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a b s t r a c t

We study the regularization problem for linear differential–algebraic systems. As an improvement of
former results we show that any system can be regularized by a combination of state-space and input-
space transformations, behavioral equivalence transformations and a reorganization of variables. The
additional state feedback which is needed in earlier publications is shown to be superfluous. We provide
an algorithmic procedure for the construction of the regularization and discuss computational aspects.
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1. Introduction

We study linear descriptor systems given by differential–
algebraic equations (DAEs) of the form

d
dt Ex(t) = Ax(t) + Bu(t) (1)

where E, A ∈ Rl×n, B ∈ Rl×m. The set of systems (1) is denoted
by Σl,n,m and we write [E, A, B] ∈ Σl,n,m. DAE systems of the form
(1) naturally occur when modeling dynamical systems subject to
algebraic constraints; for a furthermotivationwe refer to [1–5] and
the references therein. The system [E, A, B] is called regular, if the
matrix pencil sE − A is regular, that is, l = n and det(sE − A) ∈

R[s] \ {0}.
The functions x : R → Rn and u : R → Rm are usually called

state and input of the system, resp. However, in the general case, u
might be constrained and some of the state variables can play the
role of an input. In the present paper we will take the viewpoint
of the behavioral approach due to Willems [6], see also [7,8].
Within this framework, the variables of the system do not have
the interpretation of states and inputs until an analysis of the
system reveals the free variables. These free variables should then
be interpreted as inputs, since ‘‘they can be viewed as unexplained
by the model and imposed on the system by the environment’’ [9].
This approach obeys the physical meaning of the system variables
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and it may turn out that in the original model the choice of states
and inputs was inappropriate.

The behavior of the DAE system (1) is introduced as the
following set of solutions of (1):

B[E,A,B] := {(x, u) ∈ L1
loc (R; Rn

× Rm) | Ex ∈ AC(R; Rl),

(x, u)satisfies (1) for almost all t ∈ R},

where L1
loc and AC denote the space of locally (Lebesgue)

integrable and absolutely continuous functions, resp. DAE control
systems based on the above behavior have been studied in detail
e.g. in [1].

Nowadays, the modeling of huge industrial problems and com-
plex physical systems is often performed using automatic mod-
eling tools such as Modelica (https://www.modelica.org/). This
approach naturally leads to differential–algebraic systems of the
form (1). Since in the automatically generated models it is quite
common that redundant equations appear and state and input
variables are chosen inappropriately, the system (1) is not regu-
lar in general, while the physical background tells that a regular
model must exist. Therefore, a remodeling, or a regularization, is
often required, see [10].

In the present paper we study the regularization of DAE sys-
tems, which relies on a procedure developed in [10] and revisited
in [11]. In [10] it is shown that, given any DAE system [E, A, B] ∈

Σl,n,m, by a combination of behavioral equivalence transformation,
proportional state feedback and reorganization of variables (due to
a possibly inappropriate initial choice of states and inputs) a new
system [Ereg, Areg, Breg] can be obtained where sEreg − Areg is reg-
ular and has index at most one. In the linear case, explicit trans-
formations and a characterization of the regularized system have
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been obtained in [12]. In the present paper, we improve the results
of [10,12] by showing that an application of state feedback is not
necessary. Furthermore, we derive a numerically stable algorithm
of cubic complexitywhich establishes the regularization of the sys-
tem.

The paper is organized as follows: In Section 2 we introduce
some preliminary concepts and notation and give a precise
problem formulation. The regularization algorithm, which is the
main result of the paper, is presented in Section 3 and proved
to be feasible for any given system. Numerical reliability and the
computational speed of the regularization algorithm are discussed
in Section 4. Section 5 provides a detailed comparison of our
algorithm with the method proposed in [10] and in Section 6 we
demonstrate the regularization algorithm bymeans of a numerical
example. Conclusions are given in Section 7.

2. Preliminaries and problem formulation

In the present paper we use the following notation: R and C
denote the fields of real and complex numbers, resp.; R[s] is the
ring of polynomials with coefficients in R; Rn×m is the set of n × m
matrices with entries in a ring R; On denotes the set of orthogonal
real n × n matrices. A polynomial matrix U(s) ∈ R[s]n×n is called
unimodular, if it is invertible over R[s] or, equivalently, if detU(s)
is a nonzero constant.

