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a b s t r a c t

We discuss robust representations of stable, passive systems in particular coordinate systems, focussing
especially on port-Hamiltonian representations. Such representations are typically not unique and the
degrees of freedom associated with nonuniqueness are related to the solution set of the Kalman–
Yakubovich–Popov linear matrix inequality (LMI). In this paper we analyze robustness measures for
different possible port-Hamiltonian representations and relate it to quality functions defined in terms
of eigenvalues of the matrix solution of the LMI. In particular, we look at the analytic center of this LMI.
Within this framework, we derive inequalities for the passivity radius of the given model representation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider realizations of linear time-invariant
(LTI) systems that are variously characterized as positive real, pas-
sive, or port-Hamiltonian (pH). We restrict ourselves to systems of
the form
ẋ = Ax + Bu with x(0) = 0,
y = Cx + Du, (1)

referred to by the tuple of matrices M := {A, B, C,D}. Here u :

R → Cm, x : R → Cn, and y : R → Cm are vector-valued
functions denoting, respectively, the input, state, and output of the
system. The coefficient matrices A ∈ Cn×n, B ∈ Cn×m, C ∈ Cm×n,
and D ∈ Cm×m are constants. We assume that rankB = rankC =

m and that (1) is minimal, that is, the pair (A, B) is controllable
(for all s ∈ C, rank[ sI − A B ] = n), and the pair (A, C) is
observable ((AH, CH) is controllable). Here, I is the identity matrix,
the (conjugate) transpose (transpose) of a vector or matrix V is
denoted by VH (V T). We denote the set of Hermitian matrices in
Cn×n by Hn. Positive definiteness (semidefiniteness) of A ∈ Hn
is denoted by A > 0 (A ≥ 0). The set of all positive definite
(semidefinite) matrices in Hn is denoted by H>

n (H≥
n ). The real and
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imaginary parts of Z ∈ Cn×m are written as Re(Z) and Im(Z),
respectively.

Our focus is on pH system representations (see e.g. van
der Schaft and Jeltsema (2014)) of passive and positive-real systems,
see e.g. Willems (1971) and Willems (1972). These can be charac-
terized via the solution set of the Kalman–Yakubovich–Popov linear
matrix inequality (KYP-LMI). We show, in particular, that the ana-
lytic center of certain barrier functions associated with the KYP-
LMI leads to very robust pH realizations; we discuss robustness
measures for such realizations; and we derive computable bounds
for these measures.

2. Positive-realness, passivity, and pH systems

By applying the Laplace transform to (1) and eliminating the
state, we obtain the associated transfer function,

T (s) := D + C(sIn − A)−1B. (2)

On the imaginary axis, ıR, T (ıω) describes the frequency response
of the system. Defining

Φ(s) := T H(−s) + T (s), (3)

the system is called positive real if Φ(ıω) ∈ H>
m for all ω ∈ R. Note

that usually it is assumed that the system is stable. If (1) is positive
real, then it is known (Willems, 1971) that there exists X ∈ Hn such
that the KYP-LMI:

W (X) :=

[
−X A − AHX CH

− X B
C − BHX D + DH

]
≥ 0 (4)
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holds. Define solution sets to the KYP-LMI (4) as

X := {X ∈ Hn | W (X) ≥ 0 } , (5a)
X>

:= {X ∈ Hn |W (X) ≥ 0, X > 0 } = H>
n ∩ X, (5b)

X≫
:= {X ∈ Hn |W (X) > 0, X > 0 } . (5c)

We are interested especially in X> and X≫. Those solutions to the
KYP-LMI (4) for which the rank ofW (X) is minimal will be referred
to as minimum rank solutions. If SD := D + DH is nonsingular, the
minimum rank solutions in X> are those for which rankW (X) =

rankSD = m, which is the case if and only if the Schur complement
of SD in W (X) vanishes. This Schur complement is associated with
the algebraic Riccati equation (ARE):

Ricc(X) := −XA − AHX

− (CH
− XB)S−1

D (C − BHX) = 0. (6)

There are two extremal solutions of (6) in X, X− and X+,
see Willems (1971), so that all solutions X of (6) satisfy

0 ≤ X− ≤ X ≤ X+. (7)

X is bounded, but we may have X = ∅ or X− = X+.
A system M := {A, B, C,D} is called passive if there exists a

storage function,H(x) ≥ 0, such that for any µ, t0 ∈ Rwith µ > t0,
the dissipation inequality holds:

