
On the Role of Scheduling in Simulation-Based
Security?

Ran Canetti1,2, Ling Cheung2, Nancy Lynch2, and Olivier Pereira3

1 IBM TJ Watson Research Center
2 Massachusetts Institute of Technology

3 Université catholique de Louvain, olivier.pereira@uclouvain.be

Abstract. In a series of papers, Küsters et al. investigated the relation-
ships between various notions of simulation-based security. Two main
factors, the placement of a “master process” and the existence of “for-
warder processes”, were found to affect the relationship between different
definitions. In this extended abstract, we add a new dimension to the
analysis of simulation-based security, namely, the scheduling of concur-
rent processes. We show that, when we move from sequential scheduling
(as used in previous studies) to task-based nondeterministic scheduling,
the same logical statement gives rise to incomparable notions of security.
Under task-based scheduling, the hierarchy based on placement of “mas-
ter process” becomes obsolete, because no such designation is necessary
to obtain meaningful runs of a system. On the other hand, the existence
of “forwarder processes” remains an important factor.

1 Introduction

In simulation-based security, the behavior of a multi-party protocol ρ executing
in the “real world”, often in the presence of an adversary Adv , is compared
against the behavior of a simulator Sim interacting with an ideal process φ
(also called a functionality). Intuitively, if the behaviors of these two systems
are indistinguishable, then ρ is at least as secure as φ.

This notion of simulation traces back to the early works of Micali et al. on
zero-knowledge proof systems [GMR85] and secure function evaluation [GMW87].
Much progress was made during the 1990’s [GL90,Bea91,MR91,PW94,Can95],
leading to the general definitions of reactive simulatability (RSIM) [PW01] and
universally composable (UC) security [Can01]. Many related definitions soon
followed, including strong simulatability (SS) [DKM+04].

Using informal notations of parallel composition ‖ and indistinguishability ≈,
some major variants of simulation-based security can be formulated as follows:
? Canetti’s work on this project was supported by NSF CyberTrust Grant #0430450.

Cheung was supported by DFG/NWO bilateral cooperation project 600.050.011.01
Validation of Stochastic Systems (VOSS) and by NSF Award #CCR-0326227.
Lynch were supported by DARPA/AFOSR MURI Award #F49620-02-1-0325,
MURI AFOSR Award #SA2796PO 1-0000243658, NSF Awards #CCR-0326277
and #CCR-0121277, and USAF, AFRL Award #FA9550-04-1-0121, and Pereira
was supported by the Belgian National Fund for Scientific Research (F.R.S.-FNRS)

– Reactive Simulatability : ρ ≤RS φ iff ∀Adv ∀Env ∃Sim : ρ‖Adv‖Env ≈
φ‖Sim‖Env .

– UC Security : ρ ≤UC φ iff ∀Adv ∃Sim ∀Env : ρ‖Adv‖Env ≈ φ‖Sim‖Env .
– Black-Box Simulatability : ρ ≤BB φ iff ∃Sim ∀Adv ∀Env : ρ‖Adv‖Env ≈

φ‖Adv‖Sim‖Env .
– Strong Simulatability : ρ ≤SS φ iff ∃Sim ∀Env : ρ‖Env ≈ φ‖Sim‖Env .

Note that the indistinguishability condition is stated relative to an environment
process Env , which takes on the role of a “distinguisher”. Moreover, in the
last three definitions, the simulator must be specified before the environment.
This essentially guarantees composability of the security definition, because the
simulation must be successful regardless of the environment in which the protocol
ρ is executed.

The relationships between some of these variants can be deduced simply by
examining their logical structures. For example, strong simulatability implies
black-box simulatability, which in turn implies both reactive simulatability and
UC security. The other implications are less obvious and are investigated by
Datta et al. in [DKM+04,DKMR05], which present a hierarchy of simulation-
based security definitions using two criteria: (i) the identity of the master process
(which may be the environment, adversary or simulator) and (ii) the definability
of a forwarder process that is able to forward an unbounded number of messages.
In particular, it is shown that strong simulatability is equivalent to UC security
if and only if forwarder processes are definable.

The notion of a master process used in the first criterion is common in model-
ing frameworks with sequential activation: given a system of machines/processes
executing in parallel, at most one machine is active at any given point in time,
and, when the active machine produces a message, the intended recipient is the
next active machine. A designated master process is triggered if for whatever
reason the chain of activation is broken.

Sequential activation is implemented in many frameworks, including the In-
teractive Turing Machine (ITM) model in [Can01,Küs06], the Reactive System
(RS) model1 of [PW01,BPW04] and the Sequential Probabilistic Process Calcu-
lus (SPPC) of [DKM+04,DKMR05]. Since machines are activated via message
delivery, one need not specify a separate scheduler to resolve nondeterminism
(as is typical in traditional models of concurrency).

Although less common, non-sequential activation is also found in crypto-
oriented frameworks, including the Probabilistic Polynomial-time Process Calcu-
lus (PPC) of [LMMS98,MMS03,DKM+04,MRST06] and the Task-PIOA model
of [CCK+06a,CCK+06b]. Here, nondeterminism is resolved using schedulers,
which are state-dependent functions (or Markov chains) in PPC and oblivious
task sequences in Task-PIOA.

1 In general, the high-level scheduling in RS need not be sequential: messages are
not delivered immediately; instead, they are stored in buffers that may be triggered
by a component other than the sender. However, sequential scheduling is typically
implemented in actual cryptographic protocol analysis [BPW03].

Since scheduling is an integral part of the semantics of concurrent processes,
it is natural to ask whether the same definition of security would have different
meanings when we move between sequential and non-sequential activation. Many
in the community have argued that the two styles of scheduling are semantically
equivalent, because sequential scheduling can be emulated in a non-sequential
framework, and vice versa. In this paper, we show that such claims are mislead-
ing, because there exist protocols that are secure under one type of scheduling
but insecure under the other. This shows scheduling is in fact an important
aspect in simulation-based security.

