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ICA performs
a linear projection into independent components

Assumptions

linearity ;1?1(15) B ai1 1o .Sl(t}
no delay ? = 1
statistically independent sources (1) a21 @22 s2(t)



ICA performs
a linear projection into independent components
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ICA performs

a linear projection into independent components
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ICA for blind source separation:
fECG extraction
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ICA for EEG ©
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Principal directions
Independent directions




ICA for denoising

Original
image

Wiener
filtering

filtering
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ICA has applications in many areas

= Blind source separation
(e.g., biomedical signal processing, radar and mobile communication)

= Data analysis
= Noise reduction

= Feature extraction (image, audio, video representation)



estimator of

statistical independence
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ICA algorithms compute the unmixing model

Mixing model Unmixing model

s1(t) x1(t) z1(t)

a1 Wi
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1. Estimation of the statistical independence of the z's:

y() : RVP =R

2. Minimization of the contrast:

min W
Weﬁmv( )

—> W




If ~1 are independent,

Z2
1] .
then are independent,
222
22
and as well.



The contrast presents two inherent symmetries

If { ~1 }are independent,
29

(X121 _
then are independent,
(X2 Z9

and { “2 } as well.
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— (W) =~(WPA)
invertible diagonal matrix

permutation matrix
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For any matrix W & R"*P

W:.-

Determined by
Orthogonal ICA

Determined by SVD of X
Principal Component Analysis




In dimension 2...




In dimension 2...
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ICA as an optimization on the orthogonal group

Orthogonal ICA (also called prewhitening-based ICA):

min (W) with O, ={Y eR*? . YTY =1,}

W c C-)p !

The orthogonal group automatically gets rid of the scaling indeterminacy.
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A whole bunch of ICA algorithms...

Contrast
Estimation of the mutual information
Joint diagonalization of cumulant matrices
Diagonalization of cumulant tensors
Non-gaussianity
Constrained covariance

Manifold
Orthogonal group
Stiefel manifold
Obligue manifold
Flag manifold (independent subspace analysis)

Optimization method
Jacobi rotations
Gradient descent
Second-order approaches
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= Manifold : Orthogonal group

= Contrast: Joint diagonalization of cumulant matrices



Given m cumulant matrices C;, minimize

V(W)= lloff(WTC,W)| %

1=1

Diagonalization of one matrix:




Given m cumulant matrices C;, minimize

V(W)= lloff(WTC,W)| %

1=1

Joint diagonalization of m matrices:




Outline of the project

= Manifold : Orthogonal group
= Contrast: Joint diagonalization of cumulant matrices

=  Optimization method: conjugate gradient

= Applications: blind source separation of images, bioinformatics



Separation of images
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Analysis of gene expression data
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Microarray
Each spot reflects the expression of a gene

Gene expression database

Rows <> genes ( ~10%)

Columns <> experiments ( ~102)



Protein



Such a database is a goldmine for new knowledge
about the cellular machinery

= Global picture of the transcriptome under several conditions

= Genes that are coexpressed across similar conditions are very
informative

= Identification of interesting structures in the genome

Some interesting questions:
= What does this gene do?
= Which genes are responsible of a phenotype?

= How do the genes act on a phenotype?
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ICA in case of gene expression data
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weigths

Expression mode
(statistically independent)



Analysis of an ovarian cancer database

175 genes
17 tissues

+ some clinical data
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benign
mucinous
cystadenoma

ICA expression modes are highly correlated with

the observed phenotypes
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poorly differentiated serous papillary adenocarcinoma



ICA identifies genes likely to be coexpressed for an
observed phenotype

E.g. poorly differentiated serous papillary adenocarcinoma (pd-spa)
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