The rank of a matrix M ∈ Kn×m, where K = R or K = C,
is denoted by rkM . If M ∈ Rn×m with rkM = r , then, using QR
factorization with pivoting [13], there exists T ∈ On such that

TM =


Σr
0


,

where Σr ∈ Rr×m with rkΣr = r , see also [14]. We will call T
a row compression of the matrix M . Similarly, we call S ∈ Om a
column compression, if

MS = [Σ̂r , 0],

where Σ̂r ∈ Rn×r with rk Σ̂r = r .
The index ν ∈ N0 of a regular matrix pencil sE − A ∈ R[s]n×n

is defined via its (quasi-)Weierstraß form [15,3,4]: if for some
invertible S, T ∈ Rn×n

S(sE − A)T =


sIr − J 0

0 sN − In−r


, N nilpotent,

then ν :=


0, if r = n,
min


k ∈ N0

 Nk
= 0


, if r < n.

The index is independent of the choice of S, T .
Finally, we recall the concept of behavioral equivalence which

has been introduced for general behaviors in [9]. Roughly speaking,
two systems are behaviorally equivalent, if their behaviors
coincide.

Definition 2.1. Two systems [Ei, Ai, Bi] ∈ Σl,n,m, i = 1, 2, are
called behaviorally equivalent, if

B[E1,A1,B1] ∩ C∞(R; Rn
× Rm) = B[E2,A2,B2] ∩ C∞(R; Rn

× Rm),

where C∞ denotes the space of infinitely times differentiable
functions; we write

[E1, A1, B1] ≃B [E2, A2, B2].

In order to obtain a behaviorally equivalent system, it is allowed
that some of the equations in (1) are differentiated (and hence
we require smooth solutions). This leads to a transformation of
the form U( d

dt )(
d
dt E − A)x(t) − U( d

dt )Bu(t) = 0 with some
U(s) ∈ R[s]l×l. Furthermore, since the behaviorsmust coincide (on
C∞) the transformation U(s) must be reversible, i.e., U(s) must be
unimodular. As shown in [9, Thms. 2.5.4 & 3.6.2] this is exactly the
set of transformations that characterizes behavioral equivalence;
this is summarized in the following lemma.

Lemma 2.2. Let [Ei, Ai, Bi] ∈ Σl,n,m, i = 1, 2. Then [E1, A1,
B1] ≃B[E2, A2, B2] if, and only if, there exists a unimodular U(s) ∈

R[s]l×l such that

[sE1 − A1, −B1] = U(s)[sE2 − A2, −B2].

Note that in initial value problems (1), x(0) = x0, where u ∈

C∞(R; Rm) is given, the consistency of the initial value x0 ∈ Rn,
i.e., existence of x ∈ C∞(R; Rn) such that (x, u) ∈ B[E,A,B] and
x(0) = x0, is preserved under behavioral equivalence.

In the present paper we consider the following regularization
problem.

Problem 2.3. For a given system [E, A, B] ∈ Σl,n,m, find a
unimodular matrix U(s) ∈ R[s]l×l, orthogonal state space and
input space transformations T ∈ On, V ∈ Om and a permutation
matrix P ∈ On+m such that

[sE − A, −B]

T 0
0 V


P = U(s)


0 0

sEreg − Areg −Breg


, (2)

where sEreg − Areg ∈ R[s]n̂×n̂ is regular and has index at most one.

Each kind of the transformations in Problem 2.3 have an
interpretation in terms of their physical meaning:

(i) T and V represent coordinate changes in state space and input
space respectively,

(ii) U(s) represents an equivalence transformation which does
not change the behavior of the system,

(iii) P represents a permutation of state and input variables. Here,
we seek a permutation of free state variables with constraint
input variables, so that in the resulting system the free
variables are exactly the input variables. This may be viewed
as a reinterpretation of certain states as inputs and vice versa.

At first glance it may be surprising that (2) in Problem 2.3 does
not read

W (s)[sE − A, −B]

T 0
0 V


P =


0 0

sEreg − Areg −Breg


, (3)

where W (s) ∈ R[s]l×l is unimodular. The reason is that U(s) in
(2) may be easier to compute than W (s) in (3). In fact, we show
in Section 3 that U(s) has degree 1, i.e., it is a matrix pencil, and it
is obtained with cubic complexity. On the other hand, the inverse
W (s) = U(s)−1 may have higher degree and can only be obtained
with quartic complexity in general, see Section 4.

3. Regularization algorithm

In this section we provide a step by step procedure for the
derivation of the regularization of a descriptor system as in (2).