In our first example (Section 3.1), we show that sequential scheduling can
“create” correlations that are not present in machine specifications. As a result,
two protocols are UC-indistinguishable even though one of them implements
an input/ouput correlation explicitly while the other one does not. In contrast,
oblivious task-based scheduling does not allow the possibility to forge correla-
tions between dynamically chosen values, because a scheduler is a sequence of
tasks that are chosen nondeterministically in advance. The same two protocols
are therefore UC-distinguishable under oblivious scheduling.

In our second example (Section 3.2), we show that sequential scheduling
can give the distinguisher environment additional power, because it can control
the ordering of events elsewhere in the system by timing its own messages.
(This holds even if the environment is not the master scheduler, because the
master scheduler kicks in only if the activation chain is broken.) This allows
the environment to distinguish two protocols that are indistinguishable under
oblivious scheduling.

Finally, we observe that the “forwarder” criterion of [DKM+04,DKMR05] re-
mains meaningful and important when we move from sequential to non-sequential
activation. (The “master process” criterion is no longer meaningful, because
there is no designation of master processes in a non-sequential framework.) We
prove that strong simulatability is equivalent to UC security in the Task-PIOA
framework. The proof rests upon the fact that forwarder processes are definable
as task-PIOAs.

Roadmap In Section 2, we briefly review the task-PIOA framework and our gen-
eral modeling paradigm for cryptographic protocol analysis. Then, in Section 3,
we use two examples to show that sequential and non-sequential activation give
rise to incomparable notions of security. In Section 4, we prove that forwarders
are definable in Task-PIOA, and hence strong simulatability is equivalent to UC
security.

2 Security Modeling with Task-PIOAs

Our basic framework is that of task-PIOAs [CCK+06a], which provides a partial-
information scheduling mechanism suitable for cryptographic protocol analysis.

PIOAs A probabilistic I/O automaton (PIOA) A is a tuple 〈Q, q̄, I, O,H,∆〉,
where: (i) Q is a countable set of states, with start state q̄ ∈ Q; (ii) I, O and H

are countable and pairwise disjoint sets of actions, referred to as input, output
and internal actions, respectively; (iii) ∆ ⊆ Q × (I ∪ O ∪ H) × Disc(Q) is a
transition relation, where Disc(Q) is the set of discrete probability measures on
Q. An action a is enabled in a state q if 〈q, a, µ〉 ∈ ∆ for some µ. The set
Act := I ∪O∪H is called the action alphabet of A. If I = ∅, then A is said to be
closed. The set of external actions of A is I ∪O and the set of locally controlled
actions is O ∪H. We assume that A satisfies the following conditions.
– Input Enabling: For every q ∈ Q and a ∈ I, a is enabled in q.
– Transition Determinism: For every q ∈ Q and a ∈ A, there is at most

one µ ∈ Disc(Q) such that 〈q, a, µ〉 ∈ ∆.
Parallel composition for PIOAs is based on synchronization of shared actions.

Two PIOAs Ai, i ∈ {1, 2}, are said to be compatible if Act i ∩Hj = Oi ∩Oj = ∅
whenever i 6= j. In that case, we define their composition A1‖A2 to be 〈Q1 ×
Q2, 〈q̄1, q̄2〉, (I1∪I2)\(O1∪O2), O1∪O2,H1∪H2,∆〉, where ∆ is the set of triples
〈〈q1, q2〉, a, µ1 × µ2〉 such that (i) a is enabled in some qi and (ii) for every i, if
a ∈ Ai then 〈qi, a, µi〉 ∈ ∆i, otherwise µi assigns probability 1 to qi. A hiding
operator is also available: given A = 〈Q, q̄, I, O,H,∆〉 and S ⊆ O, hide(A, S) is
the tuple 〈Q, q̄, I, O′,H ′,∆〉, where O′ = O \ S and H ′ = H ∪ S. This prevents
synchronizations of actions in S with any other PIOA.

Task-PIOAs To resolve nondeterminism, we make use of the notion of tasks
introduced in [CCK+06a]. Formally, a task-PIOA is a pair (A,R) such that (i) A
is a PIOA and (ii) R is a partition of the locally-controlled actions. With slight
abuse of notation, we use A to refer to both the task-PIOA and the underling
PIOA. The equivalence classes in R are referred to as tasks. Unless otherwise
stated, we will use terminologies inherited from the PIOA setting.

The following axiom is imposed on task-PIOAs.
– Action Determinism: For every state q ∈ Q and every task T ∈ R, there

is at most one action a ∈ T that is enabled in q.
In case some a ∈ T is enabled in q, we say that T is enabled in q.

Given compatible task-PIOAs A1 and A2, we define their composition to be
〈A1‖A2,R1 ∪ R2〉. The hiding operator for PIOAs also extends in the obvious
way: given a set S of output actions, hide(〈A,R〉, S) is simply 〈hide(A, S),R〉.

Finally, a task schedule for a closed task-PIOA 〈A,R〉 is a finite or infinite se-
quence ρ = T1.T2.T3 . . . of tasks in R. This induces a well-defined (probabilistic)
execution of A as follows:

(i) from the start state q̄, we apply the first task T1;
(ii) due to action- and transition-determinism, T1 specifies at most one transi-

tion from q̄;
(iii) if such transition exists, it is taken, otherwise nothing happens;
(iv) repeat with remaining Ti’s.

Example: Adaptive Adversary For cryptographic applications, we adopt the fol-
lowing modeling paradigm.
1. An adaptive adversary is modeled as a system component, for example, a

message delivery service that can eavesdrop on network communications and

control the order of message delivery. Thus, the adversary resolves the so-
called high-level nondeterminism.

2. Low-level nondeterminism is resolved by a task schedule chosen nondeter-
ministically in advance. For example, in a typical protocol, many different
parties make independent random choices, and it is inconsequential which
of them does so first. A task schedule fixes a particular order in which the
different coin tosses occur.
We illustrate this paradigm via an example. Consider a toy protocol in which

a sender, S , and two receivers, R0 and R1, exchange messages via an adversary
Adv (Figure 1). The sender S also chooses two random bits b and s indepen-
dently. The first bit b is announced to the adversary Adv and the second bit
s is kept secret until S receives an acknowledgment from either R0 or R1. If
the acknowledgment from Rb arrives before the acknowledgment from R1−b, S
reveals s to Adv , otherwise s remains secret. A detailed description of S is given
in Appendix C, Figure 5.

