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FACTORIZATIONS OF TRANSFER FUNCTIONS*
H. BARTt, L. GOHBERG#, M. A. KAASHOEKt AND P. VAN DOORENS§

Abstract. This paper is concerned with minimal factorizations of rational matrix functions. The treatment
is based on a new geometrical principle. In fact, it is shown that there is a one-to-one correspondence between
minimal factorizations on the one hand and certain projections on the other. Considerable attention is given
to the problem of stability of a minimal factorization. Also the numerical aspects are dlscussed Along the
way, a stability theorem for solutions of the matrix Riccati equation is obtained.

Introduction. The problem of factorizing a rational matrix-valued function W(A)
into ‘‘simpler” rational factors has network theory as one of its origins. In this theory
W(A) appears as a transfer function of a network. Its minimal factorizations (see
Chapter II) are of particular interest because it allows one to obtain the network by a
cascade connection of elementary sections which have the simplest synthesis [6], [22].

In the present paper the treatment of the factorization problem is based on a new
geometrical principle. This principle has been observed independently by the first three
authors and by the fourth (and has been communicated at a miniconference on
Operators and System Theory held at Amsterdam and Delft, February, 1978). For the
fourth author network theory [22], [23] has been the main motivation, while the first
three authors were inspired by [3], [7], [20].

The new geometrical principle referred to allows for a unifying approach to
seemingly disjoint topics such as the network problems mentioned above, the matrix
Riccati equation [19], the factorization theory of characteristic functions for linear
operators [7], the theory of Wiener-Hopf (or spectral) factorization [10], [11] and the
divisibility theory of operator polynomials [3], [12], [13]. Here we treat only the first
two topics; the other connections will be investigated in detail in a forthcoming
publication [5].

The problem of computing numerlcally the minimal factors of a transfer function
led us to investigate the stability of divisors under small perturbations. We pay
considerable attention to the measure of stability.

The matrix functions studied here are viewed as transfer functions of systems. A
system consists of three matrices A, B, and C, of appropriate sizes, and the correspond-
ing transfer functions are of the form

WA =I+CQAI-A)"!

where A is the complex variable and I the identity matrix. In the first chapter
multiplication and division of transfer functions are described in terms of systems.
Applications to matrix Riccati equations are also considered here. The special type of
minimal factorization and its properties are studied in Chapter II. In geometrical terms
an explicit description of all minimal factors is given. Stability and numerical aspects are
studied in the last two chapters. Throughout the paper we confine ourselves to the finite
dimensional case, but with minor modifications the results of Chapters I and III are also
valid in the infinite dimensional situation (see [5]).
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As far as notation and terminology is concerned we stipulate the following. The
term linear space stands for a complex vector space. All linear spaces appearing below
are assumed to be finite dimensional. In Chapters III and IV it is also assumed that they
are endowed with a norm, which is always denoted by ||-|. By an operator we mean a
linear transformation between two linear spaces. The null space and range of an
operator T are denoted by Ker T and Im 7, respectively. The identity operator on a
linear space X is always denoted by I. The symbol I, is used for the n x n identity
matrix. Whenever this is convenient, an m x n matrix A will be identified with the
operator from C" into C™ given by the canonical action of A with réspect to the
standard bases in C" and C™. In particular a rational n x n matrix function may be
viewed as a rational function whose values are operators acting on C".

L. Divisibility of transfer functions and the Riccati equation. In this chapter
multiplication and division of transfer functions are described in terms of systems. The
main result on factorization is presented in § 1.1. A slightly more sophisticated
factorizationtheorem,involvingthe notionof anangularoperator,isgivenin§ 1.2.In§ 1.3
we discuss the operator Riccati equation.

1.1. Multiplication and divisibility of systems. A system is a quintet 6 =
(A, B, C; X, Y)of two linear spaces X, Y and three operators A: X - X, B: Y » X and
C:X - Y. The space X is called the state space; the space Y is called the input/output
space. The operator A is referred to as the state space or main operator. A common way
to give systems is to specify three matrices of appropriate sizes. To be more specific, if A
isa § X 8 matrix, B isa § X n matrix and C is an n X § matrix, then (identifying A, B, and
C in the usual way with operators) the quintet (A, B, C; c’C"isa system.

Two systems 6, = (A, By, Cy; X1, Y) and 6, = (A,, By, Cy; X5, Y) are said to be
similar, written 8, = 6,, if there exists an invertible operator §: X, » X, called a system
similarity, between 6, and 6, such that

A1=S-1Azs, Bl=Slez, C1=C25.

The relation = is reflexive, symmetric and transitive.
Let 6 =(A, B, C; X, Y) be a system, and put

(1.1) WA\ =I+C(\I-A)'B.

Then W(A) is a rational operator function and W (oc) = I. This function is called the
transfer function of 6, and is denoted by Wy. Obviously, similar systems have the same
transfer function.

If W(A) is any rational function whose values are operators acting on Y and
W (o0) = I, then it is known from system theory (cf. [2]) that W(A) can be represented in
the form (1.1). Such a representation is called a realization for W(A); we also use this
term for the system (A, B, C; X, Y). .

Our terminology is taken from system theory, where the transfer functton (1.1) is
used to describe the input/output behavior of the linear dynamical system

x(t)=Ax(t)+ Bu(1), y()=Cx(t)+u(s).

In the theory of characteristic operator functions, certain systems with special proper-
ties are called nodes (see, for instance, [7]). The connections with this theory are further
developed in [5]. In the next paragraph we shall define the product of two systems. The
definition is motivated by the notion of a series connection of two linear dynamical
systems. For details, the reader is referred to [18] (cf. also [7]).
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Let 6, = (Al, B, Cl,Xl, Y) and 02—(A2, Bz, Cz,Xz, ) be systems. Put X =
X1®X2, and .

[As 31C2] __[Bl] _
A_[O =] B=[5] c=ta ca

Then (A, B, C; X, Y) is a system. It is called the product of 6, and 6, and denoted by
816,. A straightforward calculation shows that

(1.2) W6, (A) = We (X)W, ().

So if 8; and 6, are realizations for W (A) and W3(A), respectively, then 6,6, is a

realization for Wi(A)W,(A).
If 8 =(A, B, C; X, Y) is arealization for the rational operator function W(A), then

¢ =(A-BC,B,-C; X,Y)

is a realization for W(A)™'. We call 6* the associate system of 6. The operator A — BC is
called the associate (main) operator of 8. By abuse of notation, we write A* = A — BC.
Note that A* depends not only on A, but also on the other operators appearing in the
system 6. One checks without difficulty that (*)* = 6 (so in particular (A*)* = A) and
(6,0,)" = 0367, the natural identification of X;®X, and X,® X, being a system
similarity.