Initialization. Let [E, A, B] ∈ Σl,n,m be given.
Step 1. Compute a row compression S1 ∈ Ol such that S1B =

0
B2


, where B2 has full row rank r . Consider

S1[sE − A, −B] =


sE1 − A1 0
sE2 − A2 −B2


,

where sE1 − A1 ∈ R[s](l−r)×n, sE2 − A2 ∈ R[s]r×n.
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Step 2. Compute orthogonal S2 ∈ Ol−r , T2 ∈ On that take
sE1 − A1 into staircase form

S2(sE1 − A1)T2

=

sEη − Aη 0 0 0
∗ sE∞ − A∞ 0 0
∗ ∗ sEf − Af 0
∗ ∗ ∗ sEε − Aε

 ,

where

(i) Eη, Aη ∈ Rlη×nη , lη > nη , are such that rk (λEη − Aη) = nη and
rk Eη = nη;

(ii) E∞, A∞ ∈ Rn∞×n∞ , A∞ is invertible and A−1
∞

E∞ is nilpotent;
(iii) Ef , Af ∈ Rnf ×nf and Ef is invertible;
(iv) Eε, Aε ∈ Rlε×nε , lε < nε , are such that rk (λEε − Aε) = lε and

rk Eε = lε .

This form can be computed by a numerically stable algorithm,
see [16,14].

Step 3. Compute an embedding of the pencil sEη − Aη , i.e.,
K ∈ Rlη×(lη−nη) such that [K , sEη−Aη] is unimodular. A numerically
stable algorithm for the solution of this embedding problem using
the staircase form is given in [17]. Define the unimodular matrix

U1(s) := −


K sEη − Aη 0
0 ∗ sE∞ − A∞


∈ R[s](lη+n∞)×(lη+n∞)

and consider
sE − A −B

 
T2 0
0 Im


= S⊤

1


S⊤

2 0
0 Ir

 
U1(s) 0
0 Il−lη−n∞



×


0 0 0

−Inη+n∞
0 0

∗ sEf − Af 0
∗ ∗ sEε − Aε

∗ ∗ ∗


0
0
0
0

−B2


  

=:


sE − A −B



.

Step 4. Compute column compressions T3 ∈ Onε , V3 ∈ Om such
that

EεT3 = [Σ1, 0], B2V3 = [Σ2, 0],

where Σ1 ∈ Rlε×lε and Σ2 ∈ Rr×r are invertible. Consider


sE − A −B

  In−nε 0 0
0 T3 0
0 0 V3



=


0 0 0 0

−Inη+n∞ 0 0 0
sE31 − A31 sEf − Af 0 0
sE41 − A41 ∗ sΣ1 − A43 −A44
sE51 − A51 ∗ ∗ sE54 − A54


0 0
0 0
0 0
0 0

−Σ2 0


  

=:


sÊ − Â −B̂



.

Step 5. Define the unimodular matrix

U2(s) :=


Ilη−nη 0 0 0 0
0 Inη+n∞

0 0 0
0 −sE31 + A31 Inf 0 0
0 −sE41 + A41 0 Ilε 0
0 −sE51 + A51 0 0 Ir

 ∈ R[s]l×l.

Step 6. Compute a singular value decomposition of E54 ∈

Rr×(nε−lε), i.e., S4 ∈ Or , T4 ∈ Onε−lε such that

S4E54T4 =


Σ3 0
0 0


,

where Σ3 ∈ Rq×q is invertible. Compute, using QR factorization
(without pivoting), a column operation V4 ∈ Or such that

S4Σ2V4 =


Σ21 0
∗ Σ22


,

where Σ21 ∈ Rq×q, Σ22 ∈ R(r−q)×(r−q) are invertible. Then


sÊ − Â −B̂

 
In+lε−nε 0 0 0

0 T4 0 0
0 0 V4 0
0 0 0 Im−r

 = U2(s)


Il−r 0
0 S⊤

4



×



0 0 0 0 0
−Inη+n∞

0 0 0 0
0 sEf − Af 0 0 0
0 ∗ sΣ1 − A43 −Ã44 −Ã45

0 ∗ ∗ sΣ3 − Ã54 − Ã55

0 ∗ ∗ −Ã64 −Ã65



0 0 0
0 0 0
0 0 0
0 0 0

− Σ21 0 0
∗ −Σ22 0


  

=:


sẼ − Ã −B̃



.