H(x(µ)) − H(x(t0)) ≤

∫ µ

t0

Re
(
y(t)Hu(t)

)
dt. (8)

If for all µ > t0 the inequality in (8) is strict, then the system
is strictly passive. It has been shown in Willems (1972) that if the
systemM is minimal, then the KYP-LMI (4) has a solution X ∈ H>

n
if and only ifM is a passive system. If this is the case, thenH(x) :=
1
2x

HXx defines a storage function associated with the supply rate
Re(yHu) satisfying (8). Furthermore, there exist extremal solutions
0 < X− ≤ X+ of (4) such that all solutions X of (4) satisfy 0 < X− ≤

X ≤ X+. If X ∈ X> exists, then the system M of (1) is Lyapunov
stable and if X ∈ X≫ exists, then it is asymptotically stable. Note,
however, that for (asymptotic) stability of A it is sufficient if the
(1, 1) block of W (X) is (positive definite) positive semidefinite. A
minimal systemM as in (1) is passive if and only if it is positive real
and stable and it is strictly passive if and only if it is strictly positive
real and asymptotically stable. In the latter case, X+ − X− > 0,
see Willems (1971). But minimality is not necessary for passivity,
e.g., the system ẋ = −x, y = u is stable and passive but not
minimal.

An LTI port-Hamiltonian (pH) system has the form

ẋ = (J − R)Qx + (G − K )u,
y = (G + K )HQx + Du, (9)

with Q = Q H > 0, J = −JH, W :=

[
R K
KH S

]
≥ 0, where

S =
1
2 (D + DH) =

1
2SD, andW (Q−1) =

1
2W .

PH systems are a major tool for energy-based modeling (van
der Schaft & Jeltsema, 2014). With a storage function H(x) =
1
2x

HQx, the dissipation inequality (8) holds and so pH systems are
always passive. Conversely, any minimal and passive system M
may be represented as a pH system via the following construction.
IfX = Q ∈ X> is a solution of (4) thenoneobtains a pH formulation
with J :=

1
2 (AQ

−1
− Q−1AH), R := −

1
2 (AQ

−1
+ Q−1AH), K :=

1
2

(
Q−1CH

− B
)
, and G :=

1
2

(
Q−1CH

+ B
)
.

The pH form seems to be a very robust representation of a
passive system (Mehl, Mehrmann, & Sharma, 2016). Moreover, it
has a variety of other advantages: it allows for structure preserving
interconnection of systems; it encodes the physical properties di-
rectly in the coefficients, see van der Schaft and Jeltsema (2014); it
allows for simple projective model reduction approaches that pre-
serve structure (Gugercin, Polyuga, Beattie, & vander Schaft, 2012);

and it simplifies optimizationmethods for computing stability and
passivity radii (Gillis, Mehrmann, & Sharma, 2018; Gillis & Sharma,
2018; Overton & Van Dooren, 2005). For a detailed discussion of
passivity, positive realness, and pH realizations, in particular in
limiting cases, see Beattie, Mehrmann, and Van Dooren (2018).

3. The analytic center of the solution set X>

Solutions of the KYP-LMI (4) are usually obtained via optimiza-
tion algorithms, see e.g. (Boyd, El Ghaoui, Feron, & Balakrishnan,
1994; Nesterov &Nemirovski, 1994). A common approach involves
introducing a barrier function b : Cn×n

→ R that is defined
and finite throughout the interior of the constraint set, becoming
infinite as the boundary is approached. Theminimumof the barrier
function is called the analytic center of the constraint set (Genin,
Nesterov, & Van Dooren, 1999).

For the solution of the KYP-LMI, if X> is non-empty and
bounded, then the barrier function

b(X) := − log detW (X),

is bounded from below and becomes infinite whenW (X) becomes
singular. To characterize the analytic center of b, we study the
interior of X> given by

IntX>
:=
{
X ∈ X>

| there exists δ > 0 such that

X + ∆X ∈ X>for all ∆X ∈ Hn with ∥∆X∥2 ≤ δ
}
,

where ∥∆X∥2 is the spectral norm given by the maximal singu-
lar value of ∆X . We compare IntX> with the open set X≫

=

{X ∈ X>
| W (X) > 0}. Since b(X) is finite for all points in X≫,

there is an open neighborhood where it stays bounded, and thus
X≫

⊆ IntX>. The converse inclusion is not necessarily true; a
characterizationwhen both sets are equal is given by the following
theorem.

