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Abstract

Task-PIOA is a modeling framework for distributed sys-
tems with both probabilistic and nondeterministic behav-
iors. It is suitable for cryptographic applications because
its task-based scheduling mechanism is less powerful than
the traditional perfect-information scheduler. Moreover,
one can speak of two types of complexity restrictions: time
bounds on description of task-PIOAs and time bounds on
length of schedules. This distinction, along with the flexibil-
ity of nondeterministic specifications, are interesting depar-
tures from existing formal frameworks for computational se-
curity.

The current paper presents a new approximate imple-
mentation relation for task-PIOAs. This relation is transi-
tive and is preserved under hiding of external actions. Also,
it is shown to be preserved under concurrent composition,
with any polynomial number of substitutions. Building upon
this foundation, we present the notion of structures, which
classifies communications into two categories: those with a
distinguisher environment and those with an adversary. We
then formulate secure emulation in the spirit of traditional
simulation-based security, and a composition theorem fol-
lows as a corollary of the composition theorem for the new
approximate implementation relation.
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1. Introduction

Cryptographic protocols are distributed algorithms that
must achieve security properties such as authentication and
secret communication, while operating in environments that
include adversarial components. Security and correctness
of such protocols can be vital to the survival of commercial
and military enterprises. However, many cryptographic pro-
tocols exhibit complex, subtle behavior, so verifying their
security is not easy. Informal verification is not reliable
enough; what is needed is a set of rigorous, formal verifica-
tion methods that can assert protocol security and correct-
ness, while being reasonably easy for protocol designers to
use.

One of the main sources for intricacies in security analy-
sis of these protocols is the fact that in most interesting
cases security can hold only in a “computational sense”,
namely only against computationally bounded adversaries,
only probabilistically, and only under computational hard-
ness assumptions. Current security analyses of protocols
deal with this issue in one of two ways. One way is to first
analyze the protocol in an idealized model where crypto-
graphic algorithms are represented via symbolic operations
and security assertions can be absolute rather than “com-
putational” (e.g., [17, 1, 7, 18, 25, 26, 29, 32, 39]); then,
additional steps are taken outside the formal model to pro-
vide security guarantees when the symbolic operations are
replaced by real algorithms (e.g., [2, 15, 31]).

An alternative approach is to extend the formal model so
as to directly capture “computational security” within the
model itself. This requires representing within the model
resource bounded, probabilistic computations as well as
probabilistic relations between systems and system compo-
nents. Such models include Probabilistic Polynomial-Time
Process Calculus (PPC) [24, 28, 33], Reactive Simulatabil-
ity (RSIM) [35, 36, 5], Universally Composable (UC) Se-
curity [9], Task-PIOA [10, 13] and Inexhaustible Interactive
Turing Machine (IITM) [23]. Each of these frameworks can
be decomposed into two “layers”: (i) a foundational layer,
which consists of a general model of concurrent computa-
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tion with time bounds, not specific to security protocols, and
(ii) a security layer that typically follows the general out-
line of simulation-based security [22, 19, 20, 6, 30, 37, 8].
Unlike the security layer, the foundation layer varies widely
across different frameworks. We summarize a few main dif-
ferences below.

Description of concurrent processes. PPC is process
theoretic, RSIM and Task-PIOA are based on abstract state
machines, and UC and IITM are based on interactive Tur-
ing machines. In RSIM, UC and IITM, machines are purely
probabilistic, meaning that their behaviors are completely
determined up to inputs and coin tosses. In contrast, PPC
and Task-PIOA allow nondeterministic process specifica-
tions. More detailed comparisons of Task-PIOA against
PPC and RSIM can be found in the latest version of [11].

Sequential vs. non-sequential scheduling. The two
ITM-based frameworks, UC and ITTM, use sequential
scheduling. This means machines are activated in succes-
sion, where the current active machine triggers the next
one by sending a message. RSIM machines use a similar
mechanism, but with special “buffer” machines to capture
message delays and “clock ports” to control the schedul-
ing of message delivery. Hence, non-sequential schedul-
ing may be implemented to some extent in RSIM; how-
ever, in actual protocol analysis, sequential scheduling is
typically used (e.g., [3]). With the exception of its sequen-
tial variant [16], PPC implements non-sequential schedul-
ing with scheduler functions (or Markov chains) that se-
lect the next action from a set of enabled actions. Task-
PIOA is also non-sequential, using arbitrary oblivious task
sequences to determine the next transition. We refer to [14]
for examples showing that the choice between sequential
and non-sequential scheduling leads to different notions of
simulation-based security.

Complexity bounds. In PPC, processes are finite expres-
sions built up from a grammar that contains bounded repli-
cation operators !q(k), where k is the security parameter and
q is a polynomial. Given any process P , !q(k)(P) is eval-
uated as q(k) copies of P in parallel. It is proven in [33]
that every variable-closed process expression can be evalu-
ated in time polynomial in the security parameter. In RSIM,
abstract machines are realized by Turing machines that are
either polynomial time in the security parameter or in the
overall length of inputs, although major results such as com-
position theorems are proven only for the former notion of
polynomial time. In UC and IITM, ITMs may have runtime
polynomial in the overall length of inputs, provided certain
restrictions are observed. These restrictions make sure that
the runtime of an entire system is polynomial in the security
parameter.

Task-PIOA occupies an interesting middle ground in the
treatment of time bounds. Each task-PIOA1 must have de-
scription bounded by a polynomial in the security parame-
ter. This applies to the representations of states, actions,
transitions, etc. In addition, the transition relation must be
computable by a probabilistic Turing machine with runtime
polynomial in the security parameter. However, there is no
a priori bound imposed on the number of transitions that a
task-PIOA may perform. Hence, a task-PIOA specification
has potentially unbounded behavior. A final restriction on
runtime is imposed only when we compare the behaviors
of different task-PIOAs using implementation relations, by
adding bounds on the number of activations.

We believe it is meaningful to consider these two types
of time bounds separately, since they express limitations of
different nature. For example, in modeling long-lived secu-
rity protocols [34], limitations on what a machine can do in
one step (or in a bounded amount of time) are quite different
from limitations on the total lifetime of the machine.

Also, this separation of time bounds avoids us to face the
usual hassles associated with ITMs that are polynomial time
in the overall length of inputs. That is, we do not need to
impose special restrictions, such as those in UC and IITM,
to make sure that computation resources are not “created”
excessively as machines send inputs to each other.

1.1. Composability of Secure Emulation

A notable advantage of simulation-based security is its
potential security preserving composability properties. In-
deed, one of the main motivations behind the PPC, RSIM
and UC frameworks was to obtain a very general composi-
tion operation that is provably security-preserving.

In a previous case study [10], we followed closely the
setup of simulation-based security, and, in a more recent
paper [14], we gave a generic formulation of secure em-
ulation in the Task-PIOA framework. The main goal of
this paper is to prove a polynomial composition theorem
for our notion of secure emulation. While such theorems
have been obtained in many of the aforementioned frame-
works [9, 28, 4, 23], our version is interesting in its own
right.

First of all, as pointed out in [14], the choice between se-
quential and non-sequential scheduling schemes gives rise
to incomparable notions of security. In other words, even if
we use the same high-level formulation of security, there ex-
ist protocols that are secure under sequential scheduling but
not under non-sequential scheduling, and vice versa. Since
Task-PIOA uses non-sequential scheduling, our composi-
tion theorem is not a simple transposition of composition
theorems in sequential frameworks.

1Technically, we should refer to task-PIOA families. We omit “fami-
lies” for simplicity.
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Secondly, our secure emulation is defined in terms of a
new approximate implementation relation (≤strong

neg,pt) for task-
PIOAs. As a result, our composition proof consists of two
layers: we first prove a polynomial composition theorem for
≤strong

neg,pt, and the composition theorem for secure emulation
follows as a corollary. Interestingly, the typical hybrid argu-
ment2 is used in proving compositionality of ≤strong

neg,pt, which
is completely independent of our formulation of secure em-
ulation.

Finally, since the task-PIOA framework allows nondeter-
ministic specifications with potentially unbounded behav-
ior, we must handle two additional layers of quantifications
while constructing a hybrid argument. (One of these in-
volves schedule length bounds, while the other involves the
resolution of nondeterminism.) In fact, compared to the de-
finition of approximate implementation given in [10, 13],
the definition of ≤strong

neg,pt has a number of features inspired
by the general structure of hybrid arguments. We refer to
Section 3 for further discussions.