Consider the system 8 = (A, B, C; X, Y) and let Il be a projection of X. So I1is an
idempotent operator on X. With respect to the decomposition X = Ker [I®Im I1, we
write

13 "'A=[A“ A“], B=[B1], c-[C: Gl

Az Axp B,

The system prp(8) = (A2, B2, Co; Im 1, Y)is called the projection of 8 associated with
I (cf. [7]). Observe that pr;_n(8)=(A,1, By, Ci; KerI1, Y). One easily verifies that
pr(@)* = pru(@*). The projection I1 is said to be a supporting projection for @ if

(1.4) A[KerM]=KerH, A*[ImI]<ImIl.

If H is a supporting projection for 6, then I — I is one for #”. The second part of (1.4) is
equivalent to the rank condition.

An B
G I

This is immediate from the fact that the left-hand side of (1.5) is equal to rank (A, —
B,C))+dim Y.

The following theorem admits a very simple proof. Nevertheless it is one of the
cornerstones for the rest of the present paper. A somewhat more sophisticated
factorization theorem will be presented in § 1.2. :

THEOREM 1.1. Let Il be a supporting projection for the system #=(A,B,C;X,Y).
Then

(1.5) : ’ rank[ ] =dim Y '

(1.6) 6 =prr-n(8) - pru(6).

If W(A), Wi(A) and Wa(L) are the transfer functions of 6, pri—n(8) and prn(6),
respectively, then W(A) = W (A)Wy(A). In other words,

I+CWAI-A)'B=[I+ C(AI—A)“(I—I'I)B][I+ CH(W\I-A)"'B].
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Proof. With respect to the decomposition X = Ker [1®Im I1, we write the opera-
tors A, B, and C as in (1.3). Then A" may be written as

A.\-:[AII_BICI Al;’—BlCZ]
AZI_BZCI AZZ_BZCZ ’

Hence (1.4) is equivalent to A,; =0 and A, —B,C,=0. It follows that

A
A= [ 11 Bl CZ] )
: 0 AZZ
QTR Y A1 DA
But then (1.6) is clear from the definition of the product of two systems. The second part

of the theorem is now an immediate consequence of formula (1.2).

In a certain sense Theorem 1.1 gives a complete description of all possible
factorizations of the system 6. Indeed, if 6 = 6,8, for some systems 6, and 8-, then there
exists a supporting projection I for 8 such that 8, =pr;_n(8) and 6, =prn(8).

1.2. Angular operators and the division theorem. Throughout this section, X is a
linear space and I1is a projection of X onto X along X;. (Block) matrix representations
of operators acting on X will always be taken with respect to the decomposition
X = Xl @Xz.

A subspace N of X is called angular with respect to [Tif X =Ker [I®N. If R is an
operator from X, into X, then the space

Ng ={Rx +x|x € X5}

is angular with respect to I1. The next proposition shows that every angular subspace is

of this form.

PROPOSITION 1.2. Let N be a subspace of X. Then N is angular with respect to 11 if
and only if N = Ny for some operator R from X, into-X,.

Proof. We have already observed that if N = Ng, then N is angular with respect to
I1. To prove the converse, assume that N is angular with respect to I1, and let Q be the
projection of X onto N along X;. Put Rx =(Q —II)x for x € X,. Then N = Ng.

Given an angular subspace N, the operator R for which N = Ny is uniquely
determined. It is called the angular operator for N with respect to I1. This notion was
introduced by M. G. Krein in [17]. We are now in a position to bring the division
theorem for systems into a slightly more general form.

THEOREM 1.3. Let8 =(A, B, C; X, Y) be a system, let Il be a projection of X onto
X, along X1, and let N be an angular subspace of X with respect to 11. Assume that

(1.7) A[X:]eX;, A‘[N]eN.

Further, let

A“ Alz] [Bl]
= R B= y C= C C »
A [ 0 A22 Bz [ ! 2]

be the matrix representations of A, B and C with respect to the decomposition X = X, ®
X3, let R be the angular operator for N with respect to 11, and put

(1.8) 6:=(A11, Bi—RB,, C1; X1, Y),
(1.9) '- 8:=(Az2, By, CIR+Cy; X2, Y).
Then 6 = 68,8,. More precisely,

6,6,=(E'AE,E"'B,CE; X, Y),
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where E is the invertible operator

I R
e=[; 7]
0 I
_ Proof. For convenience, put A=E'AE, B=E™'B, ¢ =CE and 6=
(A, B,C; X, Y). Observe that A* = E 'A"E. Now E maps X, onto X; and X, onto N.
Thus (1.7) implies that
AlX <X, AT [X]<X,.
Apply now Theorem 1.1 to show that
é = Prl—n(é) : Prn(é)-
But pr,-n(é) =@, and prn(é) = #,, and the proof is complete.
Suppose that the angular subspace N in Theorem 1.3 is the image of X, under
some invertible operator
S S
S - [ 11 12
S21 S22

Then it is not difficult to prove that §,; is invertible. Moreover the angular operator R
for N is givenby R = $12557. By substituting this in (1.8) and (1.9), we get

6:=(A11, B1— 512822 B2, C1; X1, Y),
6:= (A2, B1, C151252 +Ca; X2, Y).
This together with formula (1.2), can be used to give a quick proof of Theorem 4 in
Sahnovid’s paper [20].
1.3. The Riccati equation. As in the previous section, X is a linear space and ITis a
projection of X onto X along Xj. In view of Theorem 1.3 the following question is of

interest. Given an angular subspace N of X and an operator T on X, when is N
invariant under T'? The next proposition shows that the answer involves an operator

Riccati equation.
PROPOSITION 1.4, Let N be an angular subspace of X with respect to T1, and let
Tun T
T - [ 11 12
T21 T22
be an operator on X. Then N is invariant under T if and only if the angular operator R for N
satisfies the Riccati equation

]: X1@X2"X1@X2.

]3 Xi®X;» X,®X,

(1.10) ) RT;HR +RT;~T\R-T,=0.

Proof. The operator
[I R

E=lo 1

];xl@xﬁxl@xz

is invertible and maps X, onto N. So

T11—RT;; —RT;1R—RT»+TiR+ le]

E'TE =[
Ty T2+ TR

leaves invariant X, if and only if T leaves invariant N. But E~' TE leaves invariant X, if
and only if (1.10) is satisfied, and the proof is complete.
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In view of formula (1.2) and Theorem 1.3, the problem of finding factorizations for -
transfer functions of systems is related to that of solving a certain Riccati operator
equation. As a matter of fact, the condition A “[N]< N is equivalent to the requirement

RB,C,R +R(BzC2—A22)+(A11—BlC1)R +A,—B,C,=0.

Here we use the notation of Theorem 1.3.

