Matlab project

Independent component analysis

Michel Journée

Dept. of Electrical Engineering and Computer Science University of Liège, Belgium <u>m.journee@ulg.ac.be</u>

September 2008

What is Independent Component Analysis?

The cocktail party problem

ICA performs a linear projection into independent components

Assumptions

linearity no delay statistically independent sources

$$\left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right) = \left(\begin{array}{c} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right) \left(\begin{array}{c} s_1(t) \\ s_2(t) \end{array}\right)$$

ICA performs a linear projection into independent components

$$X = AS$$

ICA performs a linear projection into independent components

6

$$X = AS$$

ICA for blind source separation: fECG extraction

ICA for blind source separation: Analysis of EEG

ICA for EEG

ICA for data analysis

Principal directions

Independent directions

ICA for denoising

Original image

Wiener filtering

ICA filtering

ICA has applications in many areas

- Blind source separation (e.g., biomedical signal processing, radar and mobile communication)
- Data analysis
- Noise reduction
- Feature extraction (image, audio, video representation)

ICA is an optimization problem

ICA algorithms compute the unmixing model

1. Estimation of the statistical independence of the *z*'s:

$$\gamma(\cdot): \mathbb{R}^{n \times p} \to \mathbb{R}$$

2. Minimization of the contrast:

 $\min_{W \in \mathbb{R}^{n \times p}} \gamma(W)$

The contrast presents two inherent symmetries

The contrast presents two inherent symmetries

Furthermore, most ICA methods use prewhitening

For any matrix $W \in \mathbb{R}^{n \times p}$:

In dimension 2...

In dimension 2...

 $Z = W^T X$

Orthogonal ICA (also called prewhitening-based ICA):

$$\min_{W \in \mathcal{O}_p} \gamma(W) \quad \text{ with } \quad \mathcal{O}_p = \{Y \in \mathbb{R}^{p \times p} : Y^T Y = I_p\}$$

The orthogonal group automatically gets rid of the scaling indeterminacy.

A whole bunch of ICA algorithms...

Contrast

Estimation of the mutual information Joint diagonalization of cumulant matrices Diagonalization of cumulant tensors Non-gaussianity Constrained covariance

Manifold

Orthogonal group Stiefel manifold Oblique manifold Flag manifold (independent subspace analysis)

Optimization method

Jacobi rotations Gradient descent Second-order approaches

Outline of the project

23

- Manifold : Orthogonal group
- **Contrast**: Joint diagonalization of cumulant matrices

Joint diagonalization of a set of matrices

Given *m* cumulant matrices C_i , minimize

$$\gamma(W) = \sum_{i=1}^{m} \|\operatorname{off}(W^{T}C_{i}W)\|_{F}^{2}$$

Diagonalization of one matrix:

Joint diagonalization of a set of matrices

Given *m* cumulant matrices C_i , minimize

$$\gamma(W) = \sum_{i=1}^{m} \|\operatorname{off}(W^{T}C_{i}W)\|_{F}^{2}$$

Joint diagonalization of *m* matrices:

Outline of the project

26

- Manifold : Orthogonal group
- **Contrast**: Joint diagonalization of cumulant matrices
- **Optimization method**: conjugate gradient

• **Applications**: blind source separation of images, bioinformatics

Separation of images

ICA

Analysis of gene expression data

Microarray Each spot reflects the expression of a gene

Gene expression database

Rows \leftrightarrow genes (~10⁴)

Columns \leftrightarrow experiments (~10²)

Analysis of gene expression data

Such a database is a goldmine for new knowledge about the cellular machinery

- **Global** picture of the transcriptome under several conditions
- Genes that are coexpressed across similar conditions are very informative
- Identification of interesting structures in the genome

Some interesting questions:

- What does this gene do?
- Which genes are responsible of a phenotype?
- How do the genes act on a phenotype?

ICA in case of gene expression data

Analysis of an ovarian cancer database

175 genes

- 17 tissues
- + some clinical data

ICA expression modes are highly correlated with the observed phenotypes

poorly differentiated serous papillary adenocarcinoma

33

ICA identifies genes likely to be coexpressed for an observed phenotype

E.g. poorly differentiated serous papillary adenocarcinoma (pd-spa)

References

- P.-A. Absil and K. A. Gallivan, *Joint diagonalization on the oblique manifold for independent component analysis*, ICASSP 2006, 2006.
- P.-A. Absil, R. Mahony, and R. Sepulchre, *Optimization algorithms on matrix manifolds*, Princeton University Press, 2008.
- F. R. Bach and M. I. Jordan, Kernel independent component analysis, Journal of Machine Learning Research, 3,1-48, 2003.
- J.-F. Cardoso, *High-order contrasts for independent component analysis*, Neural Computation 11, no. 1, 157–192, 1999.
- P. Comon, *Independent Component Analysis, a new concept* ?, Signal Processing, Elsevier 36, no. 3, 287–314, Special issue on Higher-Order Statistics, 1994.
- A. Hyvärinen, J. Karhunen, and E. Oja, *Independent component analysis*, John Wiley & Sons, 2001.
- E.G. Learned-Miller and J.W.Fisher III, *ICA using spacings estimates of entropy*, Journal of Machine Learning Research, 4, 1271-1295,2003.

References

- W. Liebermeister, *Linear modes of gene expression determined by independent component analysis*, Bioinformatics 18, 51–60, 2002.
- A.-M. Martoglio, J. W. Miskin, S. K. Smith, and D. J. C. MacKay, A decomposition model to track gene expression signatures: preview on observer-independent classification of ovarian cancer, Bioinformatics 18, no. 12, 1617–1624, 2002.
- A. E. Teschendorff, M Journée, P.-A. Absil, R. Sepulchre, andC. Caldas, *Elucidating the altered transcriptional programs inbreast cancer using independent component analysis*, PLoS Computational Biology 3, Number 8, page 1539-1554, 2007.

Schedule

4 Matlab session:

- Wednesday 11:30 12:30
- Wednesday 16:30 17:30
- Thursday 16:30 17:30
- Friday 11:30 12:30

