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A PENCIL APPROACH FOR EMBEDDING A POLYNOMIAL MATRIX
INTO A UNIMODULAR MATRIX*

T. BEELENt anD P. vaN DOOREN{

Abstract. In this paper a new method for constructing the unimodular embedding of a polynomial matrix
P()\) is derived. As proposed by Eising, the problem can be transformed to one of embedding a pencil, derived
from the polynomial matrix P()). The actual embedding of the pencil is performed here via the staircase form
of this pencil, which shortcuts Eising's construction. This then leads to a new, fast, and numerically reliable
algorithm for embedding a polynomial matrix. The new method uses a fast varant of the staircase algorithm
and only requires O( p°) operations in contrast to the O(p*) methods proposed up to now (where p is the largest
dimension of the pencil). At the same time we also treat the connected problem of finding the (night) null space
and (right) inverse of a polynomial matrix P()).
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1. Introduction. Let P(A\) be an m X n (with m < n) polynomial matrix of de-
gree d.

(1) PA)=Po+ PN+ PN+ - + P\

where each P, is a real or complex m X n matrix. In this paper we develop a new algorithm
to construct an embedding of this polynomial matrix into a unimodular one, 1.e., to find
a second polynomial matrix Q(X) of dimension (n — m) X n:

(2) O\ =0+ Q)M+ -+ + Qg \%

such that the compound matrix

P(X
(3) U(k)é[ ( )]

QM)

1s unimodular.

Since a unimodular matrix is by definition invertible for all A € C (where C is the
finite complex plane), the submatrix P(X) must necessarily have full row rank m for all
A € C in order for a solution of the embedding problem to exist. It turns out that this is
also a sufficient condition for a solution to exist and that, moreover, there always exists
a solution @(A) of degree d, = d — 1 [4]. (Here we assumed that 4 2 | since otherwise
the problem degenerates into one involving constant matrices only and becomes trivial.)
Although this result was known it is nice to see how easily it is also derived from our
algonthmic construction.

The constructive method developed in this paper is then shown to be easily extended

to one that also provides the right inverse of P(\), i.e., an n X m polynomial matrix M(A)

satisfying
(4) PN -M(N) =1,
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and the nght null space of P(M\), i.e.,, an n X (n — m) polynomial matnx N(A) of full
column rank and satisfying

(3) P(N) - N =0~ m-

Our method reformulates the embedding problem of P()\) as an embedding of a
pencil, an idea which was, e.g., used by Eising {2]. After recalling this in § 2, we show in
the next section how the embedding problem for pencils can be tnvially solved via the
staircase algorithm [10] of pencils. In § 4, we then use these ideas to provide algorithms
for solving the related equations for the right inverse and right null space of P()A). Finally
we conclude in § 5 with some considerations of complexity and numerical stability of
our method and with some numerical examples.

2. Reduction to a pencil problem. The idea developed here is borrowed from Eising
[2]. Consider the dm X {(d = 1)m + n} pencil AB — A4 where the matrices B and A are
defined as

( r 0 —-P, r L
Im —Pd—l
(6) B=| . e ;
: 0 'T‘Pz m P
L Im ;"Pl J L 0

We first show that the pencil AB — A has full row rank for all A € C if and only if the
polynomial matrix P()\) has full row rank for all A € C. For this we introduce the
dm X dm unimodular matrices C(\) and D(\) = C~'(\) defined as

I
I
Al Y

(M cn=| » . D)=
: o | -\ 1
NS NN T

where all identity matrices are of order m. Indeed, by straightforward calculations we
find

LY

I : AP, i r I R;(N)

~M . : : .

- (8) A4 -AB)=C(N) . ' = T :
M AP +P | | P(\)

where we define Ry, (M) =0, Ri(A) = AR, {(A\) + AP, i=d, --<,2and R,(\) = P(\).
Using this, and the fact that C()\) is unimodular (and hence invertibie for all A € C) we
indeed easily derive that the pencil AB — A4 has full row rank for all A € C if and only if
P(X) has full row rank for all A € C.

