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Abstract

Int
of a product of three matiices. We show (hat our algorithne is numeric Hy desiralde in

s paper, we propose a new algorithin for computing a singnlar valne ¢ ‘compaosition

Lhat all relevant residual elements will be numerically s

1. Introduction

1w value decomposition (SVD) of a product of matri-

The problem of computing the sing

ces ocenrs in many applications, e, weighted least squares, canonical correlations, linear
prediction, and balanced realization (cf. Twerbring and Luk [1], Fernando and Hammar

fing {7], and Heath, Laub, Paige and Ward [3]). Wi [4] Bwerboing and Lok proposed 1o
g ' ’ ' £ 5 prog

two steps, The first involves a reduction of all matrices 1o
SV of a prod

of utmost importance that the three matnres be ke

perform the computation i

of three matiiees. 1t s

I the sceond,

upper triangular fonms, a

galan, so that an ellicient,
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implicit Jacohi-SVD method can be used. In addition, the method is casily amenable to
parallel computing (Fwerbring and Luk [5]). There are many ways to preserve the (ri-
angular property of Uhe individual matrices. Fwerbring {3] compared varions approaches
and showed why each has its own strengths and weaknesses. We propose here a new
algorithim for the product SV'D problem, and we prove that our algorithim is nnerically

acenrate in that all the relevant residual elements will be numerically simall.

This paper is organized as follows. In Seclion 2 we describe a generalization of the

SV to explain how the product SV problem mav anse, and in Section 3 we present
our new algorithm. We give a criterion Tor numerical stalality in Section Fand o detailed
v Section 6

crror analysis in Section 5 Finally, we discuss a few numerical examples

2. HIK Singular Value Decomposition

Van Loan [12] first generalized the SVD. Recently, there has heen much interest in fuither
generalizations; see, e.g. De Moor and Golub [2] and Faverbring and Luk [1]. In this
seclion, we present the details of one such generahization Lo explain how the product
SV problem may arise. We call our generalization the 1K singular value decomposition
(THS-SVDY 3], and it concerns the simmltancous diagonalization of tiree matrices. Given
three real matrices A (n x p), I (n x ), and K (p x p), where [ and K are synimelric
and positive semi-delinite and

rank(/l) =r, rank(N)=13s, and r>s,

) -

our aim is to find an n x » transformation Y and a p x s transformation 7, such that

yvooN (1o oaN(y o\ (1 D )
0 z) \AT w)j\o z) \D" 1) (2.

where the matrix D is diagonal. When [l = [, and K = 1, we get the famibiar singnlar

e, when IV

valne decomposition of the matrix A, One possible application when p =

is nonsingular, is weighted least squares:

| AT =0 = min

2

Pl =min.
The problem sunplifies to

I Dy - ;x_ =min sl [ 7 fla= ming,

where d = YT which can be easily solved by standard means. The solution vector 7 is

then given by @ = Zy.

'

To compute the THIC-SVD | we starl by reducing the two maltrices [ and K. Since they

are both symmetric and semi-definite, we can (ind Lheir square rools as upper Lrapezoidal

mattices, viz., Y2 (r ) and WY (s x p), respectively, satislying

=S Y and K= (KT
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Using pseuda-inverses, we simplily the two-by-two block matrix to one with identity ma

trices in the diagonal positions:

a1 AN I, B o
- ” y=1" 2.2
A AT K pto (2.2)
where

NIUELN 0

= 0 :/,_\J.
and .

D= (N Ay (23)

Next, we ainn Lo diagonalize the v > s matiix Bowithout disturbing the diagonal ydentity
blocks, a feat accomplished by an SVD of 13, 1.,

B=usy’,
:._::.:QT.X;.,::_1A.ﬁx.i..:».3:..&:::_..:___Mu?.xim.,.._:.._x:_:__. ._,__:;.,.f,,:_,__

and Z for the HRK-SVID) are given in product form by

transformations Y’
Vo= (YU and 7= (W)Y (2.1)

to an SVD of a prodact of three matnces, Details are

Henee the given problem simphific
given in [6] on how the malrix product /3 can be redueed to one where all three faciors
lave equad dimensions (here s x s) and where the pseado-inverses ace replaced by inverses.