�� ��
�� ��R0

sd(ack)R0→S

rr
�� ��
�� ��S

annou(b),sd(msg)S→Ri
,reveal(s)

--�� ��
�� ��Adv

rec(msg)S→R0
22

rec(ack)Ri→S

mm
rec(msg)S→R1

((�� ��
�� ��R1

sd(ack)R1→S

hh

Fig. 1. A Toy Protocol

The adversary Adv delivers the messages from S to Ri whenever they are
available, while the acknowledgments from Ri to S are buffered until S an-
nounces b. Then Adv delivers ackb before ack1−b. A detailed description of Adv
is given in Appendix C, Figure 6. Finally, a receiver Ri simply accepts the
message from S and responds with an acknowledgment. This is described in
Appendix C, Figure 7.

In this protocol, the ordering between rec(ack)R0→S and rec(ack)R1→S is a
good example of high-level nondeterminism. Once these acknowledgments are
placed onto the network (via actions sd(ack)Ri→S), the adversary controls their
transit delays. In particular, the adversary described above waits until he learns
the value of b, and then he delivers the acknowledgment from Rb. This ensures
that S will reveal s if the task reveal(∗) is scheduled subsequently. In fact, it
is easy to check that the following task scheduler allows Adv to learn s with
probability 1. This shows Adv is adaptive, since b is randomly generated during

execution.

choose. annou(∗). sd(msg)S→R0 . sd(msg)S→R1 . rec(msg)S→R0 . rec(msg)S→R1 .

sd(ack)R0→S . sd(ack)R1→S . rec(ack)R0→S . rec(ack)R1→S . reveal(∗)
We now turn to low-level nondeterminism. For instance, the ordering between

sd(msg)S→R0 and sd(msg)S→R1 is inessential in the security analysis, provided
they are both performed by S . Similarly, the ordering between annou(∗) and
sd(msg)S→Ri

is also inessential. All of these are examples of low-level nondeter-
ministic choices and represent implementation freedom in S . That is, an actual
implementation of S may perform annou(∗), sd(msg)S→R0 and sd(msg)S→R1 in
any order. We capture all these possibilities in our formal semantics by quanti-
fying over all possible task schedules.

Implementation The formal semantics of a closed task-PIOA is given in terms
of the trace distributions induced by task schedules. As we described earlier,
each task schedule induces a probabilistic run, from which a trace distribution
is obtained by abstracting away state information. That is, a trace distribution
contains only information about actions taken during the run.

For a possibly open task-PIOA A, the semantics is given relative to closing
environments: a task-PIOA Env is an environment for A if it is compatible with
A and A‖Env is closed. The external behavior of A is then the mapping that
takes each environment Env to the set of trace distributions of A‖Env (denoted
TrDists(A‖Env)).

We also define an implementation relation between task-PIOAs with the same
I/O interface, expressing the idea that every possible behavior of one automaton
in a particular environment is also a possible behavior of another automaton in
the same environment. Formally, A1 and A2 are said to be comparable if I1 = I2

and O1 = O2. In that case, A1 is said to implement A2, denoted A1 ≤0 A2, if
TrDists(A1‖Env) ⊆ TrDists(A2‖Env) for all environments Env for both A1 and
A2.

The subscript 0 in ≤0 refers to the requirement that every trace distribu-
tion in TrDists(A1||Env) must have an identical match in TrDists(A2||Env). For
cryptographic protocol analysis, we define a variation based on the probability
that Env produces a special “accept” output. An approximate implementation,
denoted ≤neg,pt, is then defined for task-PIOA families, which allows “negligible”
discrepancies between acceptance probabilities. Details concerning ≤neg,pt can be
found in Appendix A.

3 Separation between Sequential Scheduling and
Oblivious scheduling

We use two simple examples to illustrate the effect of different scheduling schemes
on the semantics of security definitions. In Section 3.1, we exhibit two systems
that are indistinguishable under sequential scheduling, but they do not imple-
ment each other under oblivious scheduling. In Section 3.2, we present two sys-
tems in the converse situation.

3.1 Sequential indistinguishability

Consider two variants of the system depicted in Figure 2. In the first variant,
the environment interacts with two task-PIOAs A0 and A1, which simply answer
requests. That is, task-PIOA Ai answers each Helloi input from the environ-
ment with the output action i. In the second variant, the environment interacts
with two task-PIOAs B0 and B1, which behave like beacons. That is, each Bi

spontaneously and persistently produces the output action i. These beacons also
accept Helloi inputs, but they have no effect.

The codes for Ai and Bi are given in Appendix C, Figure 8.

Env

A0 or B0 A1 or B1

Hello0 Hello1

0 1

Fig. 2. Diagram for the Answer and Beacon automata

We claim that, under sequential activation, no environment can distinguish
the system Answer := A0‖A1 from the system Beacon := B0‖B1. Indeed, the
only way to activate Ai (or Bi) is the Helloi action, after which both Ai and Bi

will respond with i.
On the other hand, we observe that Answer 6≤0 Beacon, and Beacon 6≤0

Answer. Consider an environment E that has one single output task Hello =
{Hello0,Hello1}, where the activation of Hello0 or Hello1 is decided through
some internal coin flipping, performed as the unique action in the task Flip =
{flip} of E . Consider now the task schedule ρ := Flip.Hello.Out0. In system
Answer‖E , the resulting trace distribution will be Hello1 with probability 1

2 and
Hello0 with probability 1

2 . This trace distribution cannot be matched by any task
schedule for Beacon‖E , because task schedules are chosen nondeterministically
in advance. More precisely, a task schedule for Beacon‖E either schedules Out0
after Flip.Hello or it does not. In the first case, 0 occurs with probability 1 and
in the second with probability 0.