Suppose now that we are able to provide an embedding for the pencil AB — A4, which
we. denote as

'9 ‘ AB—A

CE eor |

and let us partition K()) as follows:

(10) KN =(Ki(A), «++ K- 1(N), Ka(N)]
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where K;(A) has dimensions (n — m) X m, for i < d and K,(\) dimensions (n — m) X n.
Combining (8) and (9), we thus have that

[ 1, Ry ]
_ : —C(\) | AB-4
(11 GO\ = In RN =[ H ]
0 - 0 PN [ 1-m) | KO
B Ky -0 Ky K4 _J

is also unimodular. Introducing the unimodular matrix H(\) of order (d — 1)m + n as

[ 1,

—

(12) HO\) = I,

—KI

—Kd—l 0 In—m_J

and premultiplying G(X) by H()\) gives
- -

I, Ri(N)
(13) SN=HOGN = L | R
P(N)
L QM) |
where Q(A) is given by
d-1
(14) QM=K N~ 2 Ki(MRg—- i+ (V).
=
It 1s now obvious from (13) that
P(N)
15 \
() [QO\)]

is unimodular if and only if the embedding (9) is unimodular. This thus shows that the
problem of embedding a polynomial matrix (provided this is possible) can always be
reformulated as that of embedding a pencil. The reason of reformulating the problem as
~ one for a pencil is that it can be embedded by a constant matrix K, as was, e.g., shown
by Eising [2]. In the next section we give a simple alternative proof of this result and also
show how to construct such a constant solution K.

3. Embedding a pencil in a unimodular one. Kronecker (see [3]) has shown that
any pencil AB — A4 can be transformed via constant invertible column and row trans-
formations to a canonical block diagonal form A B, — A,

(16) S:(AB—A)-T=\B.—A.=diag {L.,, - ,L,,L%, - ,LT AN—I\I-J}
where
(1) L, isthe e X (¢ + 1) bidiagonal pencil

-1 A
(]7) ‘e .
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(2) LT is the (7 + 1) X 7 bidiagonal pencil .

-1
(18) Mo
A

(3) Mis a nilpotent Jordan matrix, and hence AN — I consists of a diagonal block
pencil with 6; X §; blocks of the type

(19)

(4) Jis in Jordan canonical form.

The matrix A/ — J contains the finite elementary divisors and AN — I the infinite
elementary divisors of AB — A. The blocks L,, and L,,T, contain the singularity of the
pencil. The indices ¢, and 7; are called the Kronecker column and row indices, respectively,
and §; are called the degrees of the infinite elementary divisors.

Using this canonical form we now easily derive the following theorem about the
unimodular embedding of a pencil.

THEOREM 1. A pencil A\B — A has a unimodular embedding

AB—A4
K(\)

if and only if it has no finite elementary divisors and no Kronecker row indices. Moreover,
there always exists a constant matrix K such that the new infinite elementary divisors of
the embedding are equal to the union of the infinite elementary divisors {8;} and of the
Kronecker column indices {(¢; + 1)} of A\B — A.

Proof. The necessity of the condition is trivial as noted in the Introduction. Indeed
the unimodular embedding has full (row) rank for all A € C, and thus this is also implied
for the rows of AB — A. Using the block decomposition (16) we easily find then that
AB — A can have no finite elementary divisors or Kronecker row indices, since the
corresponding blocks do not obey the row rank property for all A € C.

The sufficiency of the condition 1s now proved via the construction of a solution K,
which at the same time satisfies the second part of the theorem. Indeed. choose K. to be
a matrix whose rows are unit vectors, each with a —1 at the location corresponding to
the last column of one of the L, of A B. — 4.. Then obviously the embedding

.y AB.— A,
@ Mo

has a Kronecker canonical form with blocks (19) of sizes é; and (¢; + 1) as requested.
This form is indeed obtained by a mere permutation of the rows of (21). Then, defining
K = K.-T7" and using

S] AB—A AB.— A1,
. .T: PO S——.
@ S - R
we find that (20) and (21) have the same Kronecker canonical form. The fact that

a pencil with only infinite elementary divisors is unimodular [4] then completes
the proof. O
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COROLLARY 1. A polvnomial matrix P(\) of degree d has a unimodular embedding

ool
(23)
Q)

ifand only if it has full row rank for all \ € C. Moreover, there always exists an embedding
with a polynomial matrix Q(X\) of degree (d — 1).