Theorem 1. Consider the system M of (1) with rank(B) = m. Then
X≫

≡ IntX>.

Proof. If X>
= ∅ then X≫

= ∅ as well. Otherwise, pick an X ∈

IntX> and suppose thatW (X) is positive semidefinite and singular.
Then there exists a nontrivial [zT1 , z

T
2 ]

T
∈ KerW (X) and ε > 0

sufficiently small so that for all∆X ∈ Hn with ∥∆X∥2 ≤ ε, we have
X +∆X ∈ X>. Observe that for all such∆X , we haveW (X +∆X) =

W (X) + Γ (∆X) ≥ 0, where Γ (∆X) = −

[
∆XA + AH∆X ∆XB

BH∆X 0

]
, and

so

0 ≤

[
z1
z2

]H

W (X + ∆X)
[
z1
z2

]
=

[
z1
z2

]H

Γ (∆X)
[
z1
z2

]
. (10)

If there was a choice for ∆X ∈ Hn with ∥∆X∥2 ≤ ε producing
strict inequality in (10), then we would arrive at a contradiction,
since the choice −∆X satisfies the same requirements yet violates
the inequality. Thus, equality holds in (10) for all ∆X ∈ Hn, which
in turn implies that

W (X + ∆X)
[
z1
z2

]
= Γ (∆X)

[
z1
z2

]
= 0.

This means that BH∆X z1 = 0 for all ∆X ∈ Hn with ∥∆X∥2 ≤ ϵ.
If z1 = 0, then we find that ∆XB z2 = 0 for all ∆X ∈ Hn with
∥∆X∥2 ≤ ε, which in turn means Bz2 = 0. Since rank(B) = m this
is a contradiction, and thusW (X) is nonsingular after all, and hence
positive definite. To eliminate the last remaining case, suppose
that z1 ̸= 0. Choosing first ∆X = εI , we find that z1 ⊥ Ran(B).
Pick 0 ̸= b ∈ Ran(B) and define ∆X = ε

(
I − 2wwH

)
with

w =
1

√
2
( z1
∥z1∥

−
b

∥b∥ ). Then BH∆X z1 = ε
∥z1∥

∥b∥ BHb = 0 which implies
that z1 = 0, and so, z = 0, W (X) > 0, and again the assertion
holds. □
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We now use an optimization algorithm to compute the analytic
center of X> as a candidate for a ‘good’ solution to the LMI (4)
yielding a robust representation. For this we assume that X≫

̸= ∅.
The gradient of the barrier function b(X) with respect toW is given
by

∂b(X)/∂W = −W (X)−1.

For X, Y ∈ Hn, define the Frobenius inner product ⟨X, Y ⟩ :=

trace
(
Re(Y )TRe(X) + Im(Y )TIm(X)

)
. It follows from (Nesterov &

Nemirovski, 1994) that X ∈ Cn×n is an extremal point of b(X) if
and only if

⟨∂b(X)/∂W , ∆W (X)[∆X ]⟩ = 0 for all ∆X ∈ Hn,

where ∆W (X)[∆X ] is the incremental step in the direction ∆X
given by

∆W (X)[∆X ] = −

[
AH∆X + ∆XA ∆XB

BH∆X 0

]
.

For an extremal point, it is then necessary that⟨
W (X)−1,

[
AH∆X + ∆XA ∆XB

BH∆X 0

]⟩
= 0 (11)

for all ∆X ∈ Hn. Defining F := S−1
D (C − BHX), P := −AHX − XA −

FHSDF , and AF := A − BF , and using

W (X) =

[
I FH

0 I

][
P 0
0 SD

][
I 0
F I

]
(12)

one obtains (see also Genin et al., 1999) the equivalent condition⟨[
P−1 0
0 S−1

D

]
,

[
AH
F ∆X + ∆XAF ∆XB

BH∆X 0

]⟩
=
⟨
P−1, AH

F ∆X + ∆XAF
⟩
= 0 ∀∆X ∈ Hn.