Using exactly the same argument, we see that the trace distribution result-
ing from applying ρ to Beacon‖E cannot be matched by any task schedule for
Answer‖E , because no task schedule can ensure that 0 occurs with probability
1 in Answer‖E .

This example can be easily extended to the security setting, where the input
and output actions of Ai’s and Bi’s are treated as protocol inputs and outputs.
In this case, we observe that Answer ≤UC Beacon when we have sequential
scheduling, while this relation does not hold with task-based scheduling. Indeed,

since Answer and Beacon do not send any message on the network, the adver-
sary cannot observe anything, and the best we can do is to choose the simulator
as a copy of the adversary. Eventually, the UC security property comes down to
the capacity of the environment to distinguish Answer from Beacon.

As a result, we see that using a sequential scheduling, like the one considered
in [Can01,BPW03,DKMR05,Küs06], might introduce some constraints in the
ordering of events that do not necessarily reflect the actual network behavior,
and might hide characteristics that could be exploited by an attacker in the
practice.

3.2 Task-based indistinguishability

In our second example, we consider two variants of the system described in
Figure 3. In the first variant, an automaton Box selects a random k-bit string
x, and transmit it to the environment. Then, it can receive bits 0 and 1 and,
every time Box receives such a bit, it stores it into a k-bits buffer. Eventually, if
the content of the buffer is equal to the secret x, Box can perform an ok output
action.

The second variant has the same task-PIOAs except that the Box automaton
is replaced by the Boxs automaton, which is the same as Box, except that the
ok action is now always disabled, that is, Boxs does not care about the sequence
of bits it receives, and remains silent once it sent the x bit string.

The Box and Boxs, are actually defined as task-PIOA families Box =
{Boxk}k∈N and Boxs = {(Boxs)k}k∈N, where the code for the Boxk and (Boxs)k

automaton is given in Appendix C, Figure 9. The index k simply refers to the
length of the x bit string that these automata transmit.

E

B0

B1

Box or Boxs

Hello0

Hello1

0

1

x

ok

Fig. 3. Diagram for the Secret and Secrets automata

We first observe that the Box and Boxs families can be efficiently dis-
tinguished by an environment when a sequential scheduling is adopted. Also,
Box 6≤neg,pt Boxs with oblivious scheduling.

Suppose now that we define the Secret = {Secretk}k∈N and Secrets =
{(Secrets)k}k∈N task-PIOA families as follows: Secretk = hide(B0‖B1‖Boxk, {0, 1}),

and (Secrets)k = hide(B0‖B1‖(Boxs)k, {0, 1}). This means that, now, the en-
vironment is separated from Box and Boxs by the automata B0 and B1 that
produce bits 0 and 1 independently of the behavior of the environment, as rep-
resented in Figure 3.

We claim that an environment can still efficiently distinguish the Secret
family from the Secrets family when a sequential scheduling is used. Indeed,
if the environment activates the Boxk automaton in order to receive the x bit
string, then performs the Hello0 and Hello1 actions in the order corresponding
to the bits of x, the Boxk automaton will eventually perform the ok action with
high probability. However, this last action will never occur in the Secrets system
since it has the ok action always disabled.

However, we claim that the following relation holds: Secret ≤neg,pt Secrets.
Indeed, the only way an environment can distinguish these two systems is by
enabling the ok action. However, this will only happen if the Out0 and Out1
tasks are performed according to the order defined by the x bit-string, which is
randomly selected at execution time. So, for a given parameter k, the probability
that the task-scheduler schedules the Out0 and Out1 in the desired order is
bounded by 2−k. This probability is not null however and, therefore, the relation
Secret ≤0 Secrets does not hold.

Again, we can easily transpose this example to security definitions, by con-
sidering the Hello0, Hello1, ok and x actions as protocol inputs and outputs. In
that case, and as opposed to our previous example, we obtain that Secret ≤UC

Secrets when we have oblivious scheduling, while this relation does not hold
with sequential scheduling.

The central point of this example is that, when oblivious scheduling is adopted,
no system component (environment, adversary, protocol party, . . .) knows the
order in which activation will take place, which is not the case when sequential
scheduling is considered.

While our previous example showed that adopting oblivious scheduling can
give more distinguishing power to the environment, this example illustrates that
oblivious scheduling can also weaken the environment. We believe this weakening
is realistic as it reflects the fact that, in a distributed system, the ordering of
the actions performed by honest (non-corrupted) components cannot be fixed
by the adversary.

4 Equivalence between UC and SS

In this section, we prove that UC security and strong simulatability are equiv-
alent in our framework. Essentially, we show that time-bounded task-PIOAs
satisfy the forwarder axiom of [DKMR05].

Structures First we define the notion of structures in the spirit of [PW01]: a
structure Π is a pair 〈A,EAct〉, where A is a task-PIOA and EAct is a subset of
the external actions of A, called the environment actions. The set of adversary
actions is defined to be AAct := (I∪O)\EAct . We also have: (i) EI := EAct ∩I

(environment inputs), (ii) EO := EAct ∩ O (environment outputs), (iii) AI :=
AAct ∩ I (adversary inputs) and (iv) AO = AAct ∩O (adversary inputs).

Two structures Π1 and Π2 are said to be comparable if EI 1 = EI 2 and
EO1 = EO2. They are compatible if A1 and A2 are compatible task-PIOAs and
Ext1 ∩Ext2 = EAct1 ∩EAct2. That is, every shared action must be an environ-
ment action of both automata. Composition is straightforward: given compatible
Π1 and Π2, their composition Π1‖Π2 is the structure 〈A1‖A2,EAct1 ∪ EAct2〉.

As the names suggest, an adversary interact with a protocol via adversary
actions. Formally, a task-PIOA Adv is an adversary for the structure Π if: (i) Adv
is compatible with AΠ , (ii) ActAdv ∩ActΠ ⊆ AActΠ , and (iii) AI Π ⊆ OAdv . The
last condition requires that Adv provides all adversary inputs of Π.