Our job thenis to find an SV of ¢, where
(=G (2.5)

and I, Fand (are all s x s and apper triangular. For obvious numerical teasons, we
wish lo avoid finding s x s inverses and forming s x s matrix products. The trick is Lo
utilize a Jacobi-SVI) method that ha

Then we need to work with only 2 x 2 submatrices. By applying the transformations and

Leen developed for triangnlar mateices [9], 1],

dala permutations in some special order, viz., the so-called onter rotations and odd-cven

ordering [9], we can guarantee convergence of the overalb algorithm {ra].

To be specific, Tet £, F, and (7 denote the three 2 <2 submatrices

extracted from

the ith and (1 4 1)st rows and colunmms of the matnices L1 and () respectively, Let

" denole the corresponding subratrix of (. Since the watiices are upper briangular, i

follows that ¢ can be lound directly as

(2.6)

For the purpose of finding rotations to diagonahize ¢ we can further sinphify (2.6) by
replacing each inverse by an adjoint (abbrev, adj), an approach advocated in {11 for the

generalized singular alue decomposition (GSVD). For example, if

a
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then
. -
adj() = [7 77
0 «

We then ind rotations to diagonalize the matrix product:

C = adj{F)F adj(G) .

e from here on, we can consider the SV problem for a product of thice 2 x 2 npper

lude matrix inverses

matitces without any need tog

3. New Algorithm

In this section, we propose a new algorithm for the prodoct SV problem. O adgorithim

can be extended to a product of a larger mber of matices. Suppose that the three

T.:

yper triangular imatrices are

1= ay; b
R N R A
- a; b,
PTG Ay )
1y = ay by
BT dy |-

We call the produet
A= A Ay

atl

a b

A=lg

Our objective is to find four orthogonal matrices Qy, (Q7, @y, Q4 such that

t 1 ! O
A= QAQT = M e (3.1)
Coy
A= QAQT, = w_ ol (3.2)

for ¢ = 1,2,3. The two equations (3.1) and (3.2) imply that

v <

A= ALY

| Tike to Gind four transformations QQy, (&4, Q3 and O, to zevo out five

lements, namely, the olf-diagonal elements of A and the sub-diagonal clements of Ay, A,

In words, we wot

aned Ay The extra reqm
ihealty if not tre
U properties (3.1)

ment, although mathematically feasible, may canse numerieal

ed with care. The goal of this paper is to develop an algonth

Crrors.

nd (3.2) will he satislied except for very sm
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Our tool for the compultation is a transformaton discussed by Chatlier, Vanbegin, and

Van Dooren (1)

N [

= 33
. @ —c s/) (39)
where ¢ 4 57 = 1. We may regard the transformation as a permuted teflection:
c s 0 1
Q=
—c 10
While each transformation (2, 1s cd by

JHZ]Q_..::_.A_H
we also associate (; with the tangent

t; = tan g, .

Given t;, we can casily recover ¢; and s; using the relations

1
q_Hl/\ﬂ

In general, consider the result of applying the left and right transformations p and @,

and

c= e, (3.4)

lo a 2 x 2 upper tnangular matrix A:

, T a S a b s, ¢ T "y e
A= QAQ, = ¢ d) T\ e w 0 d - s ) 7 (35)
We can derive f[rom (3.5) these two relations:
¢ = e (—at, +dl; = by, (3.6a)
U = cic (—aly -+ dl, + biit,) (3.6h)

"and ¥ be zeros define two

where {; = tan 0; and ¢, = tan d,. The postulates that both ¢
conditions on {; and {, so that they can be delermined explicitly, whereas the postulate
that ¢’ be zero defines a condition that relates 0; Lo 0, so that one can be computed if the

other is known.