Proof. As above, the necessity of the condition is trivial. Sufficiency is proved via
the construction of K above and the subsequent derivation of Q(A\) in (9)-(14). If K is
chosen constant, then the construction (14) and the recurrence relation for R;(\) in (8)
yields the following explicit formula for Q()A) in terms of the coefficient matrices P,
of P(\):

-1 i-1 d-1 d-1
(24) QN =Ks— Z Ki Z NPy j=Ks= TN T KiPawr-io

i=1  j=0 k=1 =k

This clearly shows that Q(\) has degree (d — 1) and thus completes the proof. O

While apparently the problem is thus solved via the above construction, it is not a
recommended procedure from a numernical point of view. The transformations S and T
in the decomposition (16) may indeed be very badly conditioned and thus give rise to a
significant loss of accuracyv. An alternative decomposition that does not suffer from this
drawback is the so-called staircase form of AB — A4 [10]. For a pencil AB — A with only
column Kronecker indices {¢;} and infinite elementary divisors {4;}, we obtain the fol-
lowing staircase form (which we denote by AB.., — A.,) via unitary transformations U
and V[10]:

UAB—A)V=AB.x —A.x

i —Ay ABi2— A4, X X

—Aj> ABy3—Ay;s

(25)
X

~Akx ABrrer = Akk+)

L "'Ak+l.k+l _J

This form is characterized by the fact that the blocks 4,; (i = I, ---, k + 1) have
full row rank and the blocks B;;+; (i = 1, ---, k) have full column rank. Notice
that the blocks indicated by X in (25) are in fact pencils as well. Let the matrices A;;
(i=1,---,k+1)and AB;+—A;;+: (i =1, - -+, k) have dimensions m; X n; (m; = n;)
and m; X n;,, (n,,, = m,), respectively. Then the following theorem, proved in {10],
relates these dimensions to the Kronecker canonical form of AB,, — A, (or AB — A).
THEOREM 2. The pencil A\B — A with staircase form as in (25), has
(26) ni—m; Kronecker column indices ¢; equal to i — 1,

m,—n;,+, infinite elementary divisors &, equal to i. O

At first sight we thus have the requested information to find a constant matrix K
for the embedding, using the decomposition (25) as well. That this is in fact very simple
is now shown below. Corresponding to each nonsquare A;; we can easily find and
(n; — m;) X n; matrix C; such that

27) | <
‘ [A,-_,-]
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is square invertible and does not depend on A. Thus, by adding a block row of the type

(28) 0---0 ~-C; X---X]"~
to each corresponding block row
(29) [0---0 —Aiy ABiiv1—Ayiv1 X+ X]
in(25)for(i=1,:---,k)and adding {0 --- 0 — Ci4Jt0[0 -+ 0 — Agsix+1), the
pencil (25) can be embedded into a pencil
30 ABcco _Acco
(30) K.
with

-C, X - X
(31) Ko™ G ;

-G X
_Ck+l

This matrix K,,, has dimensions

k+1 k+1
> (ni—m)X 2 ni=(n—myXx{(d-1)m+n}.

It should be noted that the blocks indicated by X in (31) can be chosen arbitrarily, even
as a function of A, so that the matrix (13) is highly nonunique. For the sequel we assume
K. to be chosen constant. 1t 1s easily seen that the pencil (30), up to a row permutation
I1,, 1s again 1n staircase form:
x13:(:10 - Aeco
’ Ko

(32) =

[ G [ X ]
Ark ABiy+ 1= Akk+

_[ Cis ]
Ak+l.k+|

b . —d

since the (new) blocks [AC,.':,] have full row rank by construction, and the (new) blocks
(5> ,] still have full column rank. The fact that this “embedded” pencil is unimodular
easily follows from the full rank property for all A € C (guaranteed by the diagonal blocks).

The preserved staircase form shows moreover that the pencil (32) has
(33) n,—n;+; infinite elementary divisors 3,- equal to {

which, according to Theorem 2, is exactly the same result as in Theorem 1. Just as in
(22), we then define K = K, V™' = K..V* (.* denotes the conjugate transpose) and use

(34) | [U} I].[*BK‘A].V: [————*B‘;;Am]
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to show that the matrix K obtained via this construction also satisfies the conditions of
Theorem 1. This construction thus implicitly provides an embedding satisfving Theorem
1, without passing via the numerically sensitive Kronecker canonical form.

