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What is Independent Component Analysis?
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The cocktail party problem
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ICA performs 
a linear projection into independent components

Assumptions

linearity
no delay
statistically independent sources
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ICA performs 
a linear projection into independent components

number of variablesn

number of componentsp

= SX A

Random vector

Real matrix

Statistically independent
random variables

n x p
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ICA performs 
a linear projection into independent components

=
p x N

n x pn x N

number of samplesN

number of variablesn

number of componentsp

A SX

Samples of
statistically independent

random variables
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ICA for blind source separation:
fECG extraction

ICA
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ICA for blind source separation:
Analysis of EEG

CSF

EEG
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ICA for EEG
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ICA for data analysis

Principal directions

Independent directions
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ICA for denoising

Wiener 
filtering

ICA 
filtering

Noisy 
image

Original 
image
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ICA has applications in many areas

� Blind source separation 
(e.g., biomedical signal processing, radar and mobile communication)

� Data analysis

� Noise reduction

� Feature extraction (image, audio, video representation)

� …
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ICA is an optimization problem

estimator of 
statistical independence
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ICA algorithms compute the unmixing model

Mixing model Unmixing model
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ICA is an optimization problem

1. Estimation of the statistical independence of the z's:

2. Minimization of the contrast:
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The contrast presents two inherent symmetries

If                   are independent, 

then                          are independent,

and as well.
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The contrast presents two inherent symmetries

If                   are independent, 

then                          are independent,

and as well.

⇒

invertible diagonal matrix

permutation matrix
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Determined by 
Orthogonal ICA

Furthermore, most ICA methods use prewhitening

Determined by SVD of X
Principal Component Analysis

For any matrix :

W= U S V T
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In dimension 2…
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In dimension 2…
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ICA as an optimization on the orthogonal group

Orthogonal ICA (also called prewhitening-based ICA):

The orthogonal group automatically gets rid of the scaling indeterminacy.

with
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A whole bunch of ICA algorithms…

Contrast

Estimation of the mutual information

Joint diagonalization of cumulant matrices

Diagonalization of cumulant tensors

Non-gaussianity

Constrained covariance

Manifold

Orthogonal group

Stiefel manifold

Oblique manifold

Flag manifold (independent subspace analysis)

Optimization method

Jacobi rotations

Gradient descent

Second-order approaches
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Outline of the project

� Manifold : Orthogonal group

� Contrast: Joint diagonalization of cumulant matrices
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Joint diagonalization of a set of matrices

Given m cumulant matrices Ci, minimize

C
iW T W =

Diagonalization of one matrix:
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Joint diagonalization of a set of matrices

Given m cumulant matrices Ci, minimize

C
i

W T W =

Joint diagonalization of m matrices:
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Outline of the project

� Manifold : Orthogonal group

� Contrast: Joint diagonalization of cumulant matrices

� Optimization method: conjugate gradient

� Applications: blind source separation of images, bioinformatics
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Separation of images

ICA
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Analysis of gene expression data

Microarray

Each spot reflects the expression of a gene

Gene expression database

Rows  ↔ genes  ( ~104)

Columns  ↔ experiments  ( ~102) 
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Analysis of gene expression data

Microarray

Each spot reflects the expression of a gene

Gene expression database

Rows  ↔ genes

Columns  ↔ experiments 

DNA

mRNA

Protein
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Such a database is a goldmine for new knowledge 
about the cellular machinery

� Global picture of the transcriptome under several conditions

� Genes that are coexpressed across similar conditions are very 
informative

� Identification of interesting structures in the genome

Some interesting questions:

� What does this gene do?

� Which genes are responsible of a phenotype?

� How do the genes act on a phenotype?
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ICA in case of gene expression data

≈
Expression mode
(statistically independent)

weigths
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Analysis of an ovarian cancer database

175 genes

17   tissues

+ some clinical data
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ICA expression modes are highly correlated with 
the observed phenotypes

Tissues

Expression
modes

Pre-menopause

poorly differentiated serous papillary adenocarcinoma

benign 
mucinous 
cystadenoma
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ICA identifies genes likely to be coexpressed for an 
observed phenotype

E.g. poorly differentiated serous papillary adenocarcinoma (pd-spa)

genes

HLA CLASS I
MEMBRANE GLYCOPROTEIN GP130 
PLACENTAL-CADHERIN 
COFILIN
TIE1

Expression mode 15
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Schedule

4 Matlab session: 

- Wednesday 11:30 – 12:30

- Wednesday 16:30 – 17:30 

- Thursday 16:30 – 17:30 

- Friday 11:30 – 12:30 
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Good work!