Finally, we consider hiding for structures: given a structure 〈A,EAct〉 and
a set S of output actions of A, we define hide(〈A,EAct〉, S) to be the struc-
ture 〈hide(A, S),EAct \ S〉. That is, the newly hidden actions can no longer be
environment actions.

All of the definitions above can be formulated easily in the setting with
time bounds, as well as for families of structures. Some details are provided in
Appendix B.

Secure Emulation We have now enough machinery to formulate UC security and
strong simulatability.

Definition 1 (UC-Security). Suppose ρ and φ are comparable structure fam-
ilies. We say that ρ UC-emulates φ (denoted ρ ≤UC φ) if, for every polynomial
time-bounded adversary family Adv for ρ, there is a polynomial time-bounded
adversary family Sim for φ such that:

hide(ρ||Adv ,AActρ) ≤neg,pt hide(φ||Sim,AActφ).

Definition 2 (Strong Simulatability). Suppose ρ and φ are comparable struc-
ture families with AActρ ∩ AActφ = ∅. We say that ρ strongly simulates φ (de-
noted ρ ≤SS φ) if there is a polynomial time-bounded adversary family Sim for
φ such that:

ρ ≤neg,pt hide(φ||Sim,AActφ).

Theorem 1. Definitions 1 and 2 are equivalent.

Proof. Suppose ρ and φ are defined as in the hypotheses. We first prove that
Definition 2 implies Definition 1.

Suppose there exists a polynomial time-bounded adversary family Sim for φ
such that ρ ≤neg,pt hide(φ||Sim,AActφ), and suppose Adv is a polynomial time-
bounded adversary family for ρ. Without loss of generality, we assume that all
internal actions of Adv have new names. Since Adv is polynomial time-bounded
and is compatible with ρ, we have that ρ||Adv ≤neg,pt hide(φ||Sim,AActφ)||Adv .
Since Adv is compatible with hide(φ||Sim,AActφ), the relation Hhide(φ||Sim,AActφ)∩
ActAdv = ∅must hold. Therefore, hide(φ||Sim,AActφ)||Adv = hide(φ||Sim||Adv ,AActφ).
Now, using the hiding property of the ≤neg,pt relation, we have that

hide(ρ||Adv ,AActρ) ≤neg,pt hide(φ||Sim||Adv ,AActφ ∪ AActρ). Since AActρ ∩
AActφ = ∅ and AActρ ∩ EActφ = AActρ ∩ EActρ = ∅, we also have that
AActρ ∩ Extφ = ∅.
Therefore, hide(φ||Sim||Adv ,AActφ∪AActρ) = hide(φ||hide(Sim||Adv ,AActρ),AActφ).
Eventually, if we define Sim ′ = hide(Sim||Adv ,AActρ), we proved that, for ev-
ery polynomial time-bounded adversary family Adv for ρ, there is a polynomial
time-bounded adversary family Sim ′ for φ such that hide(ρ||Adv ,AActρ) ≤neg,pt

hide(φ||Sim′,AActφ), which is as needed.
Now, we prove that Definition 1 implies Definition 2. Suppose that, for ev-

ery polynomial time-bounded adversary family Adv for ρ, there is a polynomial
time-bounded adversary family Sim for φ, such that hide(ρ||Adv ,AActρ) ≤neg,pt

hide(φ||Sim,AActφ). Consider the specific adversary Adv defined in Figure 4,
which just forwards the adversary external actions between ρ and the environ-
ment, using a renaming function f such that f(AActρ) only contains new actions
names.

Automaton: Adv(ρ, f):
Signature:
Input: AOρ ∪ f(AI ρ) Output: f(AOρ) ∪AI ρ

State:
in ∈ AActρ ∪ f(AActρ) ∪ ⊥, initially ⊥
Transitions:
a ∈ IAdv(ρ) a ∈ OAdv(ρ)

Effect: in := a Precondition: in = a
Effect: in := ⊥

Task:
Forward = f(AOρ) ∪AI ρ

Fig. 4. Adv automaton

We now define ρ′ as ρ except that every output actions a ∈ AActρ is renamed
to f(a). We observe that ρ′ ≤neg,pt ρ||Adv . Indeed, for every environment family
Env for ρ′ ρ||Adv , there is a 2-bounded simulation relation from each task-
PIOA of ρ′||Env to the corresponding task-PIOA of ρ||Adv ||Env :2 we can just
map every task T of ρ′||Env on the same task, followed by the Forward task of
Adv . As a result, if the execution of T involves executing an output action a of
ρ′ that is in f(AActρ), the action f−1(a) will be executed by ρ, followed by its
forwarding by Adv . In a similar way, if the execution of T involves executing an
output action a of Env that is in f(AActρ), this action will be executed by Env ,
and immediately forwarded to ρ by Adv .

To conclude, we observe that the relation ρ′ ≤neg,pt ρ||Adv implies that
hide(ρ′,AActρ) ≤neg,pt hide(φ||Sim,AActφ). Now, since ρ′ has all actions in

2 See [CCK+06a,CCK+06b] for more details about simulation relations for task-
PIOAs. The 2-bound on the simulation relation means that at most two tasks of
ρ||Adv ||Env are needed to match the execution of one task of ρ′||Env

AActρ renamed to new names, we have that hide(ρ′,AActρ) = ρ′, which pro-
vides the relation ρ′ ≤neg,pt hide(φ||Sim,AActφ), as needed.

5 Conclusions

In this paper, we investigate whether the underlying treatment of concurrency
affects the meaning of simulation-based security. We give an affirmative answer,
based on two examples showing that UC security under sequential scheduling is
incomparable with UC security under oblivious scheduling.

This extends the analysis of Datta et al. [DKM+04,DKMR05] with a new
dimension, namely, the scheduling of concurrent processes. In fact, our separa-
tion result is of a slightly different character: rather than proving one definition
is stronger/weaker than another, we show that the same definition has different
meanings. This separation applies not only to security definitions (involving ad-
versary and simulator), but also to the underlying notion of indistinguishability.