We now outline our formulation of secure emulation.
Following [4], we introduce the notion of structures, which
classifies communications into two categories: those with a
distinguisher environment and those with an adversary. The
former can be likened to I/O tapes in ITM-based frame-
works and service ports in RSIM, while the latter can be
likened to communication tapes and forbidden ports. We
then define secure emulation to say roughly the follow-
ing: a protocol ρ securely emulates a protocol φ if, for
every adversary Adv for ρ, there is an adversary Sim for
φ such that the composition ρ‖Adv implements the compo-
sition φ‖Sim in the sense of ≤strong

neg,pt. Note that every task-
PIOA mentioned here has polynomially bounded descrip-
tion, but potentially unbounded runtime. The quantification
over runtime bounds (i.e., schedule length bounds) are en-
capsulated in the definition of ≤strong

neg,pt. Moreover, the com-
munications between ρ and Adv and between φ and Sim
are hidden from the environment.

We prove that secure emulation, thus defined, is indeed
compositional under a polynomial number of substitutions.
This follows essentially as a corollary of the composition
theorem for ≤strong

neg,pt. We also prove that secure emulation
is transitive and preserved under hiding. These three prop-
erties, as well as invariant assertion and simulation relation
techniques developed in [10, 12, 13, 11], are very benefi-
cial for the scalability of computational analysis. For exam-
ple, the composition theorem delineates situations in which
multiple security protocols are run in parallel and we would
like to prove that the security guarantees of individual com-
ponent protocols are preserved in some appropriate sense.
Also, we may specify protocols at different levels of ab-

2Hybrid arguments are used widely in cryptography to handle polyno-
mial growth in the number of composed protocols. We refer to [21] for an
original description.

straction, and use simulation relations to relate formally
probability distributions on states (or executions) at adja-
cent levels. Such techniques make up a practical discipline
of verification, since real-life security protocols operate not
in isolation, but in the context of larger systems.

Overview Section 2 summarizes the task-PIOA frame-
work presented in [12, 13]. In Section 3, we review the ap-
proximate implementation definition proposed in [10, 13],
and introduce a new, stronger version of this definition, for
which we present a polynomial composition theorem. We
then provide a generic template for the use of task-PIOAs
in cryptographic protocol specification, by defining the no-
tions of structure and adversary for structures in Section 4.
Equipped with these definitions, we define secure emula-
tion in Section 5, and show it is preserved under polynomial
composition.

2. Task-PIOAs

In this section, we review basic definitions in the Task-
PIOA framework [12, 11]. We begin with the PIOA frame-
work, which is a simple combination of I/O Automata [27]
and Probabilistic Automata [38]. This is then augmented
with a partial-information scheduling mechanism based on
tasks. Finally, we bring in the notion of time bounds and its
extension to task-PIOA families.

2.1. PIOAs

A probabilistic I/O automaton (PIOA) A is a tuple
〈Q, q̄, I, O,H,∆〉, where: (i) Q is a countable set of states,
with start state q̄ ∈ Q; (ii) I , O and H are countable and
pairwise disjoint sets of actions, referred to as input, output
and internal actions, respectively; (iii) ∆ ⊆ Q × (I ∪ O ∪
H)×Disc(Q) is a transition relation, where Disc(Q) is the
set of discrete probability measures on Q. An action a is
enabled in a state q if 〈q, a, µ〉 ∈ ∆ for some µ. The set
Act := I ∪ O ∪ H is called the action alphabet of A. If
I = ∅, then A is said to be closed. The set of external ac-
tions of A is I ∪O and the set of locally controlled actions
is O ∪ H . Any sequence β of external actions is called a
trace.

We require that A satisfies the following conditions.
• Input Enabling: For every q ∈ Q and a ∈ I , a is

enabled in q.
• Transition Determinism: For every q ∈ Q and
a ∈ A, there is at most one µ ∈ Disc(Q) such that
〈q, a, µ〉 ∈ ∆.

Parallel composition for PIOAs is based on synchronization
of shared actions. PIOAs A1 and A2 are said to be compat-
ible if Act i ∩Hj = Oi ∩ Oj = ∅ whenever i 6= j. In that
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case, we define their composition A1‖A2 to be

〈Q1×Q2, 〈q̄1, q̄2〉, (I1∪I2)\(O1∪O2), O1∪O2,H1∪H2,∆〉,

where ∆ is the set of triples 〈〈q1, q2〉, a, µ1 × µ2〉 such that
(i) a is enabled in some qi and (ii) for every i, if a ∈ Ai
then 〈qi, a, µi〉 ∈ ∆i, otherwise µi assigns probability 1 to
qi (i.e., µi is the Dirac measure on qi, denoted δ(qi)). Note
that this definition of composition can be generalized to any
finite number of components.

A hiding operator is also available: given A =
〈Q, q̄, I, O,H,∆〉 and S ⊆ O, hide(A, S) is the tuple
〈Q, q̄, I, O′,H ′,∆〉, where O′ = O \ S and H ′ = H ∪ S.
Due to the compatibility requirement for parallel compo-
sition, the hiding operation prevents any other PIOA from
synchronizing with A via actions in S.

2.2. Task-PIOAs

To resolve nondeterminism, we make use of the notion of
tasks [27, 12]. Formally, a task-PIOA is a pair (A,R) such
that (i) A is a PIOA and (ii) R is a partition of the locally-
controlled actions of A. With slight abuse of notation, we
use A to refer to both the task-PIOA and the underlying
PIOA. The equivalence classes inR are referred to as tasks.
Unless otherwise stated, we will use terminologies inherited
from the PIOA setting. The following axiom is imposed on
task-PIOAs.
• Action Determinism: For every state q ∈ Q and every

task T ∈ R, there is at most one action a ∈ T that is
enabled in q.

In case some a ∈ T is enabled in q, we say that T is enabled
in q.

Given compatible task-PIOAs A1 and A2, we define
their composition to be 〈A1‖A2,R1 ∪ R2〉. Note that
R1 ∪ R2 is an equivalence relation because compatibil-
ity requires disjoint sets of locally controlled actions. It
is also easy to check that action determinism is preserved
under composition. The hiding operator for PIOAs ex-
tends in the obvious way: given a set S of output actions,
hide(〈A,R〉, S) is simply 〈hide(A, S),R〉.

A task schedule for a closed task-PIOA 〈A,R〉 is a finite
or infinite sequence ρ = T1.T2.T3 . . . of tasks in R. This
induces a well-defined run of A as follows:

(i) from the start state q̄, we consider the first task T1;
(ii) due to action- and transition-determinism, T1 specifies

at most one transition from q̄;
(iii) if such transition exists, it is taken, otherwise nothing

happens;
(iv) repeat with remaining Ti’s.

Such a run gives rise to a unique trace distribution of A
(which is a probability distribution on the set of traces).
The set of trace distributions induced by all possible task

schedules for A is denoted TrDists(A), while the trace dis-
tribution induced by the task schedule ρ for A is denoted
tdist(A, ρ). We refer to [11] for more details on trace dis-
tributions.

2.3. Time Bounds and Task-PIOA Families

In order to carry out computational analysis, we con-
sider task-PIOAs whose operations can be represented by
a collection of Turing machines with bounded run time.
This is the Time-Bounded Task-PIOA model introduced
in [13, 10].

We assume a standard bit-string representation for var-
ious constituents of a task-PIOA, including states, actions,
transitions and tasks. Let p ∈ N be given. A task-PIOA A
is said to have p-bounded description just in case:

(i) the representation of every constituent ofA has length
at most p;

(ii) there is a Turing machine that decides whether a given
bit string is the representation of some constituent of
A;

(iii) there is a Turing machine that, given a state and a task
of A, determines the next action;

(iv) there is a probabilistic Turing machine that, given a
state and an action of A, determines the next state of
A;

(v) all these Turing machines can be described using a bit
string of length at most p, according to some standard
encoding of Turing machines;

(vi) all these Turing machines return after at most p steps
on every input.

Thus, p limits the size of action names, the amount of avail-
able memory and the number of Turing machine steps taken
at each transition ofA. It, however, does not limit the num-
ber of transitions that are taken in a particular run.

Suppose we have a compatible set {Ai|1 ≤ i ≤ b}
of task-PIOAs, where each Ai has description bounded by
some pi ∈ N. It is not hard to check that the composi-
tion ‖bi=1Ai has description bounded by ccomp ·

∑b
i=1 pi,

where ccomp is a fixed constant. (The proof of this result is
an immediate extension of the binary case described in [10,
Lemma 4.2]).