Remark 3.1. The staircase algorithm described for general pencils in [10] in fact
also tests whether or not a given pencil only possesses infinite elementary divisors and
Kronecker column indices. Applied to the pencil (6) it thus tests for the existence of an
embedding, and at the same time provides a convenient form for constructing such an
embedding in case it exists.

Remark 3.2. While the general staircase algorithm, e.g., described in [10] or [9] has
an operation count that is quartic in the maximal dimension dm of AB — A4 (i.e., O(m*d*)
flops), an improved method has recently been proposed in [1] which has an operation
count that is only cubic (i.e., O(m>d?) flops). Moreover, it is shown there that the “rank
carrying stairs” 4;; and B;;., can be chosen triangular when approprately updating U
and V.

Remark 3.3. It is well known that in general there is no unique solution Q(}A) to
the embedding problem. The method described above also does not yield a unique solution
Q(M\). This is clearly reflected by the freedom in choosing the block rows in (28). A
possible selection criterion could be to minimize the effort for determining matnx K.
When the m; X n; matrices A;; in (25) are assumed to be upper trangular the
(n; — m;) X n; matrices C; (I = k + 1) can be chosen as

(3%5) C;=[1,0]

with the remaining X matrices in each row of K, equal to 0. In that case, the determination
of K is of course trivial.
To conclude this section we now summarize the computational procedure.

ALGORITHM EMBED.

(1) Construct the pencil AB — 4 defined by (6).

(2) Compute the staircase form of AB — A giving (25) with upper triangular matrices
A

(3) Construct matrices C; satisfying (27).

(4) Compute matnx K, given in (31).

(5) Determine matrix Q(A) via (34) and (24).

4. Inversion of a unimodular matrix. In this section we consider the problem of
inversion of a unimodular matrix from a numerical point of view. Throughout this
section we denote by U(A) an n X n polynomial matrix of degree d = [ that is assumed
to be unimodular, i.e., such that

(36) det U(A) = a nonzero constant.

The determination of U~!()\) is an important step in several problems dealing Wi.th poly-
nomial matrices. For example, this inversion problem arises when solving certain poly-
nomial matrix equations which we now first describe.

Computing a right inverse and a right null space of a full row rank polynomial
matrix. Let P(\) denote an m X n polynomial matrix (m < n) which has full row rgnk
for all A € C. Any polynomial matrix M()) such that P(\M(X) = Im is called a right
inverse of P(\). Any polynomial matrix N()) of full column rank (for some ) and such
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that P(A)N(A) = 0,,, - » is said to span the right null space of P()A). In order to find such
matrices M(A) and N(\), we start with any unimodular embedding of P()\)

(37) U\ = PO
- S lom |

This is done using the procedure described in the previous section. Hereafter we determine
the inverse of U(MA). (To this end, we present a new numerical method in this section.)
It is well known (see [4, Lemma 6.3-1]) that this inverse is a polynomial matrix F(\)
which we partition as V()\) = [M(\)|N(\)] where M()\) and N()\) have dimensions n X m
and n X (n — m), respectively. Obviously, we have U(A)V(A) = I, or equivalently,

P(\) : I, | O
38 —— | [M(M\)INN)] = ]
(38) [Qm][ (NINOV)) [0 IM]
Hence,
(39) POOMN =1, PN =0pp— .

Clearly, M(\) is a right inverse of P(\) and NM(\) spans its right null space since N(\) has
full column rank for all A € C (being a submatnx of the unimodular matrix V(X)).

From an algebraic point of view the computation of U "'()\) is rather simple. Indeed,
let V(A\) = U~'(\); then we have to solve

(40) UNV(N) =1,.

Matrix U(X) can, e.g., be reduced by elementary row operations to the so-called triangular
Hermite form (see [4, § 6.3] for details). This form can now be used to solve for V(\) by
backward substitution. Of course, other methods for determining F()A) can be applied
including those for inverting arbitrary polynomial or rational matrices (see, e.g., [8]).
However, most of these general inversion methods are not recommended from a numenical
point of view. The main reason is that in fact they rely on the Euclidean division algorithm
(when reducing the Hermite form) or on formulas that can cause severe loss of significant
digits.

Below we present a new (numerically more reliable) algorithm for computing the
inverse of a unimodular matrix. Let us denote the n X n unimodular matrix U(\) of
degree d by

41) O UN=Up+ UN+U N+ -+ UM

where each U, is a real or complex n X n matrix. Here again we assume that d = 1, since
otherwise the problem degenerates into one involving constant matrices only and becomes
trivial.