For the case of exposition, assume for now that abd # 0; this condition will be removed
in Section 5.2. This assumplion unplies that ¢, # 0, and so the postulate that " = 0 in
(3.6a) becomes

—al, +dly - b=0. (3.6¢)

For the SVD problem, both ¢’ and §" are zeros, and we can nse (3.60) to reduce (3.6b) 1o

an cquation cither in g

, lN ¢, . .
b =col— )4 + o —-1], (3.72)
a
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where
Vosd? =t :
gp = — -b),
DY AN
orin
ah
V=ce = ){2+to,—1]),
d
where .
| L~ = :u
g, = — | ~—— 1 b

V{3 Ta) we pel

I from (3.7h) we get

(24 20,0, -1 =0.

ations (3.7¢) and (3.7d) using these for

opose Lo solve the two e

b ’
r—b
o = )
2d
r+b
QV = —0 1
2a
1
U = - )
o+ m_m:?\v,\Qm + 1
|

jon arillunetic, either one of a; and o, can be computed with

1 A.;:A.»

whar, if

_:/..q _:,..A._.f.m:_T ___ _.:_‘_
sign(r) = —sign(h) |

produce a very accurate oy, whereas if

ign(r) = sign{b),

with the same relative acenracy, So, let - # 0. Note that since

)

r o= T\u - :J\b

ition (3.94) is equivalent to the ineqnality:

e o

_:_ >

di,

H

(3.8¢)

v higher

(3.9a)

(3.91)

en (3.8¢) will produce a very precise .. [0+ = 0, then both ¢ and £, will be computed
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anel (3.9h) Lo
Ja} <|d]| . (3.100)

Now, (3.10a)

wphies that

lor] > |

and so from (3.8d) and (3.8¢) that

We

Lenvma 301, Let abdr o 0. <)) Conversely,

bal<|d ], then | 6] >]t . ]

naize,

Thus, our algorithm will always choose the s ler angular rotation. To s

do a two-stage computation. In the first stage, we caleulate the product b explicitly:
4= gy, (3.11a)

b= ayayly + ahydy 4 bydydy (1)

o = dddydy (3.11¢)

We nse (3.8a) to calculate ¢, and then compute cither ap or o, depending on the signs of
roand b, Ilence we oblain cither Qy or Q4. In the second stage we nse the relation (3.6¢)

I Vgt

Lo compule the remaining transflormations. Suppose that {4 is know

s forward substitution

generated byt

L= b
ligy = " (3.12)

a;

backwatrd substitution

Ontl

other hand, il £ is known, then ty, G, 1 are generated byt

iy D
BT L (3.121)
d

4. Criterion for Numerical Stability

I this paper, unless otherwise stated, we use ( vector @ nalinx 2-norms:

ality, that

We also assuime, without loss of ge

f| A

=l Al = A =1
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Recall that AY, A%, Ay, and A" denote the four matrices Ay, Ay, Ay, a d A, respectively,

alter the equivalence transformations as defined in (3.1) and (3.2) have heen performed.
Let ¢ denote the relative precision of the floating-point arithinetic, and let /Y, AL, A, and

1 ’

A’ represent the computed Ay, Ay, Ay, and A’y respectively. We wish A’ to be a diagonal

matrix:
a 0
I3 ’ t ’
= ATA A = o o (4.1a)
Anst tiat, given the exactupper tnang ilar matrices =12 3 wewish to compm

i Hoating-point arnithmetic the product
A= ::H A (1.1h)

Becanse of roundmg crrors, we can hope only for

- a b
= i 1.2
\— O «\\ L A_ .L
where B satisfies the relation:
. 3
P p=00 [T HAd) . (1.2h)
=1

Sl € 1. Thus, the relative error in A" may be very

is Lhe case even w

T AL A

large. A more desirable resalt would be Lo get

en |

= C?v s A‘_.uav

and the Tollowing relation for b

[V )= O(c || A\ 54 (1.31)

is difficnlt to satisly (1.3a) and (1.3h), unless the element b ol /4 can be

computed with a high relative accuracy. This scems to be diflicull Lo achieve, as a