To reason about the hiding operator in a setting with time
bounds, we need the notion of p-time recognizable sets.
Given a set S of binary strings and p ∈ N, we say that S
is p-time recognizable if there is a probabilistic Turing ma-
chine M satisfying: (i) in time at most p, M decides if a
binary string a is in the set S, and (ii) the description of
M has at most p bits under some standard encoding. If
S ⊆ ActA for some PIOA A, then we say that S is p-time
recognizable if the set of binary representations of actions in
S is p-time recognizable. We claim there exists a constant
chide such that, for any task-PIOA with p-bounded descrip-
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tion and any p′-time recognizable set S of output actions
of A, the task-PIOA hide(A, S) has chide(p + p′)-bounded
description [10, Lemma 4.4].

A task-PIOA family A is an indexed set {Ak}k∈N of
task-PIOAs. The index k is commonly referred to as the
security parameter. We say that A has p-bounded descrip-
tion for some p : N → N just in case: for all k, Ak has
p(k)-bounded description. If p is a polynomial, then we
say that A has polynomially-bounded description. The no-
tions of compatibility, parallel composition and hiding are
defined pointwise. Time bound results for composition and
hiding extend easily to the setting of families.

3. Approximate Implementation

In [13, 10], we propose an approximate implementation
relation for task-PIOAs families, expressing the idea that
every behavior of one family is computationally indistin-
guishable from some behavior of another family. Follow-
ing a traditional approach in cryptography, this definition
compares acceptance probabilities of a distinguisher envi-
ronment that runs in parallel with the task-PIOAs in ques-
tion. Moreover, it encapsulates additional quantification
over schedule length bounds and the choices of task sched-
ules. These types of quantification are new challenges, pre-
sented by the fact that we do not impose a priori bounds on
schedule lengths (and hence on overall runtime) and that we
allow nondeterministic specifications.

We shall first present the approximate implementation
relation of [13, 10] and state a composition theorem for sin-
gle substitution. Then we discuss the difficulties in general-
izing to a polynomial number of substitutions. This leads to
a new, stronger definition of approximate implementation,
for which we prove a polynomial composition theorem.

3.1. The Weak Variant

We begin with the notions of acceptance probabilities
and closing environment. LetA be a closed task-PIOA with
a special output action acc and let ρ be a task schedule for
A. The acceptance probability of A under ρ is defined to
be: Pacc(A, ρ) := Pr[β contains acc : β R←− tdist(A, ρ)],
that is, the probability that a trace drawn from the distribu-
tion tdist(A, ρ) contains the action acc. Now suppose A is
any task-PIOA, not necessarily closed. A task-PIOA Env is
an environment forA if it is compatible withA andA‖Env
is closed. Throughout this paper, we assume that every en-
vironment has acc as an output, so that we may speak of
acceptance probabilities of A‖Env .

Implementation relations are defined on task-PIOAs with
the same external interface. More precisely, A1 and A2

are said to be comparable if I1 = I2 and O1 = O2. Ob-
serve that comparability implies A1 and A2 have the same

set of environments, up to renaming of internal actions.
Suppose A1 and A2 are indeed comparable. Let R≥0 de-
note the set of non-negative reals and let ε ∈ R≥0 and
p, q1, q2 ∈ N be given.3 We define A1 ≤p,q1,q2,ε A2 as
follows: given any environment Env with p-bounded de-
scription and any q1-bounded task schedule ρ1 forA1‖Env ,
there exists a q2-bounded task schedule ρ2 for A2‖Env
such that |Pacc(A1‖Env , ρ1) − Pacc(A2‖Env , ρ2)| ≤ ε.
In other words, from the perspective of an environment with
p-bounded description, A1 and A2 “look almost the same”
(up to ε probability) provided A2‖Env may take q2 many
steps whenever A1‖Env takes q1 many steps.

The relation ≤p,q1,q2,ε can be extended to task-PIOA
families in the obvious way. Let A1 = {(A1)k}k∈N
and A2 = {(A2)k}k∈N be (pointwise) comparable task-
PIOA families. Given ε : N → R≥0 and p, q1, q2 :
N → N, we say that A1 ≤p,q1,q2,ε A2 just in case
(A1)k ≤p(k),q1(k),q2(k),ε(k) (A2)k for every k.

Restricting our attention to negligible error and polyno-
mial time bounds, we obtain the approximate implementa-
tion≤neg,pt. Formally, a function ε : N→ R≥0 is said to be
negligible if, for every constant c ∈ N, there exists k0 ∈ N
such that ε(k) < 1

kc for all k ≥ k0. (That is, ε diminishes
more quickly than the reciprocal of any polynomial.) We
say that A1 ≤neg,pt A2 if: ∀p, q1 ∃q2, ε A1 ≤p,q1,q2,ε A2,
where p, q1, q2 are polynomials and ε is a negligible func-
tion.

The following binary composition theorem for≤p,q1,q2,ε
and ≤neg,pt is proven in [10].

Theorem 3.1. Let ε : N → R≥0 and p, p3, q1, q2 : N → N
be given. Let A1,A2 and A3 be task-PIOAs families satis-
fying: A1 and A2 are comparable, and A3 has p3-bounded
description and is compatible with both A1 and A2. Then
the following holds.

(1) If A1 ≤ccomp(p+p3),q1,q2,ε A2, where ccomp is the con-
stant factor associated with description bounds in par-
allel composition, then A1‖A3 ≤p,q1,q2,ε A2‖A3.

(2) If A1 ≤neg,pt A2 and p3 is a polynomial, then
A1‖A3 ≤neg,pt A2‖A3.

Observe that, by induction, Theorem 3.1 generalizes to
any constant number of substitutions.

3.2. Towards Polynomial Composition

For cryptographic applications, it is desirable to gener-
alize Theorem 3.1 even further, to any polynomial number
of substitutions. We now identify and discuss a few issues
associated with this generalization.

3As a convention, we use variable p for description bounds and variable
q for schedule length bounds.
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Let us first examine the logical structure of the definition
of ≤neg,pt.

A1 ≤neg,pt A2

⇔ ∀p, q1 ∃q2, ε A1 ≤p,q1,q2,ε A2

⇔ ∀p, q1 ∃q2, ε ∀k,Env , ρ1 ∃ρ2

|Pacc((A1)k‖Env , ρ1)−Pacc((A2)k‖Env , ρ2)| ≤ ε(k),

where p, q1, q2 are polynomials, ε is a negligible function,
Env is an environment for A1 with p(k)-bounded descrip-
tion, ρ1 is a q1(k)-bounded task schedule for A1‖Env , and
ρ2 is a q2(k)-bounded task schedule for A2‖Env .

The outermost quantifiers, ∀p, q1∃q2, ε, capture compu-
tational requirements: p bounds the description of a distin-
guisher environment, q1 bounds the total number of steps
that can be executed by A1 and an environment, q2 bounds
the total number of steps that can be executed by A2 and
the same environment, and ε bounds the difference in ac-
ceptance probabilities. Intuitively, ε represents the degree
to which A1 and A2 are indistinguishable, and we want to
allow ε to depend on the computation power of the distin-
guisher environment. Since task-PIOAs do not have a pri-
ori bounds on the number of execution steps, we need the
quantification ∀q1∃q2 to determine the number of steps that
can be taken by A1‖Env and A2‖Env , respectively. Note
that the computation power of the environment is bounded
by p · q1, therefore we allow ε to depend on both p and q1.
Moreover, the schedule length bound q2 may be larger than
q1, givingA2 some freedom to perform more internal steps.

The innermost quantifiers, ∀ρ1∃ρ2, deal with nondeter-
ministic choices in A1 and A2. We require that every
schedule for A1‖Env can be matched by some schedule
for A2‖Env . Here “matching” means the acceptance prob-
abilities differ by at most ε.

We would like to obtain a polynomial composition the-
orem, which would roughly say the following: given a
polynomial b and two sequences of task-PIOA families
A1

1,A
2

1, . . . and A1

2,A
2

2, . . . with Ai1 ≤neg,pt A
i

2 for all i,

the family Â1 defined by (Â1)k := (A1

1)k‖ . . . ‖(A
b(k)

1 )k
is again related by ≤neg,pt to the family Â2 defined by

(Â2)k := (A1

2)k‖ . . . ‖(A
b(k)

2 )k. A similar theorem for se-
cure composition is proven in [4], with the assumption that
errors in acceptance probabilities are uniformly bounded;
that is, the same ε applies to Ai1 and Ai2 all i. The proof
uses a typical hybrid argument, where, for each security pa-
rameter k, a sequence of b(k) + 1 hybrids are constructed.
The 0-th hybrid is (Â1)k, and the i+1-th hybrid is obtained
from the i-th hybrid by replacing (Ai+1

1 )k with (Ai+1

2 )k. It
is then argued that, since the error between each successive
pair of hybrids is at most ε(k), the error between the 0-th
and b(k)-th hybrids is at most b(k) · ε(k). This is suffi-
cient because the b(k)-th hybrid is precisely (Â2)k and the

function b · ε is negligible whenever ε is negligible and b is
polynomial.