Step 7. Define the permutation matrix

P :=


Inη+n∞+nf +lε+q 0 0 0 0

0 0 0 Inε−lε−q 0
0 0 Iq 0 0
0 Ir−q 0 0 0
0 0 0 0 Im−r

 ∈ On+m.

Then
sẼ − Ã −B̃


P

=


0 0 0 0 0

−Inη+n∞ 0 0 0 0
0 sEf −Af 0 0 0
0 ∗ sΣ1−A43 −Ã44 0
0 ∗ ∗ sΣ3−Ã54 0
0 ∗ ∗ −Ã64 −Σ22


0 0 0
0 0 0
0 0 0
0 −Ã45 0

−Σ21 −Ã55 0
∗ −Ã65 0


=:


0(lη−nη)×n̂ 0(lη−nη)×m
sEreg − Areg −Breg


where it should be noted that the system on the right hand side has
other dimensions of state space and input space than the systemon
the left hand side.

Theorem 3.1. Let [E, A, B] ∈ Σl,n,m and let [Ereg, Areg, Breg] ∈

Σn̂,n̂,m̂ be the result of the regularization algorithm. Then sEreg−Areg ∈

R[s]n̂×n̂ is regular and has index at most one.

Proof. Denote

sEreg − Areg

=


−Inη+n∞

0 0 0 0
0 sEf − Af 0 0 0
0 sE42 − A42 sΣ1 − A43 −Ã44 0
0 sE52 − A52 sE53 − A53 sΣ3 − Ã54 0
0 sE62 − A62 sE63 − A63 −Ã64 −Σ22


and observe that

det

sEreg − Areg


= (−1)nη+n∞+r−q det(Σ22) det(sEf − Af )

× det


sΣ1 − A43 −Ã44

sE53 − A53 sΣ3 − Ã54


,

which is a nonzero polynomial since


Σ1 0
E53 Σ3


is invertible. This

shows regularity of sEreg − Areg. To show that the index does not
exceed one, we use that by [18, Eq. (3.4)] the index of sEreg − Areg
is at most one if, and only if,

im Areg ⊆ im Ereg + Areg ker Ereg.
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It is a simple calculation that

ker Ereg = im

Inη+n∞
0

0 0
0 Ir−q


and hence

im Ereg + Areg ker Ereg = im

 0
Inf +lε+q

∗


+ im

Inη+n∞
0

0 0
0 Σ22


= Rl.

This shows that sEreg − Areg has index at most one. �

Note that the outcome of the regularization algorithm in
particular improves [12, Thm. 5.1], because here we show that the
additional state feedback used in [12] is not necessary. In other
words, we may always choose F = 0 in [12, Thm. 5.1].

4. Computational aspects

In this section we discuss the numerical reliability and the
computational speed of the regularization algorithm presented in
Section 3.

The computations in Steps 1 and 4–7 are certainly numerically
stable, since they are based on the singular value decomposition
and QR factorization (with pivoting) or they are mere definitions
using the data at hand. The staircase form in Step 2 can also be
computed by a numerically stable algorithm, see [16,14]. For the
computation of the unimodular embedding U1(s) in Step 3, we
propose to use the numerically stable algorithm developed in [17].

We analyze the computational complexity for each step of the
regularization algorithm separately:

Step 1. The computation of the row compression relies on
a QR factorization with pivoting [13], which has a
computational cost of O(m(l2 + m2)) flops in the worst
case according to [14]. Here, ‘‘flop’’ means floating point
operation, which is a scalar addition or multiplication.

Step 2. By [14] the computation of the staircase form is possible
with a cost of O(l2n) flops.

Step 3. According to [17] the computation of the embedding,
which also uses the staircase form, has a computational
cost of O(l(l2 + n2) + l2n) flops.

Step 4. The computation of the column compressions again use QR
factorization with pivoting and requires O(n(l2 + n2)) and
O(m(l2 + m2)) flops in the worst case, resp.

Step 5. U2(s) is obtained at no cost.
Step 6. The singular value decomposition has a cost of O(n(l2 +

n2)) flops in the worst case according to [13], and the QR
factorization of the invertible matrix S4Σ2 has a cost of
O(m3) flops.

Step 7. P is obtained at no cost.

Summarizing, the computational cost of the regularization
algorithm for a given system [E, A, B] ∈ Σl,n,m is

O

l2(l + n + m) + n2(l + n) + m3,

and hence the algorithm is cubic in the dimensions of the system.