Now let us introduce some more notation and terminology. Let T be an operator
on X and let « be an eigenvalue of T. The subspace Ker (u — T)7, where m is the
dimension of X, is called the generalized eigenspace of T corresponding to w. If
A1, '+, A, are eigenvalues of 7, the space

(1.11) Ker(AJJ-T)"® - -®@Ker (A I -T)"

is called the spectral subspace for T corresponding to the eigenvalues Ai, «++, A, This
spectral subspace can also be described as follows. Let I" be a contour in C such that
A1, '+, A, are inside and the remaining eigenvalues of T are outside I'. Put

P(T;T) =2LmJ‘ (AI=T) " da.
r

Then the spectral subspace (1.11) coincides with the image of P(T; . In view of'this;
{1.11) is also called the spectral subspace for T corresponding to I'. The operator
P(T;T) is a projection of X, called the Riesz projection corresponding to T and I' (or
/\17 tt T, /\r)

PROPOSITION 1.5. Let N be an angular subspace of X with respect to 11, and let

T T
T=[ 11 12
Ty Txn

be an operator on X. Then N is a spectral subspace for T if and only if the angular operator
R for N satisfies the Riccati equation (1.10) and the operators T1, — RT,, and Ty, + TR
have no common eigenvalues.

It will appear from the proof that if N is the spectral subspace for T corresponding
to the contour T, then the eigenvalues of T2, + 7, R are inside I" and the eigenvalues of
T:11— RT;, are outside T".

Proof. Define E as in the proof of Proposition 1.4. It is clear that N is a spectral
subspace for T (correspouding to a contour I') if and only if X, is a spectral subspace
(corresponding to the same contour I') for §=E 'TE. With respect to the de-
composition X = X; ®X,, we write

]5 X10X,» X®X>,

S S
S - [ 11 12].
SZI 522
Recall that Sll = TII_RTZD 512 = —RT21R _RTZZ + T11R + T12, S21 = T21, and 522 =

T22 + T21R.

Now suppose that §;, = 0 and that §;, and §;, have no common eigenvalues. Let T’
be a Cauchy contour such that the eigenvalues of S;, are outside and the eigenvalues of
S, are inside I'. Then P(S; I') has the form

rsim=[) 0]

and it follows that X; =Im P(S; ).
Next assume that X is the spectral subspace for S corresponding to the contour I'.
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Then in particular X is §-invariant and so $,, = 0. Write P = P(S; I'). The operator S,
is the restriction of § to Im P. Thus the eigenvalues of $,; are precisely the eigenvalues
of § lying inside I'. Let §¢ be the restriction of § to Ker P. Then the eigenvalues of S, are
precisely the eigenvalues of § lying outside I. In particular $,» and S, have no common
eigenvalues. It remains to prove that S, and S;; have the same eigenvalues.

Since Im P =X, =ImIl, we have I — P =(I — P)(I —II) and the map

F=(I-P)|X;:X,>Ker P

is an invertible operator. One easily verifies that SoF = FS1;. S0 S, and S, are similar,
and the proof is complete.

II. Minimality and minimal factorizations. In this chapter we discuss minimal
systems and minimal factorizations of rational matrix functions. The main result is
Theorem 2.2, which shows that there is a one-to-one correspondence between minimal
factorizations and supporting projections of minimal systems.

2.1. Minimal nodes. Let X and Y be linear spaces. A pair of operators (A, B),
A: X->X, B:Y->X,
is called controllable if, for k sufficiently large,
(2.1) InB+ImAB+:--+ImA*'B=X.

Similarly, a pair (A, C)
A: X->X, C:X-Y,
is said to be observable if, for k sufficiently large,
2.2) Ker CNKer CAN---NKer CA*™' = (0).

Observe that the left-hand sides of (2.1) and (2.2) are independent of k, provided k is
larger than or equal to the degree of the minimal polynomial of A.

Asystem @ = (A, B, C; X, Y)iscalled minimal if (A, B) is controllable and (A, C) s
observable. Such systems play an important role in the sequel. Below we collect
together a number of facts concerning minimal systems that are either wellknown or
easy to prove (cf. [2], [16] and the references given there).

If ¢ is minimal, then so is #*. Similarity of systems implies that their transfer
functions coincide. The converse of this is not true in general. However, if 6 and A are
minimal systems for which W, = W,, then @ and A are similar. This result is known as
the state space isomorphism theorem. If § is a system similarity between two minimal
systems, then § is uniquely determined. In other words, the only system similarity
between a minimal system and itself is the identity operator. Given a system 6, there
exists a minimal system (unique up to similarity) whose transfer function coincides with
that of 8. The product of two minimal systems need not be minimal. However, if the
product of two systems is minimal, then so are the factors. In particular, if IT is a
supporting projection for the minimal system 6, then prp(8) and pr;_n(6) are both
minimal.

2.2, Minimality and McMillan degree. Let W(A) be a rational n Xn matrix
function, and let A, be a complex number. Then A, is at worst a pole of W(A). So, taking
p sufficiently large, we may write

W)= % (A-ro)W,

i=-p
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the expansion being valid in some deleted heighborhood of Ao. The rank of the block
Hankel matrix

W, W, - W,
W, -+ W, 0
w, 0 -+ 0

is called the degree of W at A,. It is denoted by 6(W; A¢). Observe that §(W; A¢) does
not depend on the choice of p. For equivalent definitions and generalizations, see [15].
We also define the degree (W ; o) of W at o to be the degree of W(A ™) at 0.

It is clear that (W, u) =0 if and only if W(A) is analytic at u. Therefore it makes
sense to put

S§(W)= Zé 5(W; ).

Here Co = CU{o0}. The number §(W) is called the McMillan degree of W.

Assume that W(o0) =1,. Then W(A) admits a realization of the form

©(2.3) WQA)=I,+C(AL;—A)"'B.

The system 6 =(A, B,C;C’% C") has W(A) as its transfer function. We call the
realization (2.3) minimal if 6 is a minimal system. In fact (2.3) is minimal if and only if §
is equal to the McMillan degree §(W) of W. If (2.3) is not minimal, then § >8§(W).
From (2.3) it is clear that each pole of W(A) is an eigenvalue of A. In general the
converse is not true, but if the realization is minimal, each eigenvalue of A is a pole of
W(A). Soin that case the set of poles of W(A) coincides with the set of eigenvalues of A.
Similarly, if (2.3) is minimal, the set of poles of W(A)! coincides with the set of
eigenvalues of A = A — BC. Poles of W()\)f1 are usually called zeros of W(A).

2.3. Minimal factorizations. Let W(A), Wi(A) and W>(A ) be rational n X n matrix
functions, and assume that

(2.4) W)= W(A) W>(a).

Thenitis known (cf., e.g.,[26]) that §( W) = §(W,) + 8§(W,). In fact this inequality holds
pointwise in the following sense:

(2.5) S(Wiu)=8(Wysu)+8(Was ), wm€Cu.

The factorization (2.4) is called minimal if §(W)=6(W,)+8(W,). An equivalent
requirement is that in (2.5) we have equality for all 4 € Cw.