This implies that (11) holds if and only if P is invertible and

AH
F P + PAF = 0. (13)

Note that P is the evaluation of the Riccati operator (6) at X , and
that AF is the corresponding closed loop matrix. It has been shown
in Beattie et al. (2018) that the closed loopmatrix AF of the analytic
center has its spectrum on the imaginary axis and thus is also
‘central’ in a certain sense. Since P ∈ H>

n , we can rewrite the
equations defining the analytic center of X> as the solutions X ∈

Hn, P ∈ H>
n , F ∈ Cm,n of the system

SDF = C − BHX,

P = −AHX − XA − FHSDF , (14)
0 = P(A − BF ) + (AH

− FHBH)P = PAF + AH
F P .

which can be solved iteratively, using a starting value X0 to com-
pute P0, F0 and then solving consecutively for Xi, Pi and Fi with
i = 1, 2, . . .

Remark 1. For a given P the solution X of (14) can be obtained
via the computation of an extended Lagrangian invariant subspace,
see Benner, Losse, Mehrmann, and Voigt (2015), satisfying[ 0 In 0

−In 0 0
0 0 0

][
−X
In

−F

]
Z =

⎡⎣ 0 A B
AH

−P CH

BH C SD

⎤⎦[−X
In

−F

]
.

Computing this subspace for P = Ricc(X) = 0 allows one to
compute solutions X+ and X− of (6), which can be used to construct
a starting point for further optimization.

4. The passivity radius

Our goal to achieve robust pH representations of a passive
system can be realized in different ways. A natural way to obtain
a robust representation is to maximize the passivity radius ρM,
which is the smallest perturbation (in an appropriate norm) to
the coefficients of a model M that makes the system non-passive.
Using the computational methods to determine ρM introduced
in Overton and Van Dooren (2005), we can optimize ρM over all
solutions of (4), and then determine the pH representation (9),
so that the system is automatically passive (but not necessarily
strictly passive). Alternatively, for X ∈ IntX>, we can determine
the smallest (in Frobenius norm) perturbation∆M of themodelM
that leads to a loss of positive definiteness of W (X), because then
we are on the boundary of the set of passive systems. This is a very
suitable approach for perturbation analysis, since for fixed X the
matrixW (X) is linear in the unknowns A, B, C,D andwhenwe per-
turb the coefficients, then we preserve strict passivity as long as

W∆M (X) :=

[
0 (C + ∆C )H

(C + ∆C ) (D + ∆D) + (D + ∆D)H

]
−

[
(A + ∆A)HX + X (A + ∆A) X (B + ∆B)

(B + ∆B)HX 0

]
> 0.

Hence, for a given X ∈ IntX>, we can determine the smallest
perturbation ∆M to M that makes det(W∆M (X)) = 0, which
defines the X-passivity radius

ρM(X) := inf
∆M∈Cn+m,n+m

{
∥∆M∥F | detW∆M (X) = 0

}
.

If for any givenX ∈ IntX>, ∥∆M∥F < ρM(X), then all systemsM+

∆M with ∥∆M∥F < ρM(X) are strictly passive. Therefore ρM ≥

supIntX>ρM(X). Equality follows, since there exists a perturbation
∆M of norm ρM for which there does not exist a point X ∈ IntX>

with W∆M (X) > 0. This thus yields the following definition.

Definition 1. The passivity radius of M is given by

ρM = sup
X∈IntX>

inf
∆M∈Cn+m,n+m

{∥∆M∥F | detW∆M (X) = 0}

= sup
X∈IntX>

ρM(X).

To compute ρM(X) via an optimization problem, setting

Ŵ := W (X), X̂ :=

[
X 0
0 Im

]
, ∆T :=

[
−∆A −∆B
∆C ∆D

]
, (15)

we can expressW∆M (X) > 0 as the LMI

W∆M = Ŵ + X̂∆T + ∆H
T X̂ > 0 (16)

as long as the system is still passive. To violate this condition, deter-
mine the smallest (in Frobenius norm)∆T such that detW∆M = 0.
Multiplying Ŵ−

1
2 on both sides of (16) yields

det
(
In+m + Ŵ−

1
2 X̂∆T Ŵ−

1
2 + Ŵ−

1
2 ∆H

T X̂Ŵ
−

1
2

)
= det

(
In+m +

[
Ŵ−

1
2 X̂ Ŵ−

1
2

] [ 0 ∆T
∆H

T 0

][
X̂Ŵ−

1
2

Ŵ−
1
2

])

= det

(
I2(n+m) +

[
0 ∆T

∆H
T 0

][
X̂Ŵ−

1
2

Ŵ−
1
2

][
Ŵ−

1
2 X̂ Ŵ−

1
2

])
= 0. (17)

The minimal perturbation ∆T for which this is the case was de-
scribed in Overton and Van Dooren (2005) using the following
theorem, which we have slightly modified in order to take into
account the positive semi-definiteness of the considered matrix.