Remark 4.1. If a relation of the form (3) is sought for the solution
of the regularization problem, then U(s) as in (2) computed by
the regularization algorithm needs to be inverted. First recall that
U(s) = sU1 + U2 ∈ R[s]l×l is a matrix pencil. For the inversion
of this pencil an algorithm is proposed in [17]. Again, the staircase
form is used for the computation of W (s) = U(s)−1, however the
inversion of a triangular matrix is required as well. This cannot
be avoided in general, see also the discussion in [17]. Hence,
the algorithm is numerically stable up to the feasibility of this
inversion problem.

Concerning computational complexity, the computation of
W (s) needs O(ql3) flops, where q = degW (s). As discussed in [17]
it is important to keep the degree q as small as possible. However,
even if q is chosen minimal, in the worst case it may be as large as
l−1 and hence the computation ofW (s) has quartic complexity in
general. Note that q is also the index of the pencil sU1 + U2, which
is regular and equivalent to a pencil of the form sN − I for some
nilpotent matrix N . This index is also revealed by the application
of the staircase form.

Remark 4.2. We like to stress that rank decisions are an important
issue in the computation of the regularization. The computation
of the staircase form, which is used in Steps 2 and 3 of the
regularization algorithm, involves a sequence of rank decisions,
which in case of ‘‘bad’’ data with very small singular values close
to the truncation tolerance, may lead to a wrong rank decision.
This problem is unavoidable in general. However, it is desirable to
keep the number of rank decisions as small as possible. Therefore,
depending on the application, it may be recommendable to use
condensed forms based on derivative arrays (see e.g. [11,3] and the
references therein) instead of the staircase form.

5. Comparison with [10]

In this section we provide a detailed comparison of our
regularization algorithmwith themethod proposed in [10]. At first
glance, a main difference is that we formulate the regularization
in terms of explicit equivalence transformations performed on
the pencil [sE − A, −B] and additional column permutations,
while in [10] a principle procedure is described. A detailed list of
advantages and disadvantages of the method in [10] compared to
our method is given below. After that we illustrate the difference
by means of a short example.

Advantages of the method by Campbell et al. [10]:

+ It only uses variable transformations when unavoidable; the
original variables are kept as long as possible.

+ It is made explicit where the physical background of the
considered system can be exploited.

+ Regularization of the initial conditions can be done using the
original state and input variables.

+ Fewer rank decisions are required in general.1

Disadvantages of the method by Campbell et al. [10]:

- The transformations leading to a strangeness free system are no
equivalence transformations and not reversible in general.

- No explicit transformations for the reinterpretation of variables
are provided. The decision for the choice of variables is left to
the user and should ‘‘depend on the physical background of the
system’’.

- During the reinterpretation it is possible that variables that
are differentiated are selected as inputs. This requires the
introduction of new variables, e.g. ũ = u̇.

- The application of feedback is necessary in general.
- The result of the regularizationmethod is not unique in general
as it depends on the choice of variables performed by the user.

- Computational complexity of the method is not yet investi-
gated.

1 However, if condensed forms are used in our regularization algorithm instead
of the staircase form, the number of rank decisions may be equally small,
cf. Remark 4.2.
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Example 5.1. We illustrate the different behavior of the methods
by means of the system (1) with

E =


1 1
0 0


, A =


0 0
0 0


, B =


0
1


.

Method by Campbell et al. [10]: Since the system (in the variables
x and u) is strangeness free (in the sense of [10], see also [3]) with
d = 1 and a = 1, a reinterpretation of variables does not take
place. In the last step, a feedback is applied to the system, i.e., with
F = [0, 1] the closed-loop system

E =


1 1
0 0


, A + BF =


0 0
0 1


,

is constructed and clearly sE − (A + BF) is regular with index at
most one. We have
sEreg − Areg −Breg


=


sE − (A + BF) −B


=


s s 0
0 −1 −1


.

Our method: In Step 1 we have S1 = I2 and sE1 − A1 = [s, s]. For
the staircase form in Step 2 we find S2 = [1] and T2 =


1 −1
0 1


and hence

S2(sE1 − A1)T2 = [s, 0],

which is in staircase form with lη = nη = n∞ = 0, nf = 1
and Ef = [1], Af = [0], and lε = 0, nε = 1, i.e., Eε, Aε ∈ R0×1.
Steps 3–5 are not necessary and in Step 6 we find q = 0 because
sE54 − A54 = [0]. Furthermore, S4 = T4 = [1] and Σ22 = [1], thus
sẼ − Ã −B̃


=


s 0 0
0 0 −1


.