In dealing with minimal factorizations, we shall always suppose that det W(~)\) =0,
This implies the existence of a€C such that W(a) is invertible. Put W(A)=
W(a) "W\ '+a). Then clearly W()=I,. There is a one-to-one correspondence
between the (minimal) factorizations of W(A ) and those of W(/\ ). So (from a theoretical
point of view) there is no loss of generality in assuming that W () = I,.

Suppose W () =I,. We are interested in the minimal factorizations of W(A). We
claim that it suffices to consider only those factorizations (2.4) of W(A) for which
Wi(0) = W,(0) = I,. To make this claim more precise, assume that (2.4) is a minimal
factorization of W(A). Then &(W;; )+ 8(W,;0)=8§(W,0)=0, because W is
analytic at c0. Hence §(W;; c0) =8(W,; ) =0, or, in other words, W, and W, are
analytic at ©0. Moreover I,, = W(c0) = W;(00) W,(0), and so W,(c0) and W>(o0) are each
other’s inverse. Put U = W;(00) . By multiplying W;(A) from the right with U and
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W,(A) from the left with U !, we obtain a minimal factorization of W(A) whose factors
have the value I, at co. ‘

These considerations justify the fact that, from now on, without further mentioning,
we only deal with rational matrix functions that are analytic at % with value the identity
matrix. In other words, the rational matrix functions considered below will be viewed as
transfer functions of systems.

PrROPOSITION 2.1. Let W(A)= W (A)W,(A) be a factorization of the rational
matrix function W(A), let 8, be a minimal realization for W,(A) and let 6, be a minimal
realization for W,(A ). Then the factorization is minimal if and only if the product 6,0, is a
minimal system.

Proof. Let 6=(A, B, C; C®, C™) be a realization for the rational matrix function
W(A), i.e., formula (2.3) is satisfied. Then @ is a minimal system if and only if § = § (W).
From this and the definition of the product of two systems, the desired result is clear.

We now come to the main result of this chapter.

THEOREM 2.2. Let 6 be a minimal realization of the rational matrix function W(A).

(i) If 11 is a supporting projection for 6, W1(A) is the transfer function of pr;_n(8)
and W5(X) is the transfer function of prp(6), then W(A)= W (A)W1(A) is a minimal
factorization of W(A). !

(ii) If W(A) = Wi (A)W(A) is a minimal factorization, then there exists a unique
supporting projection Il for the system 6 such that W1(A) and Wx(A) are the transfer
functions of pr;_n(0) and prp(8), respectively.

Proof. Statement (i) is an immediate consequence of Proposition 2.1. Therefore
we concentrate on (ii). Assume that W(A) = W, (A1) W,(A) is a minimal factorization. For
i=1,2, let §; be a minimal realization of W;(A) with state space C%. Here &, is the
McMillan degree 6(W;) of W.. By Proposition 2.1, the product 6,6, is a minimal
realization for W(A). Hence 6,6, and 6 are similar, say with system similarity $: C* ®
C% - C? where § =8, +8,=58(W). Let II be the projection of C® along S[C®'] onto
S [062]. Then I1 is a supporting projection for 6. Moreover pry_p(8) is similar to 6; and
prn(6) is similar to 6. It remains to prove the unicity of II.

Suppose P is another supporting projection of 8 such that prp(6) and pr;_p(6) are
realizations of W5(A) and W;(A) respectively. Then prp(8) and pry-p(8) are minimal
again. Hence pr;_n(6) and pr;_p(6) are similar, say with system similarity U : Ker IT >
Ker P, and prp(#) and prp(6) are similar, say with system similarity V:Im IT-»Im P.
Define T on C® by

U 0
T= [0 V]: Ker [I®Im 1> Ker P®Im P.
Then T is a system similarity between 6 and itself. Since 6 is minimal, it follows that 7T is
the identity operator on C°. But then I1= P, and the proof is complete.

? III. Stability of spectral divisors. The problem of computing numerically the
minimal factorizations of a given transfer function leads in a natural way to questions
concerning the stability of divisors of a system. These and related questions form the
main topic of this chapter.

3.1. Examples and first results. The property of having nontrivial minimal
factorizations may be ill-conditioned. To see this, consider the following example. Let

1 €

Iy
(3.1) W.(A)= 1
0 1+—
A
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For each ¢ this is the transfer function of the minimal system 8, 5‘(A, II,C,CH,
where I = I~ and ‘
0
a7
00

To find a nontrivial minimal factorization of the function (3.1), we have to find
nontrivial supporting projections of the system 8, (cf. Theorem 2.2); i.e., we must look
for nontrivial subspaces M and M" of C’, invariant under A, and A=A, — I,
respectively, such that M @OM* =C2 The operators A, and A, —I have the same
invariant subspaces, and for £ # 0 there is only one such subspace of dimension one,
namely the first coordinate space. It follows that for £ # 0, the rational matrix function
(3.1) has no nontrivial minimal factorizations. For ¢ = 0, we have

1+:\1— 0 1 0
WO(A)z : 1 ’
0 1 0 1+—-
A

and this factorization is minimal, because the McMillan degree of W,(A) is equal to 2
and the McMillan degree of each factor is 1.
The next theorem shows that under certain conditions the existence of a minimal

factorization is a stable property.
THEOREM 3.1. Consider the rational matrix function

(3.2) WoA) =1, + Co(AIs — Ay) ™' Bo.

Assume that the realization (3.2) is minimal and that Wy(A) admits a minimal
factorization Wo(A) = Wy1(A) Woa(R),

(3.3) WoiA) =1, + CoiAls, —Ax) 'Boy  i=1,2,

where 8 =8+ 82 and the factors Woy(A) and Wy3(A) have no common zeros and no
common poles. Then there exist positive constants w and ¢ such that the following holds. If
A, B, and C are matrices (of the appropriate sizes) such that

3.4) A = Aol +]B = Bol +]IC ~ Coll < w,

then the realization W(A) = I, + C(Al; — A) "B is minimal and W(\) admits a minimal
factorization W(A) = Wi(A) W(A),

(3.5) W,A)=1,+Ci(Als; —A;)"'B, i=1,2,
such that the factors Wi(A) and Wy(A) have no common zeros and no common poles, and
lA; — Aoill +B; = Boill + ||C; = Coil = £ (A — Aoll + |B = Bol{ + | C = Coll),

fori=1,2.

The above theorem deals with “spectral” minimal factorizations. The stability of
nonspectral minimal factorizations is investigated in [5]. The theorem is proved in § 3.3.
The proof provides explicit estimates for w and ¢.