As in the previous section we reformulate the problem as a pencil problem by
defining the dn X dn pencil A\B — 4 where the matrices B and A are defined as

0 -Uy
1,, .. _Ud—l In

(42) B= : , A=
-U,
In _Ul

(=
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When defining C(A\) and D()) as in (7) but now with identity matrices of order n,

we find .
I Ra(N\)
(43) COYA—-\B) = B
~ I R0\
U

where we define Ry, (A) = 0. R,(A\) = A Riu (N + AU, i =d. --+, 2and R(\) = UQ\).
It is easily seen that (43) is unimodular. Hence, the pencil A B — A is also unimodular.
It follows from (43) that

U-'A\)=-[0,---,0,LJAB—A)'C'N)[0,---,0,1,]T
(44) =—[0,--,0,I,JAB—A)"'DN)0.---,0,1,)T
=-—[0,---,0,,JAB-A)'[0,---,0,I,)7.

This thus shows that inverting a unimodular polynomial matrix is easily reformulated
as inverting a unimodular pencil.

In order now to solve the inversion problem of the unimodular pencil AB — A, we
first note that the Kronecker canonical form of AB — A merely consists of / — AN where
N is nilpotent:

(45) S-(A\B—A)-T=I-\N.
From this the inverse is tnivially obtained as
(46) AB—A)'=T " (I+AN+XNN2+--- +NN)- S

where / + 1 is the size of the largest infinite elementary divisor in (16) (i.e., the largest
d; X 6; block of the type (19) in / — AN). If we define the polynomial matrix ¥(\) =
UM as

(47) VN =Vo+ ViA+ -+ VN,
then the combination of (44) and (46) gives us
(48) Vi=—[0,---,0,I]-T~"-N-$'-[0, - - - ,0.1,]T (i=0,---.0)

which thus solves the problem. But since the Kronecker decomposition is a sensitive tool
from a numerical point of view, we again turn to the staircase form of AB — 4. This can
be obtained under unitary transformations Q and Z:

QO AB—A)-Z=\B,—A,

Y NBiy—Ay, | X U
'—A‘Z.Z
(49) _ I NBuar = Aue } n
“/i/+|.1+n } Ry
—_— — N ~

n na Ny
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where the matrices ff,, are upper tn'angular matrices of full row rank, and the matrices
B,,H have full column rank. Since AB — A4 has only infinite elementary divisors, the
A, ; are square invertible and so is A, . Let us now introduce

(50) ' No=B,Ay;

then N, has exactly the same block structure as B, since A7) is upper triangular. Thus,k
N, is nilpotent and we then have that

(51) A\B=A)'=Z* ABo=A) - 0*=Z* A - U+ N A+ N+ - + NLNY- 0.

The computation of A% is rather simple since it is triangular and so is the construction
of N,. By Theorem 2 we find that the index / + 1 obtained from the Kronecker canonical
decomposition (i.e., the index of nilpotency of N) equals the number of “stairs” 4,; in
(49), and hence also the index of nilpotency of N, .

The combination of (44), (47), and (51) now gives us

(52) Vi=ZaNoQugn  (i=0,---,0)
where , ‘

(53) Ziea=—[0, -+ ,0,1,]Z*A43
and

(54) Orgne=0*[0, -+ ,0,1,)".

Here Z.q and QOrign have dimensions n X dn and dn X n, respectively.

Remark 4.1. If the unimodular matrix U(X) results from an embedding problem,
then the construction of the previous section immediately vields a staircase form of the
type (49). The possibility of choosing the diagonal blocks triangular in this embedding
(see Remark 3.3) i1s thus appropnate here.

Remark 4.2. Since the index of nilpotency of N., determines the number / + 1 of
coefficients V; to be computed, trving to minimize / when dealing with the embedding
problem is recommended. This is in fact done in the construction of Theorem 1: the
lengths of the Jordan chains of the infinite elementary divisors—i.e., the number of stairs
in the resulting staircase form (32)—is kept minimal, namely equal to the number of
stairs in the staircase form (25) we are starting from. It is important to note here that
not all ¥; are necessarily nonzero, although the N* and N‘, matrices in (46) and (51) are
nonzero for i = 0, - -+, /. This thus means that / is in fact only an upper bound for the
actual degree of V(A). This 1s, e.g., seen in the examples below.