In our setting, such a hybrid argument is much more dif-
ficult to construct, due to the additional quantification over
schedule length bounds and choices of task schedules. To
ensure that ε is independent of i, the uniformity condition
becomes: ∀p, q1 ∃q2, ε ∀i A

i

1 ≤p,q1,q2,ε A
i

2. Unfortu-
nately, this does not appear sufficient for the hybrid argu-
ment, because, in order to guarantee the same error bound
ε at each consecutive pair of hybrids, we would have to in-
voke the uniformity condition with the same p and q1. This
cannot be achieved because we have a new schedule length
bound q2, which need not be the same as q1.

To be more concrete, let us fix a security pa-
rameter k and consider, for example, the 0-th
hybrid (A1

1)k‖ . . . ‖(A
b(k)

1 )k. Let Env denote

(A2

1)k‖ . . . ‖(A
b(k)

1 )k. Suppose we apply the unifor-
mity condition with some appropriate p and q1, obtaining
q2 and ε such that every q1(k)-bounded schedule for
(A1

1)k‖Env can be matched by some q2(k)-bounded
schedule for (A1

2)k‖Env . Then, in order to do the next
replacement (i.e., replacing (A2

1)k with (A2

2)k), we would
have to instantiate the uniformity condition with q2, leading
to a possibly different error bound ε′.

This suggests the outermost quantification ∀p, q1∃q2, ε
in A1 ≤neg,pt A2 does not capture correctly the idea that
A1 and A2 are indistinguishable by the same environment.
Indeed, the schedule length bound q2(k) applies to the com-
posite (A1

2)k‖Env , which may allow Env to take more
steps than it does in the composite (A1

1)k‖Env .
These observations inspire several changes to strengthen

the definition of ≤neg,pt. We would like to make sure that
the new bound q2 applies only to the newly substituted com-
ponent and not to the environment, and that the choice of q2
does not depend on the computation power of the environ-
ment. Moreover, we require that the tasks controlled by
the environment are preserved at each substitution. These
changes lead to a new approximate simulation relation,
≤strong

neg,pt, for which the uniformity condition can be invoked
with the same bounds at each step of the hybrid argument.

3.3. The Strong Variant

In order to implement the changes suggested above (in
particular, to have separate schedule length bounds for the
components and the environment), we need a notion of pro-
jection on task schedules. Suppose we have compatible
task-PIOAs A1 and A2 with A1‖A2 closed. Given a task
schedule ρ for A1‖A2, proj1(ρ) is defined to be the restric-
tion of ρ to tasks inR1. Similarly for proj2(ρ).

Using this projection operator, we define a new imple-
mentation relation.

6



Definition 3.2. Let A1 and A2 be comparable task-PIOAs
and let ε ∈ R≥0 and p, q, q1, q2 ∈ N be given. We define
A1 ≤q1,q2,p,q,ε A2 as follows: given any environment Env
with p-bounded description and any task schedule ρ1 for
A1‖Env such that:
• projA1

(ρ1) is q1-bounded, and
• projEnv (ρ1) is q-bounded,

there is a task schedule ρ2 for A2‖Env such that
• projA2

(ρ2) is q2-bounded,
• projEnv (ρ1) = projEnv (ρ2), and
• |Pacc(A1‖Env , ρ1)−Pacc(A2‖Env , ρ2)| ≤ ε.

This definition strengthens ≤p,q1,q2,ε by requiring that
the tasks controlled by Env are not affected by the substi-
tution. Moreover, the schedule length bounds for the com-
ponents and for the environment are considered separately,
using projections of task schedules.

The relation ≤q1,q2,p,q,ε can be extended to task-PIOA
families in the same way as for≤p,q1,q2,ε, and we claim that
≤q1,q2,p,q,ε is transitive and preserved under hiding, with
certain adjustments to errors and time bounds. Precise state-
ments appear in Appendix A.

We use ≤q1,q2,p,q,ε to define the strong approximate im-
plementation relation.

Definition 3.3. Suppose A1 and A2 are comparable
task-PIOA families. We say that A1 ≤strong

neg,pt A2 if
∀q1 ∃q2 ∀p, q ∃ε A1 ≤q1,q2,p,q,ε A2, where q1, q2, p, q
are polynomials and ε is a negligible function.

Notice that, unlike in the definition of≤neg,pt, the sched-
ule length bound q2 for A2 no longer depends on the envi-
ronment bounds p and q. This is crucial for the hybrid argu-
ment in the composition proof for≤q1,q2,p,q,ε (Lemma 3.5).
More precisely, because of this property, the same q2 bound
applies at each substitution, even though the schedule length
bound of the environment may change due to previous sub-
stitutions4.

We now proceed to prove the polynomial composition
theorem for ≤strong

neg,pt. Lemma 3.4 gives a description bound
for the composition of b task-PIOAs, assuming the descrip-
tion bounds of the individual task-PIOAs are bounded by a
non-decreasing function.5

Lemma 3.4. Let b ∈ N and a sequence of task-PIOAs
A1,A2, . . . ,Ab be given. Suppose there exists a non-
decreasing function r : N → N such that, for all i, Ai
has description bounded by r(i). Then ‖iAi has descrip-
tion bounded by ccomp · b · r(b), where ccomp is the constant
factor for composing task-PIOAs in parallel.

4Recall that, in a single step of the hybrid argument, the environment
is the parallel composition of the original environment and all protocol
instances that are not being replaced in the current step.

5As it will appear later, this non-decreasing function is defined in order
to manage the length increase corresponding to the new names that must
be given to the actions of the different task-PIOAs.

Proof. Since r is non-decreasing, we have ccomp ·∑b
i=1 r(i) ≤ ccomp · b · r(b).

Lemma 3.5 is essentially the hybrid argument in the
polynomial composition theorem for≤strong

neg,pt (Theorem 3.6).
It shows that ≤q1,q2,p,q,ε is “preserved” under b-ary compo-
sition, provided the time bounds and errors are calibrated
appropriately.

Lemma 3.5. Let b ∈ N and two sequences of task-PIOAs

A1
1,A2

1, . . . ,Ab1 and A1
2,A2

2, . . . ,Ab2

be given. Assume that, in each sequence, all task-PIOAs are
pairwise compatible. Suppose there exist a non-decreasing
function r : N → N such that, for all i, both Ai1 and Ai2
have description bounded by r(i).

Let q1, q2, q′2, p, p
′, q, q′ ∈ N and ε, ε′ ∈ R≥0 be given.

Assume the following.
(1) p = ccomp · (b · r(b) + p′), where ccomp is the constant

factor for composing task-PIOAs in parallel.
(2) q′2 = q1 + b · q2; q = q1 + b · q2 + q′; and ε′ = b · ε.
(3) For all i, Ai1 and Ai2 are comparable and
Ai1 ≤q1,q2,p,q,ε Ai2.

Then we have ‖bi=1Ai1 ≤q1,q′2,p′,q′,ε′ ‖bi=1Ai2.

Before diving into the proof of Lemma 3.5, we take a
moment to dissect the assumptions. First, we note that As-
sumption (3) is the uniformity condition, saying that the
same time bounds and error can be used for every index
i. To explain Assumptions (1) and (2), we need to briefly
outline our proof strategy.

To prove ‖bi=1Ai1 ≤q1,q′2,p′,q′,ε′ ‖bi=1Ai2, we take an envi-
ronment Env for both ‖bi=1Ai1 and ‖bi=1Ai2. The description
bound of Env is p′. In each step of the hybrid argument, we
perform exactly one substitution, with all other components
fixed. We may then view the composition of Env with all
fixed components as an environment Env ′ for the compo-
nent being substituted. The description of Env ′ is therefore
bounded by p = ccomp · (b ·r(b)+p′), as in Assumption (1).

Now, q1 is the schedule length bound for ‖bi=1Ai1. Since
we don’t not know how the tasks are distributed among the
b components, we use a conservative estimate: the schedule
length bound for each Ai1 is also q1, as in Assumption (3).
Then, at each step of the hybrid argument, the schedule
length increases by at most q2, hence the schedule length
bound for ‖bi=1Ai2 is q′2 = q1 + b · q2, as in Assumption (2).
Similarly, the schedule length bound for Env ′ at each step
of the hybrid argument must be at least q = q1 + b · q2 + q′,
as in Assumption (2). Finally, the errors accumulate at each
step, so we multiply ε with a factor of b to obtain ε′, as in
Assumption (2).