3.2. Opening hetween subspaces and angular operators. Let M and N be
subspaces of the linear space X, and let ||- || be a norm on X. The number

n(M, N)=inf{|x +y[||x e M, y € N, max {|lx], ly]l} = 1}
is called the minimal opening between M and N. Note that always 0=n(M, N)=1,
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except when both M and N are trivial, in.which case n(M, N) =00, Itis well known (see
[14, Lemma 1]) that n(M, N)>0if and only if M NN = (0) If I1 is a projection of the
space X, then

1

(3.6) max {[|f, [ - TIj} = n(Ker I, Im I)”

Sometimes it will be convenient to describe n(M, N) in terms of the minimal angle ¢min
between M and N. By definition this quantity is given by the following formulas:

II
Oé‘bminéi) sin ¢min=77(M) N)-

(cf. [14]). Put

p(M,N)= sup inf e =yl

OxxeMyeN ”x”

The number
gap (M, N) =max {p(M, N), p(N, M)}

iscalled the gap or maximal opening between M and N. There is an extensive llterature
on this concept’. .

Now let us assume that X = C", endowed with the usual Euclidean norm. Let P and
Q be the orthogonal projections of X onto M and N, respectively. It can be shown that
gap (M, N)=|P - Q| (cf. [1]). Also

lox|? Pyl

0¢xeM “x"z —0¢yeN ")“

(3.7 1-n(M,N)*=

provided both M and N are nontrivial.
LEMMA 3.2. Let I, Il and I1; be projections of the linear space X, and assume that
Ker I1p = Ker I1= Ker I1;. Let R be the angular operator of Im I1 with respect to 1y and
let R, be that of Im I1,. The following assertions hold :
(l) n(Ker Ho, Im Ho) : p(Im Hl, Im H) §"R1 —R”
(i) Ifp(ImTIy, ImIT) < n(Ker I, Im I1), then

p(Im Iy, ImII) - (1 +|IR|D)
n(Ker I, ImIT) — p(Im I, Im IT)”

IR\ — R =

In particular, if p(Im I1;, Im I1y) < n(Ker Iy, Im Ip), then

p(ImII,, Im IT,)
n(Ker o, Im Ip) — p(Im Iy, Im ITp)

IRl =

Results of this type seem to be well known. Therefore we omit the proof. We
proceed with a lemma which will be most useful in the next section.

LEMMA 3.3. Let P, P*, Q and Q” be projections of the linear space X, and put
ao=¢n(Im P, Im P*) - (1 +||P*|)™". Assume X =Im P®Im P* and

(3.8) [P -Ql+|P* - Q*|<aq.

! For details, see T. Kato: Perturbation Theory For Linear Operators, Springer, Berlin—Heidelberg-New
. York, 1966, and the references given there.
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Then X =Im Q@ 1Im Q* and there exists an invertible operator S: X - X such that
(i) S[Im Q]=Im P, S[Im Q*]=1Im P*,
o i) max{S—II, IS - I} = B(IP- Ql+[P* - Q%))
where B = 2[aon(Im P, Im P*)]™".
Proof. For simplicity we put d=||P—Q|+|[P*—Q"|| and 5 =n(Im P,Im P*).
Since gap(Im P,Im Q) =||P - Q| and gap(Im P*, Im Q*)=||P* — Q}, condition (3.8)
implies that

2 gap(Im P, Im Q) +2 gap{Im P*,Im Q™) < n.

But then we may apply Theorem 2 from [14] to show that X =Im Q®Im Q™.

Note that (3.8) also implies that |P — Q|| <3. Hence S, = I + P— Q is invertible and
we can write S7' =1+ V with |V]=%|P- Q| <3. As I - P+ Q is invertible too, we
have S$;[Im Q]=1Im P. By direct calculation, it can be shown that

IS:Q*S1" —P*||=3P* — Q||+ 3 - |P*]} - |IP - Ql,

and hence
p(Im $;Q7S7}, Im P*) =||s, Q7S — P*||=3d(1 +||P"|I)<g.

. Let To(T]) be the projection of X along Im P(Im OZonto Im P*(Im Q7), and Put
[1=5,11S7". Then IT is a projection of X and Ker I1=Ker Il,. Further, ImII=
Im $,Q°S; ", and so we have

. 1
p(Im I, Im Iy) < g =5 n(Ker Ilo, Im IT,).
Hence, if R denotes the angular operator of Im f1 with respect to Iy, then because of
Lemma 3.2,

2 .
IIRllé;,-p(Im 11, Im I1y).

Since p(Im 1, Im ITp) = 3d (1 +||P*]), this implies that [|R]|< da;". ,

Next, put S, =I—RIl,, and take §=35,S;. Clearly, S, is invertible; in fact
§7' =1+ RIl,. It follows that S is invertible too. From the properties of the angular
operator one easily sees that with this choice of S statement (i) holds true. It remains to
prove (ii).

From S = (I —RII,)(I +P~Q) and the fact that |P~Q| <3, one deduces that
IS — I =|P—Q|l+3|R| - ITL|. Moreover ||R|=da;’, and from (3.6) we know that
(TIol|= n " It follows that

5
(3.9) , IS—I=d+—2.
4aym
Recall that 7" =T+ V with || V]| =%|P — Q||<3. This can be used to show that
_ 4d 4d
(3.10) Is7 - Tl=7+—.
3 3(1017

Statement (ii) is now an easy consequence of (3.9), (3.10), and the fact that 6aon =1.

3.3. Stability of spectral divisors. Let 8=(A,B,C;X,Y) and 6=
(Ao, By, Co; X, Y) be systems. The distance between 8 and 6, is defined to be the
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number

16 — 60l =|A — Agli+||B — Bol| +{|C — Coll
We also put ||6]| = |A||+] B+ |C]|. If W(A) and Wy(A ) are the transfer functions of 6 and
8, respectively, then

116 — 6ol - 61l - 16l
1AL - Al

[W(A)— Wo(d)| =

1)

provided that |A|>2 max {|A], |Aol}.
THEOREM 3.4. Let Tly be a supporting projection for the system 6o=

(Ao, By, Co; X, Y), and assume that
' Kerly=ImP, ImIlo=Im P

where P and P” are projections of X. Put
ao=#n(Ker Io, Im Io) - (1 +P*)™".
Let0=(A, B, C; X, Y) be another system, and let Q and Q" be projections of X such that

3.11) A(lm Q]<=Im Q, A [ImQ"]=Im Q7
[P —Qll+|P* - Q*||<ao.