However,

operalions are performed in the sawe floaling-point arithmetic, and hence the computed
b may suffer from cancellations.  [ence (4.2b) defines the maximal relative numetrical
accuracy feasible for the implicit product SVI) problem.  We shall show in the next

section, viz., Theorem 5.4, that condition (1.2h) will be salisfied.

dividual

Tn addition to (1.2b), we also wish Lo preserve the triangularity of the

matrices Al

, (ab ol
A=t a )

me that orthogonal transformations Q; and Q. satislying

for 1+ = 1,2,3. Now, as:
(3.2) exactly are given, and that we compute the product Q_\#_C.ﬁ_ using finite precision

arithmetic. Our best hope is that

; at W
A= - 1.7
=0 0 (1)
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with
s
[e1=0(c | All),
for 1 = 1,2,3. We shall show in the next section, viz., Theorem 5.2, that this relatic
hold. ’

To smmmarize, we shall prove that, using onr new product SV algorithm, te four

computed matrices Ay, A4 Ajy, and A7 will satisly conditions (4.2b) and (1.1h), which

e precision com

provide the maximal numerical accuracy that is feasible in the

Lion

5. Dackward Error Analysis

We assume that

In this section, we present a backward error analysis of onr computatic

' stead of

symbol. For example,

our initial parameters are perturbed, and use the “ha

farther

mitial values a, b and d, we have the perturbed values a, b and d. We ass
that exact arithinetic will be performed by using these perturbed initial values. We use

the “tlde” symbol for the exact values based on the perturbed data. For example, 7w

denote the exact result using formula (3.8a) for the pertirhed data a, band d.

The symbol Ii{a) will be used to denote the computed result of the parameter a.
our crror analysis, we shall adopt a convention that involves a liberal use of Greek fetters.
For example, by @ we mean a relative perturhation of an absolute magnitude not greater
than ¢, where ¢ denoles the machine precision. Al terms of order ¢ or ligher will be
ignored.

We start our procedure by computing clements of the product inatrix . For Lhe

clements of the computed product matrix A we have

a:= (a) = ayazay(1l + 20,), (5.
() = dydyedy (1 28,) (5.1h)
b= () = ayayba(l 4 481) 4 aybydy(V 4 43,) 4 bidady (11 343,) (5.1¢)

where, according Lo our convenlion, the parameters o, &, 4y, Ay, and gy ave all quantities

whose absolute values are bounded by e, Our analysis is divided into two parts. Tn Section

5.1, we consider a regular case where all clements of the computed product matrix are

numerically significant with respect to the maximal in magnitude element, ie.,
min( @, | 0], [d])>cmax({al,[b].1d]). (5.2)

In Scclion 5.2, we consider special cases where at least one element of the computed LA s

mnerically insignificant,

5.1. Regular Case

In this subscction, we assume that »b < 0, i.c., sign(r) = —sign(b). Virst, we show that

equation (3.7¢) will he solved very accurately. Conversely, il b > 0, then we can prove

in a similar fashion that equation (3.7d) can be solved very accurately.
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Lemma 5.1, Let £, and £, be the exact and computed solutior

, respectively, of

ration (1.7¢) with data M:F d. Morcover, Jel &, 5, and &5 be the exact and the
compuled cosines and sines using (3.4) with the tangent value £ Then
L =L+ 10¢), (5.%a)

where | oo | <o g | < ¢ and

es nsing (3.8a) and (3.8h) wi

{y, we gel

Proof. Lot 7 a, he exaet

the computed valnes of 7L g

Ezm¥isv

= {F) = — (14 deg) = 7L+ 1¢),
)
by 1(5,) = =6 (14 0),
iy o= 1(0,) =
Simnilarly, we can use the formulas in (3.4) to prove relat 3b) and (5.3¢) for & and
3. O
In words, Lenuma 5.1 stales thalt the procedure (3.8a) (3.8¢) for solving (3.7

imerically stable in the forward sense. Nole that, duc to the way they are defined, the

rameters U, ¢ and 3 may nol satisly (3.-1). Three lemmas follow | leading to onr main