C.A. Beattie, V. Mehrmann and P. Van Dooren / Automatica 100 (2019) 182–186 185

Theorem 2. Consider the matrices X̂, Ŵ in (15) and the pointwise
positive semidefinite matrix function

M(γ ) :=

[
γ X̂Ŵ−

1
2

Ŵ−
1
2 /γ

][
γ Ŵ−

1
2 X̂ Ŵ−

1
2 /γ

]
(18)

in the real parameter γ . Then the largest eigenvalue λmax of M(γ ) is
a unimodal function of γ (i.e. it is first monotonically decreasing and
then monotonically increasing in γ ). At the minimizing value γ , we
have

M(γ )z = λmaxz, z :=

[
u
v

]
,

where ∥u∥2
2 = ∥v∥

2
2 =

1
2 . The minimum norm perturbation ∆T is of

rank 1 and is given by ∆T = 2uvH/λmax. It has norm 1/λmax both in
spectral and Frobenius norm.

Proof. The proof for a modified formulation was given in Overton
and Van Dooren (2005) and can be easily adapted for this case,
see Beattie et al. (2018). □

A bound for λmax in Theorem 2 is as follows.

Corollary 1. Consider the matrices X̂, Ŵ in (15) and the matrix
function M(γ ) as in (18). The largest eigenvalue λmax of M(γ ) is also
the largest eigenvalue of

γ 2Ŵ−
1
2 X̂2Ŵ−

1
2 + Ŵ−1/γ 2.

A simple upper bound for λmax is given by λmax ≤
2

αβ
where α2

:=

λmin(Ŵ ) and β2
= λmin(X̂−1Ŵ X̂−1). The corresponding lower bound

for ∥∆T∥F then becomes

ρM(X) = min
γ

∥∆T∥F ≥ αβ/2.

Proof. Clearly ∥Ŵ−1
∥2 ≤

1
α2 and ∥Ŵ−

1
2 X̂2Ŵ−

1
2 ∥2 ≤

1
β2 . So if we

choose γ 2
=

β

α
then

min
γ

∥γ 2Ŵ−
1
2 X̂2Ŵ−

1
2 + Ŵ−1/γ 2

∥

≤ ∥(β/α)Ŵ−
1
2 X̂2Ŵ−

1
2 + (α/β)Ŵ−1

∥ ≤
2

αβ
. □

To construct a perturbation∆T = ϵ(αβ)vuH of norm |ϵ|(αβ) which
makes W∆M singular and thus gives an upper bound for ρM (X),
let u, v and w be vectors of norm 1, satisfying Ŵ−

1
2 u = u/α,

Ŵ−
1
2 X̂v = w/β , ∆T = ϵ(αβ)vuH, and ϵuHw = −|ϵuHw|, i.e., u,

v and w are singular vectors to the largest singular values 1/α of
Ŵ−

1
2 and 1/β of Ŵ−

1
2 X̂ . Inserting these in (17), we get

det

(
In+m +

[
Ŵ−

1
2 X̂ Ŵ−

1
2

] [ 0 ∆T
∆H

T 0

][
X̂Ŵ−

1
2

Ŵ−
1
2

])

= det
(
In+m +

[
w u

] [0 ϵ

ϵ 0

][
wH

uH

])
= det

(
I2 +

[
0 ϵ

ϵ 0

][
wH

uH

] [
w u

])
,

which we can make 0 by choosing ϵ such that ϵuHw is real and
negative and satisfies 1 = |ϵuHw| + |ϵ|. Since 0 ≤ |uHw| ≤ 1, we
have that 1

2 ≤ |ϵ| ≤ 1 and thus we have

αβ/2 ≤ ρM(X) ≤ |ϵ|αβ. (19)

Moreover, if u and w are linearly dependent, then this interval
shrinks to a point and the estimate is exact. We have the following
corollary.

Corollary 2. If for a system M we have X = In ∈ IntX> then the
representation is pH, i.e., M := {J − R,G − K ,GH

+ KH,D} and

ρM(I) = λmin(W (I)).

Moreover, if X = In is the analytic center of IntX>, thenρM(I) equals
the passivity radius ρM of M.