Lemma 3.5. Let Â1 and Â2 denote ‖iAi1 and ‖iAi2, respec-
tively. Unwinding the definition of ≤q1,q′2,p′,q′,ε′ , we need
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to prove: for every environment Env with p′-bounded de-
scription and task schedule ρ1 for Â1‖Env such that
• projÂ1

(ρ1) is q1-bounded, and
• projEnv (ρ1) is q′-bounded,

there exists task schedule ρ2 for Â2‖Env such that
• projÂ2

(ρ2) is q′2-bounded,
• projEnv (ρ1) = projEnv (ρ2), and
• |Pacc(Â1‖Env , ρ1)−Pacc(Â2‖Env , ρ2)| < ε′.
Let such Env and ρ1 be given. For 1 ≤ i ≤

b − 1, let Hi denote the i-th hybrid automaton:
A1

2‖ . . . ‖Ai2‖Ai+1
1 ‖ . . . ‖Ab1.

Consider i = 1 and let Env1 := A2
1‖ . . . ‖Ab1‖Env .

Clearly, Env1 is an environment for both A1
1 and A1

2 and,
by Lemma 3.4 and Assumption (1), Env1 has p-bounded
description. By the choice of ρ1, we know that projA1

1
(ρ1)

is q1-bounded and projEnv1
(ρ1) is (q1 + q′)-bounded. By

Assumption (2), projEnv1
(ρ1) is q-bounded.

Now we apply Assumption (3) and choose task schedule
ρ2 for H1‖Env such that
• projA1

2
(ρ2) is q2-bounded,

• projEnv1
(ρ1) = projEnv1

(ρ2), and
• |Pacc(Â1‖Env , ρ1)−Pacc(H1‖Env , ρ2)| < ε.

Note that, since A2
1 is part of Env1, projA2

1
(ρ1) =

projA2
1
(ρ2). Therefore, projA2

1
(ρ2) is q1-bounded. Simi-

larly, projH1(ρ2) is (q1 + q2)-bounded and ρ2 is (q1 + q2 +
q′)-bounded.

Now consider i = 2 and let Env2 :=
A1

2‖A3
1‖ . . . ‖Ab1‖Env . As before, Env2 is an envi-

ronment for both A2
1 and A2

2, and it has p-bounded
description. Moreover, projA2

1
(ρ2) is q1-bounded and,

since ρ2 is (q1 + q2 + q′)-bounded, projEnv2
(ρ2) is also

(q1 + q2 + q′)-bounded. By Assumption (2), projEnv2
(ρ2)

is q-bounded.
Again, we apply Assumption (3) and choose task sched-

ule ρ3 for H2‖Env such that
• projA2

2
(ρ3) is q2-bounded,

• projEnv2
(ρ2) = projEnv2

(ρ3), and
• |Pacc(H1‖Env , ρ2)−Pacc(H2‖Env , ρ3)| < ε.

Note that, since A3
1 is part of both Env1 and Env2, we

have projA3
1
(ρ3) = projA3

1
(ρ2) = projA3

1
(ρ1). There-

fore, projA3
1
(ρ3) is q1-bounded. Similarly, projH2(ρ3) is

(q1 + 2 · q2)-bounded and ρ3 is (q1 + 2 · q2 + q′)-bounded.
Repeating the same argument for all hybrid automata, we

obtain

|Pacc(Â1‖Env , ρ1)−Pacc(Â2‖Env , ρb+1)|

≤ |Pacc(Â1‖Env , ρ1)−Pacc(H1‖Env, ρ2)|
+ |Pacc(H1‖Env , ρ2)−Pacc(H2‖Env , ρ3)|

+ . . .+ |Pacc(Hb−1‖Env , ρb)−Pacc(Â2‖Env , ρb+1)|
< b · ε = ε′

Moreover, since Env is part of Env i for every i, we know
that projEnv (ρb+1) = projEnv (ρ1). Finally, we have that
projÂ2

(ρb+1) is bounded by q′2 = q1+b·q2. This completes

the proof that Â1 ≤q1,q′2,p′,q′,ε′ Â2.

Theorem 3.6 now follows as a corollary of Lemma 3.5.
Essentially, we expand the definition of ≤strong

neg,pt and instan-
tiate the time bounds and error with appropriate values.

Theorem 3.6 (Polynomial Composition Theorem for
≤strong

neg,pt). Let two sequences of task-PIOA families

A1

1,A
2

1, . . . and A1

2,A
2

2, . . . be given, with Ai1 comparable
to Ai2 for all i. Assume further that, in each sequence, all
task-PIOA families are pairwise compatible.

Suppose there exist polynomials r, s : N → N such that,
for all i, k, both (Ai1)k and (Ai2)k have description bounded
by r(i) · s(k). Assume that r is non-decreasing. Assume
further that

∀q1 ∃q2 ∀p, q ∃ε ∀i A
i

1 ≤q1,q2,p,q,ε A
i

2, (1)

where q1, q2, p, q are polynomials and ε is a negligible func-
tion. (This is a strengthening of the statement ∀iAi1 ≤

strong
neg,pt

Ai2.)
Let b be any polynomial. For each k, let (Â1)k denote

(A1

1)k‖ . . . ‖(A
b(k)

1 )k. Similarly for (Â2)k. Then we have
Â1 ≤strong

neg,pt Â2.

Proof. By the definition of ≤strong
neg,pt, we need to prove:

∀q′1 ∃q′2 ∀p′, q′ ∃ε′ Â1 ≤q′1,q′2,p′,q′,ε′ Â2,

where q′1, q
′
2, p

′, q′ are polynomials and ε′ is a negligible
function.

Let polynomial q′1 be given and set q1 := q′1. Choose q2
according to Assumption (1) in the theorem statement. Set
q′2 := q1+b·q2. Let polynomials p′ and q′ be given. Define:

(i) p := ccomp ·(p′+b·(r◦b)), where ccomp is the constant
factor for composing task-PIOAs in parallel;

(ii) q := q1 + b · q2 + q′.
Now choose ε using q1, q2, p, q and Assumption (1), and
define ε′ := b · ε.

Let k ∈ N be given. Observe that
• the task-PIOAs:

– (A1

1)k, . . . , (A
b(k)

1 )k,

– (A1

2)k, . . . , (A
b(k)

2 )k,
• the function s(k) · r and
• the numbers b(k), q1(k), q2(k), q′2(k), p(k), p

′(k), q(k),
q′(k), ε(k), ε′(k)

satisfy the assumptions in the statement of
Lemma 3.5. Therefore we may conclude that
(Â1)k ≤q1(k),q′2(k),p′(k),q′(k),ε′(k) (Â2)k. Since q1 = q′1,
this completes the proof.
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To conclude this section, we obtain the constant compo-
sition theorem for ≤strong

neg,pt (Corollary 3.8) as a corollary of
Theorem 3.6. For this special case, we need not assume a
uniformity condition, because we can consider maximum
time bounds and maximum errors. We use the fact that
≤q1,q2,p,q,ε is preserved if we relax the time bound q2 and
the error bound ε.

Lemma 3.7. Let A1 and A2 be comparable task-PIOAs
and let q1, q2, p, q ∈ N and ε ∈ R≥0 be given. Assume
A1 ≤q1,q2,p,q,ε A2. For any q̂2 ≥ q2 and ε̂ ≥ ε, we have
A1 ≤q1,q̂2,p,q,ε̂ A2.

Corollary 3.8. Let B ∈ N and two sequences of task-PIOA
families A1

1,A
2

1, . . .A
B

1 and A1

2,A
2

2, . . . ,A
B

2 be given,
with Ai1 comparable to Ai2 for all i. Suppose there exists
polynomial s : N → N such that, for all i, k, both (Ai1)k
and (Ai2)k have description bounded by s(k). Assume fur-
ther that Ai1 ≤

strong
neg,pt A

i

2 for all 1 ≤ i ≤ B.

For each k, let (Â1)k denote (A1

1)k‖ . . . ‖(A
B

1 )k. Simi-
larly for (Â2)k. Then we have Â1 ≤strong

neg,pt Â2.

Proof. We claim that Assumption (1) in Theorem 3.6 is sat-
isfied. Let polynomial q1 be given. For each i, choose poly-
nomial qi2 using the assumption Ai1 ≤

strong
neg,pt A

i

2. Let q̂2 be
any polynomial upperbound of q12 , . . . , q

B
2 .

Let polynomials p and q be given. For each i, choose
negligible function εi using q1, qi2, p, q and the assumption
Ai1 ≤

strong
neg,pt A

i

2. Let ε̂ be max(ε1, . . . , εB).

Now we have Ai1 ≤q1,qi
2,p,q,ε

i Ai2 for all i. By

Lemma 3.7, this implies Ai1 ≤q1,q̂2,p,q,ε̂ A
i

2 for all i, which
is precisely Assumption (1) in Theorem 3.6.