result of Theor

Lemima 5.2, Let 6, and {; be exactl values corresponding to given data a, b and d,

et £y o= :2,;. Delfine a residual rp by

W,
ryo= —(f R 2008, = 1) (!
i

“

3
Ir ] < \,‘ZHH A,

Ny is a positive constant,

Proof.  Subslitute {; into equation (3.7¢) and define a corresponding e

Using Lemima 5.1, we gt
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since from (3.8d) we have | [, ] <tand _m_m_ | < W he desived residual is given by
bd
R LT Wl LY
u
and so ‘
[ri] < 30cq | b} (5.7)

from (5.6) and (3. t0a) Finally, we use (5 1¢) on b to get

3
Piv | < e : {1 I
=1
]
Lemma 5.3, The recurvence (3.12a) yields &y, 1= 1,2,3,
a,l, \a:_;. \.: =0, (5.84a)
with
iy = (120,
b=,
do=d 1+ &) (5.8)

Proof.  From (3.12a) the compnted Iy, satisfies the relation

fopn o=l )) = ——2 1 (5.9)

Rewriting the relation leads to

Wiy = by (5.10)

), and b, := b, we obtain the desied resulls,

0

Defining d; = d (1 +¢,), a =

vd € satisfy exactly

Lemma 5.4, The computed Hollowing relation:

aly —di, +h=0, (5.11)

where

= agaguy(l -2

d = dydydy (1
Yobay by (V425004 &0) -+ bydpdy (1 1 ¢,

b= ayaghy (1 +2p (142
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I'his lemma is a direct consequence of Lhe preceding one.

Proof.
Suppose that the given tangent values are £ and (4. Let ¢, §;, &
PI g g 1
’

Theorem 5.1.
i Lhal is,

and iy be the corresponding exact cosine and sine values. Also, let & and & denote the
;
(5.13)

corresponding exact values of ¢ and ¥, respectively
¢’ (-ale+ diy — 1),

1
R

b= 3«.;1:? -4 .:. -4 N.L_N;

Then

| ¢ < IWye _M | A,
=1
(H.16)

J
(V<R [T AT,

e Sy and Iy are some positive conslauls.

First, from Lemma 5.4 we gel

Proof.
& = df(—aly b diy = b) k(A = dl, + D)) = (a—a
g (5.1) and (5.12), we prove Lhe inequality
- - J
IS KNe(al +1d] 4+ 1bp+ b)) <K T A A7)
i=1
Secomd, rewrile (5.1) as
|- S - — | S - .
ry = WT;\W R :TT —al - @uv —db] = <[(dt; = b)(bty + d) — i’ (5.18)
a a
tom (5.13) we get
1 - - _ ¢’
(diy =By =+ =
Iy

a

Substituting (5.19) into (5.18) and rearranging lerms, we get
_ . [ & (b -4 d
—ily A di b =y — A. L ) ,
Y
and so o B
- . m\QL_ -t LV
Vo= c¢pcyry — -
a
n (3.8d} we get
. I
[hoo| < 7

~
|

B
v

and from (3.8b) we get

to
-

An Accurate Product SV Algorithm

L follows that N
_Nl A a\ (« .w_v
| < i < o
since | d | <la{ fom(3.10a). Finally, recall from (5.3) that {; = {(1 1 100,), and use
(5.20) to gel )
. 3
[V1strl w20e 1< M I A (522)
=1
()

rthe _:23_.

s f::_,_.._ 1

We now wish to justify setting the ¢
5.3 we get that for @ =

far? Irom Lemina
~ado b dd, =0
(H.21)

=a(l —2h), d o= d(1 —¢)

wilh
a,

pairs ¢, satisly (; = §,/¢é,, for 1

and 3,

Lel the cosine and sine

derive Lhat

by showing that | ¢! | corresponds to relative, elementwise perturbation of A7 of the order

of ¢
1,2, the matnx A

Theorem 5.2, Tori =
(2,1) clement ¢l-salisfics the inequalily
el 3 (5
Proof. Using (5.25) and (5.26), we gel
e= (1) 3p)[=830a (b ) K88 d (01 ) = &diab] . (5.28)

