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Smooth optimization in R"
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Optimization on “a set”

Differentiability? Generalization went too far!




Smooth optimization on a manifold

S




Smooth optimization on a manifold: what “smooth” means
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Smooth optimization on a manifold: what “smooth” means
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Smooth optimization on a manifold: what “smooth” means

Chart: % w(U)

Atlas: Collection of “compatible charts” that cover M

Manifold: Set with an atlas
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(Highly Questionable) Summary

Optimization in R™: too easy

Optimization on arbitrary sets: too difficult

Optimization on manifolds: just right! <
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(Less Questionable) Summary

Smooth Optimization On Manifolds is a natural generalization of

smooth optimization in R".
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Some important manifolds

Stiefel manifold St(p,n): set of all orthonormal n x p matrices.

Grassmann manifold Grass(p,n): set of all p-dimensional

subspaces of R"
Euclidean group SFE(3): set of all rotations-translations
Flag manifold, shape manifold, oblique manifold...

Several unnamed manifolds
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Optimization On Manifolds in one picture
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Why?

Two examples of computational problems that can (should) be

phrased as problems of Optimization On Manifolds:
e mechanical vibrations

e independent component analysis (ICA)
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Mechanical vibrations

Stiffness matrix A = A’ mass matrix B = B! > 0.

Equation of vibrations (for undamped discretized linear

structures):
Ax = A\Bx
where
e )\ = w?, w angular frequency of vibration

e 1 is the corresponding mode of vibration.

Task: find lowest mode of vibration.
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Generalized eigenvalue problem (GEP)

Given n x n matrices A = A! and B = B? > 0, there exist
V1,...,0, In R and A\ < ... < )\, in R such that

A?}i = )\iBUi

T — ..

Task: find A\ and v7.

We assume that \; < A9 (simple eigenvalue).
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GEP: optimization in R"

A?}i == )\iB’Ui

Cost function: Rayleigh quotient

T
1 y* Ay
RY - R : =

Minimizers of f: awy, for all a # 0.
" The minimizers of f vield the lowest mode of vibration.

~— The minimizers are not isolated.
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GEP: optimization in R"

A?}i == )\iB’Ui

Cost function: Rayleigh quotient

T
~ y' Ay
R - R: =

Minimizers of f: awy, for all a # 0.
" The minimizers of f vield the lowest mode of vibration.

~— The minimizers are not isolated.

Invariance property: f(ay) = f(y).
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GEP: optimization in R"

A?}i == )\iB’Ui

Cost function: Rayleigh quotient

T
~ y' Ay
R - R: =

Minimizers of f: awy, for all a # 0.
" The minimizers of f vield the lowest mode of vibration.
~~ The minimizers are not isolated.

Invariance property: f(ay) = f(y). Idea: exploit the invariance

property ~ Optimization On Manifold.
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GEP: invariance by scaling
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GEP: optimization on ellipsoid
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GEP: optimization on ellipsoid

T
- Y- Ay
f:R—>R: f(y) =
) y! By

Invariance: f(ay) = f(y).
Remedy 1:
e M :={ycR":y!'By =1}, submanifold of R".
o frM—R:f(y)=y"Ay.
Stationary points of f: £wvq,...,Zv,.

Minimizers of f: +uv;.
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GEP: optimization on projective space

PN 7]

-<--- minimizers of f

N
\
\
\
\
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GEP: optimization on projective space

T
: y' Ay
Ry — R =

Invariance: f(ay) = f(y).
Remedy 2:

e [y]:=yR:={ya:acR}

o M:=R}/R={[y]}

o f:M—=R:[f(y]):=f(y)
Stationary points of f: [v1], ..., [vn].

Minimizer of f: |vq].
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Block algorithm for GEP: optimization on Grassmann manifold

Goal: compute the p lowest modes simulateously.
fiRPP SR f(Y) =trace (YT BY) 'YTAY)
Invariance: f(YR) = f(Y) for all nonsing. p x p matrices R.
o [Y]:={YR:RecRY*P} Y eRy
o M := Grass(p,n) :={[Y]}
o fiM=R:f([V]) = F(Y)
Stationary points of f: span{v;,,...,v;, }.

Minimizer of f: |Y| = span{vi,...,v,}.
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Why?

Two examples of computational problems that can (should) be

phrased as problems of Optimization On Manifolds:
e mechanical vibrations

e independent component analysis (ICA)
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Independent Component Analysis (ICA)

Cocktail party problem

©
s1(t)
5
a4

S9 (t)
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Independent Component Analysis (ICA)
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Independent Component Analysis (ICA)

w11

W12

w21
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ICA via Joint Diagonalization (JD)

y(t) = Wha(t), x(t) = As(t)
Covariance matrices: Ry, (7) := E[u(t + 7)ul (t)].