Finally, let b be the constant polynomial B and let r be
the constant polynomial 1. We apply Theorem 3.6 to con-
clude that Â1 ≤strong

neg,pt Â2.

4. Structures

In the previous sections, we defined and established
properties of our model of concurrent computation, which
is not specific to cryptographic protocols. On top of this
“foundational layer”, this section introduces our “security
layer”.

In the spirit of [36], we first define structures, which we
use to specify protocols. To this purpose, we classify exter-
nal actions of a task-PIOA into two categories: environment
actions and adversary actions. Intuitively, environment ac-
tions are used to model the functional input/output interface
of a protocol, whereas adversary actions are used to model
network communications. This allows us to impose syntac-
tic constraints on adversary task-PIOAs so that they do not
have immediate access to protocol inputs and outputs.

Definition 4.1. A structure π is a pair 〈A,EAct〉, where
A is a task-PIOA and EAct is a subset of the external ac-
tions of A, called the environment actions. The set of ad-
versary actions is defined to be AAct := (I ∪ O) \ EAct .
For convenience, we also define: (i) EI := EAct ∩ I
(environment inputs), (ii) EO := EAct ∩ O (environment
outputs), (iii) AI := AAct ∩ I (adversary inputs) and
(iv) AO = AAct ∩O (adversary inputs).

The notion of structure suggests the following definition
of an adversary that may interact with a structure.

Definition 4.2. An adversary for the structure π =
〈A,EAct〉 is a task-PIOA Adv satisfying the following con-
ditions: (i) Adv is compatible with A, (ii) AI ⊆ ActAdv ,
and (iii) ActAdv ∩EAct = ∅.

In other words, Adv is a compatible task-PIOA that in-
teracts with π via adversary actions only, and Adv provides
all adversary inputs to π.

Two structures π1 and π2 are said to be comparable if
EI 1 = EI 2 and EO1 = EO2. Notice, unlike compara-
bility for task-PIOAs, comparability for structures ignores
differences in adversary actions.

Two structures π1 and π2 are compatible if A1 and A2

are compatible task-PIOAs and Act1 ∩Act2 = EAct1 ∩
EAct2. That is, every shared action must be an environment
action of both structures. Composition is straightforward:
given compatible π1 and π2, their composition π1‖π2 is the
structure 〈A1‖A2,EAct1 ∪ EAct2〉. This definition can be
extended to any finite number of components. We observe
that an adversary for a composition of structures is also an
adversary for each of the component structures. A proof of
this result is given in Appendix C.

Finally, we consider hiding for structures. Given a struc-
ture 〈A,EAct〉 and a set S of output actions ofA, we define
hide(〈A,EAct〉, S) to be the structure 〈hide(A, S),EAct\
S〉.

Time Bounds A structure π = (A,EAct) is said to have
p-bounded description if A has p-bounded description and
EAct is p-time recognizable. We observe that the compo-
sition of bounded structures has a description bound linear
in the sum of component bounds. Similarly, the hiding op-
erator increases the description bound by a fixed constant
factor. More details about these results are available in Ap-
pendix B.

Structure Families Given a family π̄ of structures and a
function p : N → N, we say that π̄ has p-bounded descrip-
tion if πk has p(k)-bounded description for every k. If p is
a polynomial, then we say that π̄ has polynomially-bounded
description.
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The notions of comparability, compatibility and parallel
composition are defined pointwise. Similarly for the notion
of an adversary family.

If S̄ = {Sk}k∈N is a family of sets of actions, we say that
S̄ is polynomial-time recognizable if there is a polynomial
p such that every Sk is p(k)-time recognizable. It is not
hard to check that, given any family π̄ with polynomially-
bounded description and a polynomial-time recognizable
family S̄ of sets of actions, the family hide(π̄, S̄) is again
polynomial time-bounded. Those results are detailed in Ap-
pendix B.

5. Secure Emulation

Equipped with the notions of polynomial-time-bounded
structure and adversary families, we have now enough ma-
chinery to formulate our secure emulation notion. To this
purpose, we follow the standard definition of universal com-
posability/simulatability [9, 36].

Definition 5.1 (Secure Emulation). Suppose φ and ψ are
comparable structure families. We say that φ emulates ψ
(denoted φ ≤SE ψ) if, for every adversary family Adv for φ
with polynomially bounded description, there is an adver-
sary family Sim for ψ with polynomially bounded descrip-
tion such that:

hide(φ‖Adv ,AActφ) ≤strong
neg,pt hide(ψ‖Sim,AActψ).

Transitivity of≤SE follows immediately from transitivity
of ≤strong

neg,pt.

Dummy Adversaries Observe that, in the definition of
≤SE, the adversary actions of φ and ψ are hidden, which
prevents an environment from synchronizing on those ac-
tions. At first sight, this limits the amount of information
available to the environment and hence reduces its distin-
guishing power. However, this should be mitigated, as ad-
versaries and environment can freely communicate, and ad-
versaries can decide to simply forward messages between
the φ, ψ, and then environment. This behavior is described
by the so-called dummy adversaries and below we give a
canonical construction.

Let φ be a structure family and, for each k ∈ N, let fk be
a bijection from AActφk

to a set of fresh action names. We
refer to f = {fk}k∈N as a renaming of adversary actions
for φ, and we write f(φ) for the result of applying fk to φk
for every k. Consider the adversary Adv(φk, fk) defined in
Figure 1. Adv(φk, fk) is called a dummy adversary for φk,
and the family Adv(φ, f) = {Adv(φk, fk)}k∈N is a dummy
adversary family for φ.

The following lemma shows that dummy adversaries can
be transparently added between a structure and an adversary

Adv(φk, fk)

Signature

Input:
AOφk

∪ fk(AIφk
)

Output:
fk(AOφk

) ∪AIφk

Tasks
forward := fk(AOφk

) ∪AIφk

States
pending ∈ AOφk

∪ fk(AIφk
) ∪

⊥, initially ⊥

Transitions:

a ∈ AOφk
∪ fk(AIφk

)
Effect:

pending := a

b ∈ fk(AOφk
)

Precondition:
b = fk(pending)

Effect:
pending := ⊥

b ∈ AIφk

Precondition:
fk(b) = pending

Effect:
pending := ⊥

Figure 1. Task-PIOA Code for Dummy Adver-
sary

for that structure. This fact is used to in the proof of our
main composition theorem (Theorem 5.3).

Lemma 5.2. Let φ, f , and Adv(φ, f) be defined as
above. Let A be an adversary family for both f(φ)
and hide(φ‖Adv(φ, f),AActφ). Then f(φ)‖A ≤strong

neg,pt

hide(φ‖Adv(φ, f),AActφ)‖A.

Proof. Let q1 be any polynomial and set q2 := 2q1. Let
p, q be any polynomials and ε be the constant polynomial 0.
Fix k ∈ N and let Env be an environment for fk(φk)‖Ak
and for φk‖Adv(φk, fk)‖Ak. Let ρ be a task schedule
for fk(φk)‖Ak‖Env such that projfk(φk)‖Ak

(ρ) is q1(k)-
bounded and projEnv (ρ) is q(k)-bounded.

We construct a task schedule ρ′ for
φk‖Adv(φk, fk)‖Ak‖Env as follows: given any
task T that is not locally controlled by Env , we re-
place T with T.forward. Note that, by construction,
projhide(φk‖Adv(φk,fk),AActφk

)(ρ′) is q2(k)-bounded and
projEnv (ρ) = projEnv (ρ′). As a result, we obtain:

Pacc(fk(φk)‖Ak‖Env , ρ)
= Pacc(hide(φk‖Adv(φk, fk),AActφk

)‖Ak‖Env , ρ′).

Composition We now prove that ≤SE is preserved under
polynomial-sized composition, provided certain uniformity
assumptions are satisfied.
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Theorem 5.3. Let two sequences of pairwise compatible
structure families φ1, φ2, . . . and ψ1, ψ2, . . . be given, with
φi comparable to ψi for all i.

Suppose there are renamings f1, f2, . . . and polynomials
r, s : N→ N such that the following hold.
(1) r is non-decreasing.
(2) For all i, φi‖Adv(φi, f i) has description bounded by

r(i) · s. (The family Adv(φi, f i) is a dummy adversary
family, as in Lemma 5.2.)

(3) There exist adversary families Sim1,Sim2, . . . for
ψ1, ψ2, . . . such that
(a) for all i, ψi‖Simi has description bounded by r(i) ·

s, and
(b) ∀q1 ∃q2 ∀p, q ∃ε ∀i

hide(φi‖Adv(φi, f i),AActφi) ≤q1,q2,p,q,ε
hide(ψi‖Simi,AActψi),
where q1, q2, p, q are polynomials and ε is a
negligible function.