We conclude this section with a summary of this procedure.

ALGORITHM INVERT.

(1) Construct the pencil AB — 4 defined by (42).

(2) Compute the staircase form of AB — A giving (49) with upper triangular A4;;
and compute N_, via (50).

(3) Compute Zy.4 and Qrigne via (53) and (54).

(4) Compute the coefficients V; of V(\) using (52).

5. Computational aspects. In the design of any numerical algorithm we are mainly
concerned with two aspects: numerical reliability and computational speed.
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As far as numerical precision is concerned, we can certainly say that the methods
are based on the use of the staircase forms (25) or (49), which can be obtained by nu-
merically stable algorithms [10], [11], [9], [12]. For the embedding problem this guarantees
a rather good numerical behavior since the determination of K., and subsequently of
Q(A) via (35) and (24), does not seem to introduce any numerical difficulty. The method
is, we believe, certainly to be preferred over the method using the Kronecker canonical
form described in (21)-(22) or Eising’s method [2], since these both require inverses of
matrices that can be badly conditioned.

For the inversion problem the situation is somewhat different. There the use of the
staircase form again avoids the use of the numencally sensitive Kronecker canonical
form, but there is still an inversion problem involved. That this cannot be avoided is
easily seen from the following recursions for the coefficients V; of the inverse of a uni-
modular matnix:

Vo=Us', Vi==Ug'-(UVy), Va=-Us'-(UVo+U V), -,

(55) k-1
Vi= —UEl‘( ) Uk—iVi) .
i=0

If we know that the matrix U()\) is unimodular and that the degree of its inverse will be
k, then this is probably the most direct (and also most reliable) method to compute the
coefficients of V(A). But Algorithm Invert also provides a test for the unimodularity of
U(X\) and computes a (usually close) upper bound !/ for the degree k of its inverse. The
algorithm is probably not much more sensitive than the mere application of (55), and it
is certainly recommended for problems that are coming from an embedding since there
U()) is not directly available, whereas AB—Ais.

Remark 5.1. It should be noted here that Eising also proposes a number of variants
of his method which normally improve the numerical sensitivity of the problem, while
allowing the embedding U()) to have larger infinite elementary divisors than the minimum
required. This is particularly important for the subsequent inversion problem where a
trade-off between degree and sensitivity of the solution ¥(A) is pointed out by Eising {2].

As far as the computational complexity is concerned, we have already remarked
that a cubic algorithm 1is available [1] for computing the staircase form of an arbitrary
pencil, in contrast to the quartic methods that are available up to now [13], [10], (9], (6],
[5]. For the embedding problem this decomposition constitutes the bulk of the work
(namely O(m*d?) flops) since the construction of X = K., - ¥* and Q()) using (24) only
require O(m*d*n) flops and O(md*n(n — m)) flops, respectively.

For the inversion problem we suppose first that it is connected to an embedding
and, hence, that (49) is available. The computation of N, and Z.q takes O(rn’d%) and
O(m*d*n) flops, respectively (Qygn is Obtained at no cost). Starting with these data, the
V; are then computed recursively using .

(56) Xo=Qsghs Vo=Zuen'Xo, fori=1, -k X;=Ng-Xi_\, Vi=ZeaXi

which takes O(/m*d*n) flops for the total recursion. Here it is clear that it is very important
to keep / as small as possible, since otherwise the complexity of this step may well become
the larger part of the work (/ may be as large as md!). If now the inversion problem is
independent of an embedding, then the staircase form (49) has to be computed also
which requires an additional O(n°d?) flops. Moreover, one then has m = n.

We conclude this section with some numerical examples. The embedding problem
largely relies on the staircase form, which has already been treated by various authors
[13], [10], [1]). Therefore we restrict ourselves here to the inversion part.
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Numerical examples. We give here some numerical examples of the Invert Algo-
rithm. They were run on a VAX-750 computer with relative machine precision EPS =
2736 ~ (0.14%107'%, The notation is consistent with formulas (41)-(54). For brevity, we
only list the nontrivial matrices. The computations were performed with the interactive
matrix manipulation package MATLAB [7].

Example 1.