Then X =1m Q®Im Q7, there exists an invertible operator S: X » X such that $ 'T1,S is
the projection Il of X onto Im Q" along Im Q, and the projection 11, is a supporting
projection for the system 6=(SAS ', SB,CS . X, Y), while for the corresponding

factors we have
max {Ipr;—n,(680) = Prr—no( D)l IPrrg(80) — privg(6)}

9 Il0o|1

Ty (Pl +1P*- 0}

<[ lo— o+

Proof. From Lemma 3.3 we know that X =Im Q@®Im Q”. Take S as in Lemma
3.3. Then §™'T1,S is the projection 1 of X onto Im Q" along Im Q. It is now clear from
formula (3.11) that S 'II,S is a supporting projection for the system 6=
(A,B,C;X,Y). But then TII, is a supporting projection for 6=
(SAS™',SB,CS™ ' X, Y). _

Let 6, and 51 be the left factors of 8, and 4 associated with Iy, and let 845 and 52 be
the right factors. From the definition of the factors (see § 1.1) it is clear that |[6, — 6=
\I =TIl - |60 — 6]l and ||802 — 82)| = ||T1o|| - |60 — 8]. Using (3.6), we obtain

a 1 a
(312) ’ max “00i‘0i”§—”00_0”) i= ly 2y

where 1 =n(Im P,Im P*). As ||6,— 6| =<||6o—6||+]|6 — 6], it remains to compute a
suitable upper bound for [|6 - §||.

Put S=I+V and §~'=TI+ W. Note that ||§ — 8| =|All(|V|I+|[WI+|VI]- W)+
IBII-|VI+|Cll-|W|. By Lemma 3.3, we have max {|V|, |W|}=2d(a,n)""!, where
d =||P- Q|+||P* — Q*|. It follows that

(3.13) . e e
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Since dap' <1 and n =1, one can use formula (3.13) to show that
16015 25 o~ oo+ Z ool

This, together with formula (3.12), gives the desired result.
THEOREM 3.5. Let Ilp be a supporting pro;ectton for the system 6=
(Aog, Bo, Co; X, Y). Assume that -

KerIlo=Im P(Aq; D), Im Iy =Im P(A}; T7),
where T' and T are contours such that Ay and Ag have no eigenvalues on T and T,
respectively. Then there exist positive constants a, 31 and 3, such that the following holds.
If0=(A, B, C; X, Y)isasystem such that |6 — 0011 < a, then A has no eigenvalueson T,
A" has no eigenvalues on T,
X=ImPA;N@ImPA*;T"),
the projection Tl of X along Im P(A; T') onto Im P(A*; T'*) is a supporting projection for‘0,
and there exists a similarity transformation S such that
IS —Il|= Bille — 6oll,

- Mo=STS™}, My is a supporting projection for the system 6=(SAS,SB,CS"1, X, Y)
and for the corresponding divisors we have

IPr-116(60) — Pri-ny(8)] = B2ll6 — Boll,

lIprri,(80) — prog(8))| = 82116 — 8ol
Furthermore, if 0y is minimal, then a can be chosen such that 8 is minimal whenever

16 —8oll < a.
Proof. Let ¢ be the maximum of the lengths of the curves ' and I,

y = max {rpgg( AT — A o)™, max (AT AS)"H},

and
o=¢n(Ker o, Im Ip) - (1+|[P(A5; T*)) 7.
Put
- . 1 XoT
= + ! { YNy })
a=(1+[6o)”" min {1 27°2y%
(3.14) B1=4(1 +]60|)y* €[ maon(Ker Mo, Im Tp)] ",

9 2y2(
B2= [ |
n(Ker Ilp, Im Ho)
We shall prove that a, 8; and 3, have the properties mentioned in the first part of the
theorem. For convenience we write n =n(Ker Iy, ImI1y), P=P(A,;T) and P* =
P(AG; T).
Suppose 6 = (A, B, C; X, Y) is a system such that ||@ — 6of| < a. Then, in particular,
16 — 8ol < 1. Since JA* — Ajl| =116 — 8o)) - (1 +]|60]), it follows that

~loal1+ 6l |

1
A - A, |A* - Ag|}<—.
max |4 - Aol A" - Adl} <5~ .
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Using elementary spectral theory, we may conclude that A has no eigenvaluesonT’, A*
has no eigenvalues on I'", while further,

AL =A) ' —~(AT = A0 I=29710 — ol - (1 +I60l),  A€T,
AL =A™ = (AT =AY =270 —60ll - (1 +]60l), A eT™

Hence for the corresponding Riesz projections Q = P(A; ') and Q" = P(A™; "), we
have

1P— P||+||O Q* II< HO 6ll - (1 +180l) < ao.

The fact that «, 31, and 8, meet the requirements of the first part of the theorem is now

an easy consequence of Lemma 3.3 and Theorem 3.4.
Assume that 6, is minimal. We want to define the constant a in such a way that it

also has the property that 6 is minimal whenever ||§ — 6o|| < a. Let n be the dimension of
X. Since 6, is minimal, the operator col (CoAb) 72y is left invertible, say with left inverse
L, and the operator row (A5B,)72g is right invertible, say with right inverse R. If
E: X - Y" is an operator satisfying

IE ~col (CoAd) =3I <IILII ™,
then E is also left invertible. A similar remark can be made involving row (A4Bo)[o
Hence there exists a positive number w (o) such that || — 8of| < w(6,) implies that 6 is
minimal. The new @ may now be defined as §

— mi 1. L ao‘n'}]
(3.15) a—mxn[w(f)o),(1+||60||) mm{l’Zy’Zyzf .

This completes the proof of the theorem.

We now come to the proof of Theorem 3.1.

Proof of Theorem 3.1. The matrices appearing in Theorem 3.1, will be identified
with their canonical action as operators. Put 8, = (Ao, Bo, Co; C°, C") and

8o: = (Aoi, Bois Coi; c’, c"), i=1,2.

Since the factorization Wy(A)= Wy1(A)Woa(A) is minimal and 8, + 8, = 8, the realiza-
tions (3.3) are minimal. Hence 8y is similar to the product 8o = 001602, say with system
similarity T:C? > C*@®C*.
With respect to the direct sum C*@®C%, the main operator Ao and the associate
main operator A of the system 6o = 601602 have the form
A():[AOI BOICOZ]’ 14—(,;:[ ASI 0 ]
0 Aoz —Bn2Co1 An2 ,
The hypothesis of Theorem 3.1 concerning the poles and zeros of Wy,(A) and Wy,(A)
just means that Ag; and Ay, have no common eigenvalues and that Ag; and Ag; have
no common eigenvalues. Let I be a contour that separates the eigenvalues of Ag; from
those of Ag,. Similarly, let I'* be a contour that separates the eigenvalues of Ag; from
those of Ag,. Then

Im P(A; [)=CH@®(0), ImP(A%;T*)=(0)@C™.

It follows that we may apply Theorem 3.5 to the system 6.

“
3
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Let a and B be the positive numbers that according to Theorem 3.5 correspond to
the system 6 (cf. (3.14) and (3.15)), and put .

o=a[|T|- [T7H+ITI+IT~'1",
e=BATI- T+ TI+HIT I
Suppose (3.4) holds and write § =(TAT™ !, TB, CT'; C®*®C?, C"). Then
16— 6ol =1l —80ll - (1T - T+ TH+IT7 ) <.