Let b be any polynomial. For each k, let φ̂k denote
φ1
k‖ . . . ‖φ

b(k)
k . Similarly for ψ̂k. Then we have φ̂ ≤SE ψ̂.

Proof. Let Adv be an adversary family for φ̂ with polyno-
mially bounded description. We need to construct an adver-
sary family Sim for ψ̂ with polynomially bounded descrip-
tion such that:

hide(φ̂‖Adv ,AAct φ̂) ≤
strong
neg,pt hide(ψ̂‖Sim,AAct ψ̂).

Observe that the renamings f1, f2, . . . induce a renam-
ing for φ̂ in the obvious way: for each k, fk := f1

k ∪ . . . ∪
f
b(k)
k . This is well defined because the compatibility defin-

ition for structures requires the sets of adversary actions to
be pairwise disjoint.

Let Âdv and Ŝim be adversary families defined as fol-
lows: for each k,

Âdvk := Adv(φ1
k, f

1
k )‖ . . . ‖Adv(φb(k)k , f

b(k)
k ), and

Ŝimk := Sim1
k‖ . . . ‖Simb(k)

k ,

where Sim1,Sim2, . . . are given as in the statement of the
theorem.

We observe the following.

hide(φ̂‖Adv ,AAct φ̂)

≡neg,pt hide(f(φ̂)‖f(Adv), f(AAct φ̂))

≤strong
neg,pt hide(φ̂‖Âdv‖f(Adv), f(AAct φ̂) ∪AAct φ̂)

≤strong
neg,pt hide(ψ̂‖Ŝim‖f(Adv), f(AAct φ̂) ∪AAct ψ̂)

≡neg,pt hide(ψ̂‖hide(Ŝim‖f(Adv), f(AAct φ̂)),AAct ψ̂)

Here, the first relation follows from the property of re-
naming, the second from Lemma 5.2, the third from The-

orem 3.6, and the last from the properties of the hiding op-
erator. Diagrams depicting these task-PIOAs and the com-
munications between them are in Figure 2. We define Sim
to be hide(Ŝim‖f(Adv), f(AAct φ̂)). This completes the
proof.

φ1
k

φ
b(k)
k

Adv(φ1
k, f

1
k )

Adv(φb(k)k , f
b(k)
k )

f(Adv)

φ̂k Âdvk

AActφ1
k

AAct
φ

b(k)
k

f(AActφ1
k
)

f(AA
ctφ

b(k
)

k

)

EActφ̂k

ψ1
k

ψ
b(k)
k

Sim1
k

Sim
b(k)
k

f(Adv)

ψ̂k Ŝimk
Sim

AActψ1
k

AAct
ψ

b(k)
k

f(AActφ1
k
)

f(AA
ctφ

b(k
)

k

)

EActψ̂k

Figure 2. Diagram for the Construction of Sim

Let us now compare the assumptions of Theorem 5.3
with the more intuitive assumption that φi ≤SE ψi for all
i. The latter is not sufficient for two reasons.
• We need to ensure that the composites φ̂ and ψ̂ have

polynomially bounded description. The same applies
to the adversary families Âdv and Ŝim . Therefore we
need the existence of polynomial bounds r and s. Note
that we do allow the complexity to grow with i, as long
as the growth in i is independent of the growth in the
security parameter k. This is important because our
compatibility condition requires disjoint sets of locally
controlled actions: as i grows, action names need to
contain more bits. (This can be thought of as the need
to have distinct session IDs for different protocol in-
stances.)
• Assumption (3b) is the so-called uniformity condition

on the error in simulation. We require that the same er-
ror bound ε works for all instances i. This prevents the
errors from growing with i, otherwise the total error
may no longer be negligible.

We present two examples of applications of this com-
position theorem further in this section, but first examine
further properties of our secure emulation relation.
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Hiding Our secure emulation relation is preserved when
we hide any set of environment output actions of the re-
lated structures. This result can be naturally used to model
the behavior of protocols privately synchronizing with sub-
protocols.

Theorem 5.4. Suppose φ and ψ are comparable structure
families such that φ ≤SE ψ. Suppose also that B ⊂ EOφ

is a family of sets of environment output actions of φ. Then,
hide(φ,B) ≤SE hide(ψ,B).

Proof. Suppose φ, ψ and B are defined as in the hypothe-
ses. Unwinding the assumption that φ ≤SE ψ, we obtain
that, for every polynomial time-bounded adversary family
Adv for φ, there is a polynomial time-bounded adversary
family Sim for ψ such that hide(φ‖Adv ,AActφ) ≤strong

neg,pt

hide(ψ‖Sim,AActψ).
Using the definition of adversaries, we observe

that ActAdv ∩B = ActSim ∩B = ∅. This guaran-
tees that Adv is an adversary family for hide(φ,B)
and that Sim is an adversary family for hide(ψ,B).
Now, using the hiding property of ≤strong

neg,pt, we ob-
tain that hide(hide(φ‖Adv ,AActφ), B) ≤strong

neg,pt

hide(hide(ψ‖Sim,AActψ), B). Using the set in-
tersection relations above and the fact that we
only hide environment external actions, this im-
plies hide(hide(φ,B)‖Adv ,AActhide(φ,B)) ≤strong

neg,pt

hide(hide(ψ,B)‖Sim,AActhide(ψ,B)), as needed.

Applications We state two simple corollaries illustrating
the use of our composition theorem: the first one considers
composition for a polynomial number of copies of a sin-
gle structure family, while the second considers composi-
tion for a constant number of distinct structure families.

Corollary 5.5. Suppose φ and ψ are comparable
polynomial-time-bounded structure families such that
φ ≤SE ψ. Let g1, g2, . . . be renaming functions, each map-
ping actions of φ and ψ to fresh names. Suppose further that
applying the renaming gi to the family φ or ψ does not in-
crease their time-bounds more than by a polynomial factor
in the index i.

Let b be a polynomial. For each k, let φ̂k denote
g1(φk)‖ . . . ‖gb(k)(φk), and similarly for ψ̂k. Then we have
φ̂ ≤SE ψ̂.

Proof. Let us write φi and ψi for gi(φ) and gi(ψ) respec-
tively. Since the gi functions are just renaming functions,
we have φi ≤SE ψ

i for every i.
Consider now, for every index i, the adversary fam-

ily Adv(φi, f i) for φi (following the definition used
in Lemma 5.2), where the renamings f i are such that
φi‖Adv(φi, f i) is bounded by r1(i) · s where r1 and s are
polynomials. The secure emulation relations above imply

that there exist polynomial-time-bounded adversary fam-
ilies Sim1,Sim2, . . . for ψ1, ψ2, . . . (respectively) such
that:
(a) for every i, the task-PIOA ψi‖Simi is bounded by

r2(i)·s, where r2 is a polynomial (this can be stated be-
cause the renaming functions do not increase the length
of action names too much, and because all Simi au-
tomata can be chosen identical up to action renaming),
and

(b) ∀q1 ∃q2 ∀p, q ∃ε ∀i
hide(φi‖Adv(φi, f i),AActφi) ≤q1,q2,p,q,ε
hide(ψi‖Simi,AActψi),
where q1, q2, p, q are polynomials, and ε is a negligible
function.

As a result, by defining r as a non-decreasing polynomial
majoring r1 and r2, we can apply Theorem 5.3 and obtain
that φ̂ ≤SE ψ̂, as needed.

Corollary 5.6. Let φ1, . . . , φB and φ1, . . . , ψB be pair-
wise compatible polynomial-time-bounded structure fam-
ilies, with φi ≤SE ψi for every i. Then, we have
φ1‖ · · · ‖φB ≤SE ψ

1‖ · · · ‖ψB .

Proof. Suppose f1, . . . , fB are renaming functions for the
adversary actions of φ1, . . . , φB , such that the increase
of the length of the action names of φik through f i is
bounded by some polynomial in k. Suppose further that
Adv(φ1, f1), . . . , Adv(φB , fB) are dummy adversary fam-
ilies as defined in Lemma 5.2.

Since B is constant, and since φi ≤SE ψi for every
i ∈ [B], there are adversary families Sim1, . . . , SimB

for ψ1, . . . , ψB such that, ∀q1 ∃q2 ∀p, q ∃ε ∀i
hide(φi‖Adv(φi, f i),AActφi) ≤q1,q2,p,q,ε
hide(ψi‖Simi,AActψi), where q1, q2, p, q are poly-
nomials, and ε is a negligible function.

Now, the result follows of the use of Theorem 5.3 where
r is a constant, s is a polynomial bounding the description
of φi‖Adv(φi, f i) and ψi‖Simi for every i ∈ [B], and b is
the constant B.