‘ I X N
B ' U\) = I A
1

For \B, — A, = Q\\B — A)Zand N_ = B_AZ! the following results were found up to
16 correct digits:

[0 0 -2 0 0 0] [ - ]
0 —2a —a O —1
s a 0 P = -1
Be = 0 1] A +1 ’
0 -1
. O_ b —l-
‘ [0 0 2« O 0 0]
0 2« «a 0
s —a 0
NED_ O __l b
0
A O—
[0 0 01 0 0] [ 0 -« -« 0 0 0
«a 0 00 a O 0 0 00 -1 0
o=| @ 0 0 0 —a 0 s 0 0 00 0 I
00 00 0 1] -1 0 00 0 0
01 00 00 0 -« a 0 0 0
00 -1 0 0 0] . 0 0 01 0 0]

where a = \5/2 and / = 2. Straightforward computation of U~!(\) using (52) gives

1 -x 0
V(\) = T
I

0 A 1
UMN=|0 1 0 .
1 A+7 MN+7A+3

Example 2.

In this case we obtained (up to 16 correct digits)

0 -1 701 0] 10 -3 0 -7 0

100 0 L 0 0 0 0

. 1 0 0 - 1 0 0 o0
B = Lo |n =T -1 0 o

~1 L0
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i y
0 -1 7 0 1 0
-1 0 0 0 .
- -1 0 0
Neo RE
1
i 0]
[0 0 0 0 0 1] [0 0 0 -1 0 0]
0 0 -1 0 0 0 0 0 0 0 0 1
onoo—loo s-| 0 -1 0 0 00
1 0 0 0 o0 0]} -1 0 0 0 0 0
0 0 0 0 -1 0 0 0 0 0 -1 0
0 -1t 0 0 0 0] | 0 0 -1 0 0 0]
Moreover, / = 5 and
-3 =7 1 [—7 -1 0 -1 3 0
V,=] 0 1 0], V,=| o o0 of, ¥.=| 0 o0 of,
1 0 0 L 0 0 0 0 -1 0
0 7 0 01 0 0 —0.3469 0
Vs=|0 0 0f, Va=]0 0 0|, Vs=10""+|0 0 0
0 0 0 0 0 O 0 0 0

Hence, when neglecting the term A’V (recall EPS = 0.14+107'%) we indeed find the
exact formula for the inverse of U()), i.e.,

(=N2=Tx=3) A\*+TN+3N2=A-T7) 1
V() = 0 1 0
1 S =2 0

REFERENCES

(1] T. BEELEN, P. VAN DOOREN, AND M. VERHAEGEN, A class of fast staircase algorithms for generalized
state-space systems, in Proc. Amencan Control Conference. Seattle. WA, 1986, pp. 425-426.

(2] R. EISING, Polynomial matrices and feedback, IEEE Trans. Automat. Control, AC-30, (1985), pp. 1022-
1025.

[3] F. R. GANTMACHER, The Theory of Matrices, Chelsea, New York, 1959.

[4] T. KAILATH, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.

[5]1 V. KUBLANOVSKAYA, AB-algorithm and its modifications for the spectral problems of linear pencils of
matrices, Numer. Math., 43 (1984), pp. 329-342.

(6] G. MIMINISAND C. C. PAIGE, An algorithm for pole assignment of time invariant multi-input linear system,
Proc. 21st IEEE Conference on Decision and Control, 1982, pp. 62-67.

[7] C. MOLER, MATLAB user's guide, Computer Science Department, University of New Mexico, Albuquerque,
NM, 1980.

[8] N. MUNRO AND V. ZAKIAN, Inversion of rational polynomial matrices, Electronic Lett. 6 (1970), pp. 629-

630.
[9]1 C.C. PAIGE, Properties of numerical algorithms related to computing controllability, IEEE Trans. Automat.

Control, AC-26 (1981), pp. 130-138.

[10] P. VAN DOOREN, The computation of Kronecker's canonical form of a singular pencil, Linear Algebra
Appl., 27 (1979), pp. 103-141.

, The generalized eigenstructure problem in linear system theory, IEEE Trans. Automat. Control,
AC-26 (1981), pp. 111-129.

(12] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

[13] , Linear differential equations and Kronecker's canonical form, in Recent Advances in Numcncal
Analysns C. de Boor and G. Golub, eds., Academic Press, New York, 1978, pp. 231-265.

(1]