In Step 7 we choose

P =

1 0 0
0 0 1
0 1 0



and hence the regularization is
sEreg − Areg −Breg


=


sE − A −B

 
T2 0
0 1


P =


s 0 0
0 −1 0


.

We clearly see that the results of the respective regularization pro-
cedure are different; there are several possibilities for the regular-
ization in general, depending on the allowed transformations. Fur-
thermore, it can be seen that the method by Campbell et al. [10]
requires feedback, while we exclude the class of feedback trans-
formations in our method. In the present paper we have shown
that it is always possible to avoid feedback. In the above example,
the number of differential variables (d = 1) and the number of al-
gebraic variables (a = 1) sum up to the number of state variables
(n = 2) and hence themethod by Campbell et al. [10] does not rec-
ognize that a reinterpretation of variables would be appropriate.

Finally, we like to stress, and this is shown by the above
example, that state space and input space transformations are
unavoidable for the regularization in general, i.e., it is not possible
to choose T = I and V = I in Problem 2.3. In [10] this is avoided, if
possible, by augmenting the state space as explained in the list of
disadvantages.
6. Numerical experiments

In this section we give numerical experiments illustrating the
regularization algorithmpresented in Section 3. For the implemen-
tation of the regularization algorithm in Matlab we used a simpli-
fied variant of the staircase algorithm described in [16].

For our example the original system [E, A, B] ∈ Σ10,9,2 was
based on the data
sE0 − A0 B0



=



−1 0 0 0 0 0 0 0 0 0 0
s −1 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0
0 s 0 0 0 0 0 0 0 0 0
0 0 s 0 0 0 0 0 0 0 0
0 0 0 s − 2 0 0 0 0 0 0 0
0 0 0 0 s −1 0 0 0 0 0
0 0 0 0 0 s −2 0 0 0 0
0 0 0 0 0 0 s −3 0 6 0
0 0 0 0 0 0 0 −4 −5 7 8


to which we applied random orthogonal transformations
sE − A B


:=


Ql · (sE0 − A0) · Qr Ql · B0 · Qb


in order to make the system dense and ‘‘hide’’ the Kronecker
structure.

Note that the pencil

sE0 − A0 B0


is in staircase form and

has a full column rank part (η-block) of dimension 5 × 3, an ODE
part (f -block) of dimension 1 × 1, and a full row rank part (ε-
block) of dimension 4 × 7 (including the columns of B). We used
a tolerance of 100 ∗ ϵ where ϵ is the machine accuracy (≈10−16

for our machine running with IEEE double precision standard).
We ran our regularization algorithm to see if we recover correctly
the different substructures. The result of our algorithm is given in
Fig. 1, with the embedded constant columns in front in gray color.
Whenever computed datawerewithin tolerance level of an integer
value, we rounded it to make the result more readable. Note that
this was obtained by orthogonal transformations only.

The leading 5×5 submatrix in Fig. 1 is clearly unimodular since
it can be permuted to a block lower triangularmatrixwith constant
invertible diagonal blocks:

1 0 0 0 0
0 −1 0 0 0

0.963s 0.268s 0.188 −0.982 0
0.268s −0.963s 0.982 0.188 0

0 0 0 −s 1

 .

The new trailing 5× 5 submatrix in Fig. 1 is regular and of index at
most 1 as is easily seen from its upper triangular form
s − 2 0 0 0 0
0 −s −1 0 0
0 0 s −2 0
0 0 0 s 0
0 0 0 0 −8

 .

The Matlab codes can be found in the supplementary material to
the present article (see Appendix A).

7. Conclusion

In the present paper we have presented a numerically sta-
ble algorithm for the computation of the regularization of a lin-
ear descriptor system by a combination of behavioral equivalence
transformations, orthogonal state-space and input-space transfor-
mations and a permutation of variables. The latter is necessary
since the initial choice of variables may not have been appropriate
within the framework of the behavioral approach. A consequence
of our algorithm is that the application of additional state feedback
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Fig. 1. Computed transformed coefficient matrices with ϵ-rounding to the nearest integer. The first two columns (colored in gray) correspond to the embedding computed
in Step 3 and do not belong to the regularization.
used in earlier publications [10,12] is not necessary. We show that
the regularization algorithm requires O(p3) operations, where p is
the largest dimension of the descriptor system. A detailed compar-
ison with the method proposed in [10] as well as a numerical ex-
ample are provided.
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