Our results seemingly contradict the common understanding that sequential
and non-sequential scheduling schemes can, to a large extent, emulate each other.
This is not a real contradiction, because indistinguishability and security defini-
tions are never given with a layer of emulation. For example, one can emulate
oblivious scheduling in a sequential framework by adding a scheduler machine
and specifying all other machines in such a way that activation only takes place
via the scheduler machine. However, when security definitions are given in a
sequential framework (e.g., [Can01,BPW04,Küs06]), this pattern is never en-
forced. Therefore the existence of a scheduling emulation says little about how
the meaning of a security definition changes with the underlying model of con-
currency.

Aside from the issue of scheduling, we also consider the “forwarder” property
of [DKM+04,DKMR05]. We observe that forwarders are definable in Task-PIOA
and, as expected, strong simulatability is equivalent to UC security. This implies
all three notions (i.e., strong simulatability, black-box simulatability and UC
security) are equivalent in the Task-PIOA framework.

Unbounded forwarders are definable in our framework because we do not
place any a priori length restrictions on task schedules. In our implementation
relation definitions (i.e., ≤0 and ≤neg,pt), the bound on the length of schedules
for the ideal system can depend on the corresponding bound for the real system.
Since the real system includes the environment, we may choose a large enough
schedule length bound for the ideal system so that the simulator can forward
sufficiently many messages from the environment.

This is not the case anymore if we impose a priori bounds on the number
of occurrences of tasks in task schedulers. In that case, we claim that strong
simulatability and UC security are no longer equivalent. Essentially, we construct
a protocol for which an unbounded simulator must be used in order to satisfy
strong simulatability. We leave the details as future work.

References

[Bea91] D. Beaver. Secure multiparty protocols and zero-knowledge proof systems
tolerating a faulty minority. Journal of Cryptology, 4(2):75–122, 1991.

[BPW03] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A universally
composable cryptographic library. Cryptology ePrint Archive, Report
2003/015, 2003. http://eprint.iacr.org/.

[BPW04] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Secure asyn-
chronous reactive systems. Cryptology ePrint Archive, Report 2004/082,
2004. http://eprint.iacr.org/.

[Can95] R. Canetti. Studies in Secure Multi-Party Computation and Applications.
PhD thesis, Weizmann Institute, Israel, 1995.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In Moni Naor, editor, Proceedings of the 42nd Annual
Symposium on Foundations of Computer Science, pages 136–145. IEEE
Computer Society, 2001. Full version available on http://eprint.iacr.

org/2000/067.
[CCK+05] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and

R. Segala. Using task-structured probabilistic I/O automata to analyze an
oblivious transfer protocol. Cryptology ePrint Archive, Report 2005/452,
2005. http://eprint.iacr.org/.

[CCK+06a] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch,
Olivier Pereira, and Roberto Segala. Task-structured Probabilistic I/O
Automata. In Proceedings of the 8th International Workshop on Discrete
Event Systems – WODES’2006, pages 207–214. IEEE, 2006.

[CCK+06b] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch,
Olivier Pereira, and Roberto Segala. Time-bounded Task-PIOAs: A frame-
work for analyzing security protocols. In S. Dolev, editor, Proceedings the
20th International Symposium on Distributed Computing (DISC 2006), vol-
ume 14167 of LNCS, pages 238–253. Springer, 2006. Invited Paper.

[DKM+04] Anupam Datta, Ralf Kuesters, John C. Mitchell, Ajith Ramanathan, and
Vitaly Shmatikov. Unifying equivalence-based definitions of protocol secu-
rity. In Proceedings of ACM SIGPLAN and IFIP WG 1.7 4th Workshop
on Issues in the Theory of Security, April 2004.

[DKMR05] Anupam Datta, Ralf Kuesters, John C. Mitchell, and Ajith Ramanathan.
On the relationships between notions of simulation-based security. In
J. Kilian, editor, Proceedings of Theory of Cryptography Conference, vol-
ume 3378 of LNCS, pages 476–494. Springer, Feb. 2005. Full version avail-
able on http://eprint.iacr.org/2006/153.

[GL90] S. Goldwasser and L. Levin. Fair computation of general functions in
presence of immoral majority. In Alfred J. Menezes and Scott A. Vanstone,
editors, Advances in Cryptology - Crypto ’90, pages 77–93, Berlin, 1990.
Springer-Verlag. Lecture Notes in Computer Science Volume 537.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. In Proceedings of the 17th Annual ACM Sym-
posium on Theory of Computing (STOC’85), pages 291–304, 1985.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
a completeness theorem for protocols with honest majority. In Proceedings
of the 19th Annual ACM Symposium on the Theory of Computing (STOC),
pages 218–229. ACM Press, 1987.

[Küs06] R. Küsters. Simulation-Based Security with Inexhaustible Interactive Tur-
ing Machines. In Proceedings of the 19th IEEE Computer Security Founda-
tions Workshop (CSFW-19 2006), pages 309–320. IEEE Computer Society,
2006.

[LMMS98] P.D. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic
poly-time framework for protocol analysis. In Proceedings of the 5th ACM
conference on Computer and communications security (CCS-5), pages 112–
121, San Francisco, 1998.

[MMS03] P. Mateus, J.C. Mitchell, and A. Scedrov. Composition of cryptographic
protocols in a probabilistic polynomial-time calculus. In R. Amadio and
D. Lugiez, editors, Proceedings of CONCUR 2003 - Concurrency Theory,
volume 2761 of LNCS, pages 327–349, Marseille, France, 2003. Springer.

[MR91] S. Micali and P. Rogaway. Secure computation. In Joan Feigenbaum,
editor, Advances in Cryptology - Crypto ’91, pages 392–404, Berlin, 1991.
Springer-Verlag. Lecture Notes in Computer Science Volume 576.

[MRST06] John Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa Teague.
A probabilistic polynomial-time process calculus for the analysis of cryp-
tographic protocols. Theoretical Computer Science, 353:118–164, 2006.