Pick lags 71,...,7n. It holds

Ry(11) = W R (m))W

R,(tn) = W R (Th)W.

Task: Select W to make R, (71),...,R,(7n) “as diagonal as

possible”.
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JD as optimization problem

Notation: C; := R, (7;).
Task: Make WTC,W,i=1,...,N, “as diagonal as possible”.

Choose cost function to define the “best” joint diagonalization.

N
fW) == (log det ddiag(W" C;W) — log det(W" C;W)) .
1=1

Invariance property: f(WD) = f(W) for all nonsingular diagonal

matrix D.

Difficulty: The minimizers are not isolated.
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JD as optimization on manifold

N
f(W) == (log det ddiag(W" C;W) — log det(W" C;W)) .
1=1

Invariance f(WD) = f(W), hence minimizers not isolated.

T'wo remedies:

1. Submanifold approach: restrict W to the oblique manifold
OB := {W € R™? : ddiag(W' W) = I,}.

2. Quotient manifold approach: work on R"*P /D, the set of
equivalence classes W] := WD :={WD : D diagonal}.
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Steepest-descent in R”

]

Level curves of f
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Steepest-descent on manifolds — Tangent vectors
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Steepest-descent on manifolds — Tangent space

T.M = {7(0) : v curve in M, ~(0) =z}
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Steepest-descent on manifolds — Descent directions

v'(0) is a descent direction for f at x if

YO)F = 3 Oy <0
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Steepest-descent on manifolds — Steepest descent direction

Define inner product (-, ), on the tangent space T, M. Then

M is a Riemannian manifold.

Length of a tangent vector: ||7/(0)]|. := +/(¥(0),7/(0)).
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Steepest-descent on manifolds — Steepest descent direction

Steepest-descent direction along arg minger, aq, ||¢)l.=1 8/

The steepest-descent direction is along the opposite of the

gradient of f.
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Steepest-descent on manifolds — Retraction

T,M
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Steepest-descent on manifolds — Summary

Let M be a Riemannian manifold with a retraction R. Let f
be a cost function on M. Let xg € M be the initial iterate.

For £k =0,1,...:
1. Compute grad f(zy).

2. Choose zpy1 = Ry, (—tgrad f(zy)) where ¢ > 0 is chosen to

satisfy a “sufficient decrease” condition.
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A few pointers

e Optimization on manifolds in general: Luenberger [Lue73],
Gabay [Gab82], Smith [Smi93, Smi94], Udriste [Udr94],
Manton [Man02], Mahony and Manton [MMO02], PAA et
al. [ABGOGD]...

e Stiefel and Grassmann manifolds: Edelman et al. [EAS9S],
PAA et al. [AMSO04]...

e Retractions: Shub [Shu86], Adler et al. [ADMT02]...
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e Figenvalue problem: Chen and Amari [CAO1], Lundstrém
and Eldén [LE02], Simoncinin and Eldén [SE02],
Brandts |[Bra03], Absil et
al. [AMSV02, AMS04, ASVMO04, ABGS05, ABGO06a] and
Baker et al. [BAGOG6]

e Independent component analysis: Amari et al. [ACCO00],
Douglas [Dou00], Rahbar and Reilly [RRO0],
Pham [Pha01], Joho and Mathis [JM02], Joho and
Rahbar [JR02], Nikpour et al. [NMHO02|, Afsari and
Krishnaprasad [AKO04], Nishimori and Akaho [NAO05],
Plumbley [Plu05], PAA and Gallivan [AGO06], Shen et
al. [SHS06], Hiieper et al. [HSS06]...

e Pose estimation: Ma et al. [MKSO01], Lee and
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Moore [LMO04], Liu et al. [LSG04], Helmke et al. [HHLMOT7]

e Various matrix nearness problems: Trendafilov and
Lippert |[TL02], Grubisic and Pietersz [GP05]...
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Advertisement # 1: Graduate School

Course
“Optimization algorithms on matrix manifolds”

in the Graduate School on Systems, Optimization, Control and
Networks (2007-2008)

Lecturers: PAA, Rodolphe Sepulchre
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Advertisement # 2: forthcoming book

“Optimization algorithms on matrix manifolds”

by PAA, R. Mahony and R. Sepulchre, to appear (around
December 2007)

e BRSNS A o

Introduction

Motivation and applications

Matrix manifolds: first-order geometry
Line-search algorithms

Matrix manifolds: second-order geometry
Newton’s method

Trust-region methods

A constellation of superlinear algorithms
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