6. Conclusions

In this paper, we introduced a new approximate imple-
mentation relation for task-PIOAs, the ≤strong

neg,pt relation, and
showed that it supports composition theorems for polyno-
mially growing task-PIOA families. Building upon this
≤strong

neg,pt relation, we presented a secure emulation relation,
following the logical statement of universal composabil-
ity/simulatability, and proved this relation is transitive and
preserved under hiding. It also supports composition the-
orems for polynomially growing structure families. These
three properties, as well as the invariant assertion and sim-
ulation relation techniques developed in [12, 13], are essen-
tial for the scalability of protocol analysis.
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In future works, we would like to consider dynamic cre-
ation definitions for task-PIOAs: this would allow us to
model environments (or structures) that can dynamically
create new protocol instances at run time, as it is performed
through the dynamic ITM invocation mechanism in the UC
framework or through the bang operator “!” in the IITM
framework. We believe such an enrichment to our frame-
work would allow us to prove a stronger claim about the
existence of simulators. Namely, there is a single simulator
that can simulate b many protocol instances for any polyno-
mial b.

We would also like to apply the model and methods we
developed here to analyze security protocols that have not
yet been the subject of much formal study, such as timing-
based and long-lived security protocols, where our sepa-
ration between the bounds on description and schedulers
seems especially meaningful.
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A. Results for Task-PIOAs

We state the transitivity of the≤q1,q2,p,q,ε and≤strong
neg,pt re-

lations, and claim these relations are preserved when output
actions of the related automata are hidden.

Lemma A.1. Suppose A1, A2 and A3

are comparable task-PIOAs such that
A1 ≤q1,q2,p,q,ε12 A2 and A2 ≤q2,q3,p,q,ε23 A3. Then,
A1 ≤q1,q3,p,q,ε13+ε23 A3.

Lemma A.2. Suppose A1 = {(A1)k}k∈N, A2 =
{(A2)k}k∈N and A3 = {(A3)k}k∈N are comparable task-
PIOA families such that A1 ≤strong

neg,pt A2 and A2 ≤strong
neg,pt A3.

Then, A1 ≤strong
neg,pt A3.

Lemma A.3. Suppose A1 and A2 are comparable task-
PIOA families such that A1 ≤q1,q2,p,q,ε A2. Suppose also
that B is set of output actions of both A1 and A2. Then,
hide(A1, B) ≤q1,q2,p,q,ε hide(A2, B).

Lemma A.4. Suppose A1 = {(A1)k}k∈N and A2 =
{(A2)k}k∈N are comparable task-PIOA families such that
A1 ≤strong

neg,pt A2. Suppose also that B = {Bk}k∈N is a fam-
ily of sets of output actions of A1 and A2, that is, Bk is
a set of output actions of both (A1)k and (A2)k. Then,
hide(A1, B) ≤strong

neg,pt hide(A2, B).

The proof of these lemmas are similar to those appearing
as [10, Lemma 4.9, 4.31, 4.11, and 4.33].

B. Results for Structures

We consider the behavior of structures when they are
composed.

Lemma B.1. There exists a constant ccomp such that the fol-
lowing holds. Suppose π1, π2, . . . , πn are compatible struc-
tures, where, for every 1 ≤ i ≤ n, the structure πi is bi-time
bounded. Then, π1‖ · · · ‖πn is ccomp(b1+· · ·+bn)-bounded.
Also, the composition of n polynomial time-bounded struc-
tures is also a polynomial time-bounded structure.

Proof. Similar to the proofs of [10, Lemma 4.2 and 4.26].
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Corollary B.2. Suppose π = {πk}k∈N is a family of struc-
tures, such that each πk is the composition of p(k) q(k)-time
bounded structures. Then π is a polynomial time-bounded
family of structure, bounded by the polynomial ccomppq.

Proof. Lemma B.1 guarantees that πk is ccomp(p(k)q(k))-
time bounded.

The compatibility of two structures is preserved when
we compose these structures with a third one.

Lemma B.3. Suppose π1 and π2 are comparable struc-
tures, and π3 is a structure that is protocol-compatible with
each of π1 and π2.
Then π1‖π3 and π2‖π3 are comparable structures.

Proof. Write π1 = (A1,EAct1), π2 = (A2,EAct2), and
π3 = (A3,EAct3). We show the two conditions in the
definition of comparability:

1. EI 1 ∪ EI 3 − (EO1 ∪ EO3) = EI 2 ∪ EI 3 − (EO2 ∪
EO3).
Since π1 and π2 are comparable structures, we know
that EI 1 = EI 2 and EO1 = EO2. Let a ∈ EI 1 ∪
EI 3 − (EO1 ∪ EO3). There are two cases:

(a) a ∈ EI 1 − EO3. Then a ∈ EI 2, so a ∈ EI 2 −
EO3. Since a ∈ EI 2, we have a 6∈ EO2. So
a ∈ EI 2 ∪ EI 3 − (EO2 ∪ EO3), as needed.

(b) a ∈ EI 3 − EO1. Then a 6∈ EO2, so a ∈ EI 3 −
EO2. Since a ∈ EI 3, we have a 6∈ EO3. So
a ∈ EI 2 ∪ EI 3 − (EO2 ∪ EO3), as needed.

The converse direction is similar.

2. EO1 ∪ EO3 = EO2 ∪ EO3.
Since EO1 = EO2, this is immediate.

Time bounds of structures evolve as those of task-PIOAs
when sets of output actions are hidden.

Lemma B.4. There exists a constant chide such that the fol-
lowing holds. Suppose π is a p-time-bounded structure, and
S is a p′-time recognizable subset of the output actions of π.
Then hide(π, S) is a chide(p+ p′)-time-bounded structure.

Lemma B.5. Suppose π is a polynomial-time-bounded
structure, and S is a polynomial-time recognizable family
of subset of the output actions of π. Then hide(π, S) is a
polynomial-time-bounded structure.

The proofs of these result are similar to those appearing
in [10, Lemma 4.3 and 4.33].

C. Adversary for Composed Structures

The following lemma relates signatures of adversaries
and is used in the proof of Theorem 5.3.

Lemma C.1. Suppose φ and ψ are comparable structures,
Adv is an adversary for φ, Sim is an adversary for ψ,
and hide(φ‖Adv ,AActφ) ≤strong

neg,pt hide(ψ‖Sim,AActψ).
Then, OAdv −AActφ = OSim−AActψ , IAdv −AActφ =
ISim−AActψ , and ExtAdv −AActφ = ExtSim−AActψ .

Proof. Follows from the fact that φ and ψ are com-
parable structures, and that hide(φ‖Adv ,AActφ) and
hide(ψ‖Sim,AActψ) must be comparable task-PIOAs.

Next we show that an adversary for the composition of
several structures is an adversary of any of theses structures.

Lemma C.2. Suppose π and φ are compatible structures,
and Adv is an adversary for π‖φ. Then Adv is an adversary
for φ. Also, if π and P are compatible structure families,
and Adv is an adversary family for π‖P . Then Adv is an
adversary family for P .

Proof. Suppose π and φ are compatible structures, and Adv
is an adversary for π‖φ. We observe that the three condi-
tions of Definition 4.2 are satisfied.

1. Adv is compatible with φ. This follows from the fact
that Adv is compatible with π‖φ.

2. ExtAdv ∩Extφ ⊆ AActφ. Since Adv is an adversary
for π‖φ, we know that ExtAdv ∩(Extπ ∪Extφ) ⊆
AActπ ∪ AActφ. This implies that ExtAdv ∩Extφ ⊆
AActπ ∪ AActφ. We observe now that AActπ ∩
AActφ = ∅ and AActπ ∩ EActφ = ∅, since π
and φ are compatible structures. This implies that
AActπ ∩ Extφ = ∅, which in turn guarantees that
ExtAdv ∩Extφ ⊆ AActφ.

3. AI φ ⊆ OAdv . Since Adv is an adversary for π‖φ, we
know that (AActφ ∪ AActπ) ∩ ((Iφ ∪ Iπ) − (Oφ ∪
Oπ)) ⊆ OAdv . This first implies that AActφ ∩ (Iφ −
(Oφ∪Oπ)) ⊆ OAdv . Next, since Iφ∩Oφ = ∅, we have
that AActφ ∩ (Iφ − Oπ)) ⊆ OAdv . By distributivity,
we also have that AActφ∩Iφ−AActφ∩Oπ ⊆ OAdv .
The compatibility conditions of π and φ now imply
that AActφ ∩ Oπ = ∅, which provides the relation
AActφ ∩ Iφ ⊆ OAdv , as needed.

The extension to structure families and adversary fami-
lies is straightforward.
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