[PW94] Birgit Pfitzmann and Michael Waidner. A general framework for formal
notions of “secure” system. Technical report, Hildesheimer Informatik-
Berichte 11/94, Institut fr Informatik, Universitt Hildesheim., 1994.

[PW01] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems
and its application to secure message transmission. In IEEE Symposium
on Security and Privacy, pages 184–200, Oakland, CA, May 2001. IEEE
Computer Society.

A Time-Bounded Task-PIOAs

In order to carry out computational analysis, we restrict our attention to those
task-PIOAs whose operations can be represented by a collection of Turing ma-
chines with bounded runtime. This is the time-bounded task-PIOA introduced
in [CCK+06b,CCK+05].

We assume a standard bit-string representation for various parts of a task-
PIOA, including states, actions, transitions and tasks. Let R≥0 denote the set
of nonnegative reals and let b ∈ R≥0 be given. A task-PIOA A is said to be
b-bounded just in case: (i) the bit-string representation of every automaton part
has length at most b; (ii) there is a Turing machine that decides whether a given
representation of a candidate automaton part is indeed an automaton part, and
this machine runs in time at most b; (iii) there is a Turing machine that, given a
state and a task of A, determines the next action in time at most b; (iv) there is
a probabilistic Turing machine that, given a state and an action of A, determines
the next state of A in time at most b. Furthermore, all these Turing machines can
be described using a bit string of length at most b, according to some standard
encoding of Turing machines.

Composing two compatible time-bounded task-PIOAs yields a time-bounded
task-PIOA with a bound linear in the sum of the original bounds. Similarly, the
hiding operator changes the time bound by a linear factor. Proofs for these claims
can be found in [CCK+05].

Finally, we say that a task schedule ρ is b--bounded if |ρ| ≤ b, that is, ρ is
finite and contains at most b tasks.

Task-PIOA Families We define families of task-PIOAs indexed by a security
parameter k: a task-PIOA family A is an indexed set {Ak}k∈N of task-PIOAs.
The notion of time bound is also expressed in terms of the security parameter;
namely, given b : N → R≥0, we say that A is b-bounded if every Ak is b(k)
-bounded.

The notions of compatibility and parallel composition are defined pointwise.
Results for composition and hiding extends easily from those for time-bounded
task-PIOAs. Again, detailed statements can be found in [CCK+05].

Approximate Implementation Our approximate implementation relation com-
pares acceptance probabilities of an environment (in the style of [Can01]), as
opposed to trace distributions or to views (in the style of [BPW04]). Let A be a
closed task-PIOA with a special output action acc and let ρ be a task schedule
for A. The acceptance probability with respect to A and ρ is defined to be:

Pacc(A, ρ) := Pr[β ←R tdist(A, ρ) : β contains acc],

where β ←R tdist(A, ρ) means β is drawn randomly form the trace distribution
induced by the task schedule ρ on task-PIOA A.

We assume that every environment has acc as an output. Now let A1 and
A2 be comparable task-PIOAs and let ε, p ∈ R≥0 and q1, q2 ∈ N be given.
(As a convention, we use variable p for automata time bounds and variable q
for schedule length bounds.) We define A1≤p,q1,q2,εA2 as follows: given any p-
bounded environment Env for bothA1 andA2 and any q1-bounded task schedule
ρ1 for A1‖Env , there is a q2-bounded task schedule ρ2 for A2‖Env such that

|Pacc(A1‖Env , ρ1)−Pacc(A2‖Env , ρ2)| ≤ ε.

In other words, from the perspective of a p-bounded environment, A1 and A2

“look almost the same” provided A2 can use q2 many steps to emulate q1 many
steps of A1. We claim that ≤p,q1,q2,ε is transitive and preserved under composi-
tion, with certain adjustments to errors and time bounds. Proofs can be found
in [CCK+05].

The relation ≤p,q1,q2,ε can be extended to task-PIOA families in the obvious
way. Let A1 = {(A1)k}k∈N and A2 = {(A2)k}k∈N be comparable task-PIOA
families, that is, they are pointwise comparable. Let ε, p : N → R≥0 and q1, q2 :
N→ N be given. We say that A1≤p,q1,q2,εA2 provided (A1)k ≤p(k),q1(k),q2(k),ε(k)

(A2)k for every k.
Restricting our attention to negligible error and polynomial time bounds,

we obtain a generic version of approximate implementation, namely, ≤neg,pt.
Formally, a function ε : N → R≥0 is said to be negligible if, for every constant
c ∈ R≥0, there exists k0 ∈ N such that ε(k) < 1

kc for all k ≥ k0. (In other words,
ε diminishes more quickly than the reciprocal of any polynomial.) We say that
A1 ≤neg,pt A2 if:

∀p ∀q1 ∃q2 ∃ε A1 ≤p,q1,q2,ε A2,

where p, q1, q2 are polynomials and ε is a negligible function.
Again, [CCK+05] contains proofs that ≤neg,pt is transitive and preserved

under composition and hiding.

B Time-Bounded Structures

Time-bounded structures are defined in a similar fashion as time-bounded task-
PIOAs. First we need the notion of b-time recognizable set: given a set B of
binary strings and b ∈ R≥0, we say that B is b-time recognizable if there is a
probabilistic Turing machine M that

– decides, in time at most b, if a binary string a is in the set B and
– has a description with fewer than b bits according to some standard encoding.

If B̄ = {Bk}k∈N is a family of sets of binary stings, we say that B̄ is polynomial
time-recognizable if there is a polynomial p such that every Bk is p(k)-time
recognizable.

Now a structure Π = (A,EAct) is said to be b-bounded if A is b-bounded and
the set 〈EAct〉 of the representations of actions in EAct is b-time recognizable
by some Turing machine MEAct . For a family Π of structures and a function
b : N → R≥0, we say that Π is b-bounded if Πk is b(k)-bounded for every k.
If Π is p-bounded for some polynomial p, then we say that Π is polynomial
time-bounded.