Hence 6 is minimal. This means that the realization WA)=IL,+C(Al; —A)_IB is
minimal. Moreover, there exists a similarity transformation S such that for the system

6=(STAT 'S™', STB,CT 'S}, ch@C’, C"),

the projection I, of C**@C? along C* @(0) onto (0)®C* is a supporting projection.-
This shows that W (A) admits a minimal factorization W (A) = Wy(A) W,(A), with W,(A)
and W5(A) of the form (3.5). We also know that

“Pfl—no(a_o) - PYI—Ho(é)” = 52”0—0 - ﬂly
IPTriy(80) — pru, (B))| = B216o — 6.
But this is the same as
I1A: ~ Agill +[IB: = Bodll +[|ICi = Coill = B2ll60 - 6
=6 - 6ol = £ (A = Aol +1|B = Bol| + |C — Col))-

Let_f{ be the main operator of 6, and let A* be the main operator of the associate
system 6. As [|6 ~ 6ol| < @, we can apply Theorem 3.5 to show that A has no eigenvalues
onT, A" has no eigenvalues on I'*, and

C"®C2=Im P(A;)®Im P(A*;T").

Let I be the projection of C**@®C? along Im P(A;T) onto Im P(A*;T*). Then
I, = STIS %, It follows that the eigenvalues of A are inside and those of A are outside
the contour I'. Similarly the eigenvalues of A3 are inside and those of Aj are outside I'".
Thus W;(A) and W5(A) have no common zeros and no common poles. This completes

the proof.

3.4. Application to the Riccati equation. In this section we show that the method
of § 3.3 also can be used to prove stability theorems for solutions of the operator Riccati
equation. Here we restrict ourselves to ‘“‘spectral” solutions (cf. Theorem 3.6 below).
The general case has been investigated in [4], [8].

Throughout this section, X; and X are linear spaces. We use the symbol £(X], X)
to indicate the space of all linear operators from X; into X..

THEOREM 3.6. LetT; e (X}, X)), i,j =1, 2, and let R € ¥(X3, X1) be a solution of

the Riccati equation

X

ZT212 +ZT22“ Ti.Z — T12 =0.

Assume that Ty; — RT3, and Ty, + T2 R have no common eigenvalues, and let T be a
contour whose interior domain contains all eigenvalues of T2, + T21 R and whose exterior
domain contains all eigenvalues of T1, — RT,,. Then there exist positive constants v and ¢
such that the following holds. If S;; € ¥(X, X;) and

(316) "Sij_I‘ii”<wy i’j=11 21
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then the equation
(3.17) ZSnZ +Z83,—S11Z—-812=0
has a solution O € L(X,, X1) such that all eigenvalues of S, +8,:Q are inside T, all
eigenvalues of 8§11 — Q8> are outside T" and .,
(3.18) IR —Qll= ¢ max ||T; - Sy. -

Proof. Consider the operators

T:[Tll le] :[Sll 512]

Ty Tyl Sa St

on X = X;® X,. Assume that X is endowed with the norm ||(x, x2)|l = ||lx1]| + |x2|. Then
(3.19 IT-51=2 max, 1T, -,

From Proposition 1.5 we know that Ng ={(Rx, x)|x € X,} is a spectral subspace for T. In
fact, if I" is as in the statement of the theorem, then T has no eigenvalues on I' and
Ne=ImP(T; ).

Let ¢ be the length of T, and put y = max, cr [|(AI —~ T)7'|l. Take |T - S||<(2y)""
By elementary spectral theory this implies that S has no eigenvalues on I" and

AT -T)"'-(I=8)"=2y)S-Tf, A€l
But then |P(T; ) - P(S; D)= = 'y¢||S - T].
As X = X| @ Npg, the number n(X,, NR) is positive. Put

w= mm{ T)(X],NR)}

4y’ 4y%¢

and assume that (3.16) holds true. By (3.19) this implies that | T — §||< 2w = 2y)!
we can apply the result of the previous paragraph to show that

IP(T; 1)~ P(S; D) <2n (X1, Ni).
In particular we see that
(3.20) gap (Ng, Im P(S; T)) <3n(X1, Ng).
By Theorem 2 in [14] this implies that
X=X®ImP(S; .
It follows that there exists Q € £(X>, X;) such that
No ={(Qz, 2)|]ze X2} =Im P(S; ).

By the results of § 1.3, this operator Q is a solution of (3.17), the eigenvalues of
8§22+ 521Q are inside ', and the eigenvalues of §,, — QS>, are outside [,

By (3.20), we have gap (Nkg, No)<%n(X1, Ngr). So we can apply Lemma 3.2 to
show that

21 +{RI)

3.21 | _
6:21) IR -0l=2 80

p (NR7 NO)'
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But
y2e
(3.22) gap (Nr, No) =[|P(T,T") - P(S; 1“)||< ||T S||<2— [max 1Ty — Sill.
Put
Yl
™ (X1, Nr)

Then we see from (3.21) and (3.22) that (3.18) holds true. This completes the proof of
the theorem.

=41 +|RI)

IV. Numerical and computational aspects. In this chapter we shall discuss some of
the practical numerical aspects of minimal factorization of rational matrix functions. In
contrast with the results obtained in earlier sections, the coordinate system becomes
here of crucial importance. Indeed, for computational problems, the matrices A, B, and
C determining the transfer function ,
(4.1) W)=1I,+C(I;-A)'B,
are known with a certain relative accuracy. Any coordinate transformation T, required
to construct a factorization, causes a loss of accuracy which is proportional to

-1
cond (T)=||T}- T,

(cf. [24]). The number cond (T) is called the condition number of T.
THEOREM 3.7. Let C° = C*@®C? be the (Euclidean) direct sum of C* and C*,
and let Ty:C% > C® and T,: C* > C® be operators. If T, and T, are isometries, then

(4.2) T T2l = cos mins

where Gumin is the minimal angle between Im T, and Im T,. Moreover, if
T=[T\T,]: C*®C%->C’

is invertible, then

1+ ¢OS Pmin

=
cond ( ) Sin ¢min

b

equality occurring when Ty and T, are isometries.
Proof. First assume that T; and T, are isometries. Put 01 T.T%. Then Q, is the

orthogonal projection of C® onto M; =Im T}. It is not difficult to prove that
”0111”

O#xeMz ” "

ITT T2l =

where M, =Im T,. Hence, by formula (3.7),
IT Tl = [1—n(My, M2)’T2,

The equality (4.2) is now immediate from the definition of dmin.

