theorem 4.10. The first
column explains on which strands the four histories start, while the second
column provides the corresponding choices of Mi, Mj , Mk, Sj and Sk.

Table 3: Possible choices for Mi, Mj , Mk, Sj and Sk

π1 π2 π3 π4 Mi Mj Mk Sj Sk

1) s2 s1 s4 s3 M1 M3 M2 {M2} M\{M1,M2}
M3 M1 M4 {M4} M\{M3,M4}

2) s2 s3 s4 s1 M3 M1 M4 {M4} M\{M3,M4}
M3 M4 M1 M\{M3,M4} {M4}

3) s2 s4 s1 s3 M1 M2 M4 M\{M1,M2} {M2}
M1 M4 M2 {M2} M\{M1,M2}

4) s3 s1 s4 s2 M1 M4 M3 {M3} M\{M1,M3}
M1 M3 M4 M\{M1,M3} {M3}

5) s3 s4 s1 s2 M1 M2 M3 {M3} M\{M1,M3}
M2 M1 M4 {M4} M\{M2,M4}

6) s3 s4 s2 s1 M1 M2 M3 {M3} M\{M1,M3}
M1 M3 M2 M\{M1,M3} {M3}

7) s4 s1 s2 s3 M1 M3 M4 {M4} M\{M1,M4}
M1 M4 M3 M\{M1,M4} {M4}

8) s4 s3 s1 s2 M1 M2 M4 {M4} M\{M1,M4}
M1 M4 M2 M\{M1,M4} {M4}

9) s4 s3 s2 s1 M1 M2 M4 {M4} M\{M1,M4}
M2 M1 M3 {M3} M\{M2,M3}
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