Proof. This follows directly from (19), since then α = β and we
can choose u = w. □

Remark 2. In a pH representation, the conditions Ŵ ≥ α2In+m
and X̂−1Ŵ X̂−1

≥ β2In+m yield the necessary (but not sufficient)
condition for passivity that[

Ŵ αβIn+m

αβIn+m X̂−1Ŵ X̂−1

]
≥ 0,

With T̂ := X̂
1
2 this is equivalent to T̂−1Ŵ T̂−1

≥ αβIn+m. Then

ξ := λmin(T̂−1Ŵ T̂−1) ≥ αβ,

which suggests that pH representations are likely to give a good
passivitymargin. In order to compute the optimal product ξ = αβ ,
we could maximize ξ under the constraint Ŵ − ξ X̂ > 0.

Our previous discussions suggest that if we want a state-space
representation that has a maximal passivity radius, we should not
maximize det(W (X)), but instead

det
([

X−
1
2 0

0 Im

]
W (X)

[
X−

1
2 0

0 Im

])
= det(W (X)

[
X−1 0
0 Im

]
) := det W̃ (X) (20)

under the constraint X > 0 so that T = X
1
2 exists. The gradient and

the incremental step for the associated barrier function b̃(X) :=

− log det W̃ (X) in this case are then given by

∂ b̃(X/∂W̃ ) = −W̃ (X)−H
= −W (X)−1

[
X 0
0 Im

]
,

∆W̃ (X)[∆X ] =

[
XAX−1∆X − ∆XA −∆XB

−CX−1∆X 0

][
X−1 0
0 Im

]
,

and the necessary optimality condition is that⟨
W̃ (X)−1,

[
XAX−1∆X − ∆XA −∆XB

−CX−1∆X 0

]⟩
= 0 (21)

for all∆X ∈ Hn. Proceeding as before, with the same P and F it then
follows that (21) holds if and only if P is invertible and⟨
∆X , P−1(XAX−1

+ FHCX−1) − (A − BF )P−1⟩
= 0

for all ∆X ∈ Hn. With T = X
1
2 , PT = T−1PT−1, and FT = FT−1, set-

ting {AT , BT , CT ,DT } := {TAT−1, TB, CT−1,D} we get equivalently

PT [(AH
T − AT ) + (CH

T + BT )FT ]
+[(AH

T − AT ) + (BT + CH
T )FT ]

HPT = 0.

Using a pH representation MT = {AT , BT , CT ,DT } = {J − R,G −

K , (G + K )H,D}, then at the analytic center of b̃ we have XT = I ,
SFT = KH, PT = R − FH

T SFT , and 0 = PT (J − GFT ) + (J − GFT )HPT
which implies that the passivity radius is given by λmin(2W). On
the other hand, since we have optimized det(W̃ (X)) which has the
same determinant as (20), although we cannot prove this, we can
expect to have a nearly optimal passivity margin.

To illustrate our construction, we present a numerical example,
for an analytic solution in the case m = n = 1 see Beattie et
al. (2018). As a test case we look at a random numerical model
{A, B, C,D} in pH form of state dimension n = 6 and input/output
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dimension m = 3 via W := MMH, where M is a random (n +

m) × (n + m) matrix generated in MATLAB. From this we then
identified the model A := −R/2, B := −CH

:= −K/2 and D :=

S/2, so that X0 = In satisfies the LMI positivity constraint for the
model M := {A, B, C,D}. We then used a Newton iteration to
compute the analytic center Xc of the LMI W (X) > 0 with barrier
function b(X) := − ln detW (X). We determined the quantities
α2

:= λmin(Ŵ ), β2
:= λmin(X̂−1Ŵ X̂−1), and ξ := λmin(X̂−

1
2 Ŵ X̂−

1
2 ).

The constructed matrix X̂−
1
2 Ŵ X̂−

1
2 contains the parameters of the

pH realization at Xc . The results are given in the table:

α2 β2 ξ αβ

0.002366 0.001065 0.002381 0.001587

Note that ξ at the analytic center is a reasonable approximation of
the passivity radius estimate αβ .

5. Conclusion

In this paper we have introduced the concept of the analytic
center for a barrier function derived from the KYP LMI for passive
systems. We have shown that its analytic center tends to optimize
the passivity radius of the model corresponding to the KYP LMI.
Moreover, we present a modified LMI which combined with a pH
representation, yields a nearly optimal passivity margin.
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