Suppose that T is invertible and that T; and T, are isometries. In order to
determine ||T|| and |T~", we compute the spectrum of T*T. With respect to the
decomposition C® = C**@C?, we have

F(A =T —Tsz]
I-T*T= [ .
A -T3T, (A-1I



FACTORIZATIONS OF TRANSFER FUNCTIONS 693

For A # 1, one can write the right-h’a’hd side as a product of three operator matrices as
follows:

1 1 R
I - T*T
A—1 (A—12"1"% [(A—1)21—T{‘T2T;‘T1 0 ]
i , |-
, -1’1
0 1, 0 (A-1)
(4.3) A-1 B
. I U
_ L g
A—1"7%"1 -

In this way one sees that for A # 1, the operatdr Al —T*T is invertible if and only if
(A —1)’I —T¥T,T*T, is invertible. It follows that

ITIP=1+|T¥Tl,  IT77P=1-|T*Tl
But ||T¥T5|| = cos ¢min, and hence

_1+cos @min _ (1 +cos Prmin)”
1—cos ¢min Sin2 ¢min '

cond (T)?

This proves the theorem for the case when T; and T3 are isometries.

Finally we consider the general case, where T and T are arbitrary operators such
that T = [T, T»] is invertible. Using polar decomposition, we may write T; = U;R; and
T,=U,R,, where U; and U, are isometries and R; and R, are strictly positive
selfadjoint operators acting on C* and C*, respectively. Put § = [U U], and R =
diag (R4, R,). Then R is invertible and T*T = RS*SR.

Set & = cOS Gmin. Then a = ||UFU,|, and there exists x € C* such that |x]|=1 and
UiU,U3U,x = a’x. Put

—U3Ux
a

x .
z.-=[(—1)i J Ai=14+(-1a, i=1,2.

For A # 1, we know that A — S*S is equal to the product (4.3), provided the operators
T, and T are replaced by U; and U, respectively. It follows that

S*SZ,'=/\,'Z,‘, i= 1, 2.
Note that R 'z4|= R 'z2| =|R['>0. So
2 |IT*TR 25| _|RS*Szs|
TIT*TR 2yl |[RS*Szll
_ ARzl Az 1408 Gmin _ (14008 drmin)
MRz A1 1-c0S min $in® @umin

cond (T)

’

and the proof is complete.

The preceding theorem sheds some light on the numerical problem of computing
minimal factorizations of rational matrix functions. Consider the realization (4.1). We
assume that the realization is minimal. From Theorem 2.2 we know that there is a
one-to-one correspondence between the minimal factorizations of W(A) and the
supporting projections of the (minimal) system 6 = (A, B, C; C°, C"). In turn these
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supporting projections are completely determined by pairs of subspaces M, M~ satis-
fying
(4.4) AMcM, A'M*<M*, C°=M@®M".
Here, as usual, A* = A - BC.

For the computation of invariant subspaces of a matrix, reliable algorithms are
available in the literature [25]. A common way to proceed is to construct a unitary
matrix Q; such that

a sk P F'y
* 0 :
(4‘5) As=QTAQ, = : -
0 -+ 0 a
is in upper Schur form. The diagonal elements ay, - -+, @5 of Ag are the poles of W(A).

Similarly, one can construct a unitary matrix Q, which transforms A* to lower Schur
form:

B. 0 -+ 0
(4.6) Q3A*Q,=A%=| - o
;; e e %k ﬁ&

Here 8, - - -, Bs are the zeros of W(A). Algorithms that perform these decompositions

are known as the QR and QL algorithms [25].
Given natural numbers 8, and §, for which § = 8, + §,, we partition Q, and Q, as

follows,
Q:=[Vi'Wil, Q:=[V3iW5l
51 52 51 52

From (4.5) and (4.6) it is clear that the columns of V; and W, form orthonormal bases
for invariant subspaces M and M~ of A and A%, respectively. Now C° = M @M~ if and
only if the minimal angle ¢, between M and M~ is nonzero. Thus M and M* satisfy
(4.4) if and only if @min>0. By Theorem 3.7 we have cos ¢mis = || VT W5|. Therefore,
defining the matrix Q by Q = QfQ; and partitioning it as follows

Q= [ Qui; .0_12]}5 .

931% 162’
& 8

one can measure @mi, from the block Q;2 = Vi W.. Indeed, whenever the norm of Qi
is smaller than one, the spaces M and M” yield a supporting projection of the system 6,
and, consequently, a minimal factorization W(A) = Wi (A)W,(A) of W(A). Observe that
41 and &, are the McMillan degrees of W, and W), respectively.

Inorder to determine the factors Wi and Woweput T =[V; WL HCP=MOM",
the matrix T is invertible. But then the system (TT'AT, T"'B, CT; C? C")is similar to
the system & and has W{(A) as its transfer function. One easily verifies that the matrices
T'AT, T7'B, and CT admit a partitioning of the following type

-1 AIEBlcz]}sl . [Bl ]}51 :
=L =2 CT =[C::Cy)
T AT [O:Az 15y T 8=, sy [Ci:Cl
e 61 52

& &2
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Put 01 = (A], B], Cl; Csl, Cn) and 02 = (Az, B:, Cz; Csz, Cn) Then 6= 0102. The
factors W, and W, are now the transfer functions of ; and 8,, respectively. The poles of
W, are the first §; diagonal entries in As; the zeros of W are the first §; diagonal entries
in As. A similar remark can be made about W5.

The smaller cond (T') is, the more accurate the constructed factors W, and W, will
be. This shows the significance of Theorem 3.7. Indeed, the similarity transformation T
constructed above maps C**@®(0) onto M and (0)@C* onto M*. By Theorem 3.7, a
lower bound for the condition number of a transformation having this property is given

by the number
1+¢os émin : .~

- SiN @ min

In the present situation cond (7) is actually equal to this bound, for V, and W, are
isometries. So in this respect T is optimal. On the other hand, for a very small angle
@ min, the condition number of T will be very large. In that case one can expect a very bad
relative accuracy that may even exceed 1. This will occur whenever ¢, is smaller than
a certain threshold ¢, which depends on the accuracy of the data. Therefore the spaces
M and M” cannot be used when their minimal angle is too small. If that happens, one
cantry different choices of §, and &, while using the same matrices Q; and Q». Also one
can try other Schur decompositions of A and A™.

For the amount of computations involved in the construction of a factorization of
the transfer function (4.1), we can give the following rough estimates, where 1 operation
stands for 1 multiplication plus 1 addition:

8%n operations for constructing A", 4
208° operations for each Schur decomposition,

5’ operations for the product Q = QT Q,,

Wsis, operations (if §; < §,) for calculating cos @ min,

26%(n+6) operations for computing A, By, Ci, A,, B; and G, if @min > do.

In general, the Schur decompositions constitute the most time-consuming step, but for
6 =100, e.g., experiments have yielded run times that are still within the orders of
seconds [9].

As we have seen, the determination of minimal factorizations is closely related to
that of pairs of ‘“‘matching” invariant subspaces. The number of invariant subspaces
involved may be very large or even infinite. In practice this may lead to very cumber-
some combinatorial problems. For more details, the reader is referred to [21].
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