We claim that, given any polynomial time-bounded family Π and a polynomial-
time recognizable family S̄ of sets of actions, the family hide(Π, S̄) is again
polynomial time-bounded. Moreover, the ≤neg,pt relation is preserved by hiding.

C Task-PIOA Codes

Consider the following task schedules for the task-PIOA S‖AdvR0‖R1 of Sec-
tion 2.

(1) ρ1 = sd(msg)S→R0 .choose.rec(msg)S→R0 .sd(msg)S→R1 .rec(msg)S→R1 .
sd(ack)R1→S .annou(∗).sd(ack)R0→S .rec(ack)R0→S .rec(ack)R1→S .reveal(∗)

(2) ρ2 = sd(msg)S→R0 .choose.rec(msg)S→R0 .sd(msg)S→R1 .rec(msg)S→R1 .
sd(ack)R1→S .annou(∗).sd(ack)R0→S .rec(ack)R0→S .reveal(∗).rec(ack)R1→S

It is interesting to note that Adv learns the secret s with probability 1 under
ρ1, but with probability 1

2 under ρ2. This is because rec(ack)R0→S causes no
changes in state if b = 1, hence reveal(∗) is not yet enabled. Nonetheless, Adv is
considered to have high advantage in learning s, because our semantics quantifies
over all possible schedules.

Task-PIOA S

Signature

Input:
rec(ack)R0→S , rec(ack)R1→S

Output:
annou(x), x ∈ {0, 1}
sd(msg)S→R0 , sd(msg)S→R1

reveal(x), x ∈ {0, 1}
Internal:

choose

Tasks

{annou(x)|x ∈ {0, 1}}
{sd(msg)S→R0}, {sd(msg)S→R1}
{reveal(x)|x ∈ {0, 1}}, {choose}

States

b, s ∈ {0, 1,⊥}, initially ⊥
c ∈ {0, 1, 2}, initially 0

Transitions:

choose
Precondition:

b = ⊥ ∧ s = ⊥
Effect:

b := random(unif({0, 1}));
s := random(unif({0, 1}))

annou(b)
Precondition:

b 6= ⊥
Effect:

None

sd(msg)S→R0

Precondition:
True

Effect:
None

sd(msg)S→R1

Precondition:
True

Effect:
None

rec(ack)R0→S

Effect:
if b = 0 ∧ c = 0 then c := 1
else if b = 1 ∧ c = 0 then c := 2

rec(ack)R1→S

Effect:
if b = 1 ∧ c = 0 then c := 1
else if b = 0 ∧ c = 0 then c := 2

reveal(s)
Precondition:

s 6= ⊥ ∧ c = 1
Effect:

None

Fig. 5. Code for Sender S

Task-PIOA Adv

Signature

Input:
annou(x), x ∈ {0, 1}
sd(msg)S→R0 , sd(msg)S→R1

sd(ack)R0→S , sd(ack)R1→S

reveal(x), x ∈ {0, 1}
Output:

rec(msg)S→R0 , rec(msg)S→R1

rec(ack)R0→S , rec(ack)R1→S

Internal:
None

Tasks

{rec(msg)S→R0}, {rec(msg)S→R1}
{rec(ack)R0→S}, {rec(ack)R1→S}

States

b, s ∈ {0, 1,⊥}, initially ⊥
c0, c1 ∈ {0, 1, 2, 3}, initially 0

Transitions:

annou(x)
Effect:

b := x

sd(msg)S→R0

Effect:
if c0 = 0 then c0 := 1

sd(msg)S→R1

Effect:
if c1 = 0 then c1 := 1

rec(msg)S→R0

Precondition:
c0 = 1

Effect:
None

rec(msg)S→R1

Precondition:
c1 = 1

Effect:
None

sd(ack)R0→S

Effect:
c0 := 2

sd(ack)R1→S

Effect:
c1 := 2

rec(ack)R0→S

Precondition:
(b = 0 ∧ c0 = 2) ∨ (b = 1 ∧ c1 = 3)

Effect:
c0 := 3

rec(ack)R1→S

Precondition:
(b = 1 ∧ c1 = 2) ∨ (b = 0 ∧ c0 = 3)

Effect:
c1 := 3

reveal(x)
Effect:

s := x

Fig. 6. Code for Adaptive Adversary Adv

Task-PIOA Ri

Signature

Input:
rec(msg)S→Ri

Output:
sd(ack)Ri→S

Internal:
None

Tasks

{rec(msg)S→Ri}, {sd(ack)Ri→S}

States

c ∈ {0, 1}, initially 0

Transitions:

rec(msg)S→Ri

Effect:
c := 1

sd(ack)Ri→S

Precondition:
c 6= 0

Effect:
None

Fig. 7. Code for Receiver Ri

Task-PIOA Ai and Bi

Signature

Input:
Helloi

Output:
i

Internal:
none

Tasks

Outi = {i}

States

For Ai: hello ∈ {⊥,>}, initially ⊥
For Bi: none

Transitions:

Helloi

Effect:
For Ai: hello := >
For Bi: none

i
Precondition:

For Ai: hello = >
For Bi: none

Effect:
For Ai: hello := ⊥
For Bi: none

Fig. 8. Code for Task-PIOAs A(i) and B(i)

Task-PIOA Boxk and (Boxs)k

Signature

Input:
0, 1

Output:

out(x), x ∈ {0, 1}k

ok
Internal:

choose

Tasks

Out = {out(∗)}
Ok = {ok}

States

x− val ∈ {0, 1}k ∪ ⊥, initially ⊥
input, a buffer of at most k elements in
{0, 1}, initially empty

Transitions:

0
Effect:

if input is not full then
add “0” to input

1
Effect:

if input is not full then
add “1” to input

choose
Precondition:

x− val = ⊥
Effect:

x− val := random({0, 1}k)

out(x)
Precondition:

x = x− val 6= ⊥
input 6= x− val

Effect:
none

ok
Precondition:

For Boxk: input = x− val 6= ⊥
For (Boxs)k: false

Effect:
none

Fig. 9. Code for Task-PIOAs Boxk and (Boxs)k