2§00 8¢ ._;..A_ P (-

=k

Substituting (5.241) into (5.28), we oblain

éh= (3 Spao=es a4 e ) -

From (5.23) we find that

1,008, 4y
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Henee (5.29) simplihies to

&= (14 )1 P )= 8d i (v = 200) 4 &g adi (o - 8]

RS IR D
Ty
0
) = .
\ (v - $),
—_-.__-.
<A
completing our proof. 0

In swmmary, we have proved two results using backward crvor analysis. Virst, the
compnted matrix product A’ is almost diagonal in that incqualities (5.15) and (5.16)
hoth hold. Seeond, we can salely set cach computed matrix AT =1,23 1o a tuangular
form becanse (5.27) is valid. As a final note, even though we have assuroed that v <0,

we can casily prove similar resulls for the case where b 2 0.

5.2. Special Cases

In Uhis subsection, we assume that inequality (5.2) s violated. To be specific, define
' I ) { ,

ye=min(lal, |b], |d]), (5.30)
I'i=max(|al|, _w_ , _L.: (h.31)

Henee
vy <l (5.32)

i.c., one of the clements of A is numerically insignificant. This siteation require

i modili-
cations Lo our algorithim, since the proposed formulas may hreak down. In paticudar, we

hall not solve a qnadratlic equalion Lo determine either I, or by, Instead, we set one ol Lhe

(wo Langents to zero and altempt to compute all the other tangents ltom the recuriences.

We divide the special cases into Uirce groups, one where
[a| +]d[#0 and [h[#0, (5.33)

one where

al tidi=0 and | b [#0, (5.31)

and the last where

[bf=0. (5.35)
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First, assime that (5.33) holds. Hence al least one, hut not all, of the Tollowing,
conditions hold:
\% = \y )\ = or )\ = -N .

We shall sel { Lo zero it
la] >|d}, . (5.36)

and sel {4 to zevo il
Ja ] < | dy (H.47)
Thas, the sizes of the dingonal clements of A wll he compared to decnde whih one of

{, or 1y should be zevoed, Without foss of generahty, assume that (5 136) holils: hence,

[, becomes the reference angle. So, {y, Gy, and Ly ave computed liom recnnence (3 120),
and relation (5.11) will be satisfied. Forther, sinee £ = 000t Tollows that £, - bfa
Substituting these vahies into (5.13) and (5.11), we can verily that Theorem 001 holds.
Similatly, Theorem 5.2 follows ftom the Tact that cquation (5.23) will be satished. We
note thal itis very important to decide which reference angle to choose, even for the case
when b is nnmerically zeto. At first, the choice of teference angle may seem arbitvary for
a Usimall” by sinee cither £ or £y can be set to zero. However, as will be lustrated in
Example 6.1, an unnecessarily large error may occur unless we pay pecial care.

3

Second, assume thas that (5.31) holds, Then, at least one of the a's equals zero and

al least one of the d)'s also equals zero, for 1,7 = 1,2,3. A solution is to permute cither
the tows or the colmus, in order to ensure that the transformed producet is diagonal and
that the data are reordered. Henee for this case, we may scl the two extieme tangents
{I1, 1) to {0, 00}, resulting in one transformation matrix being the identity and the othes
a ninely degree rotation. To be specifie, consider the case where one or more a,'s equal
zoro. 1May =0, set [} = 0and set {5 =iy = {; = co. lay £ 0 and ay =0, set ) =10,
..o:::::::.c:___:.::.:..._2_:.2:2.:..:.:_:_.f,.;‘..u..?Hnd.<___:. :._:.i:rﬁ..:{._m:._:,:

[y and [y via the recurrence schieme, and

ayaz # 0 and ay = 0. Againset {j =0, ¢ fenlat
set Iy = 0o, Note that we may also choose to determine the tangenls using the values ol
the d;'s. In an actual implementation, we may decide to interleave the tests on a, and d,

so as Lo minimize work; ve. il @y # 0, then Lest to see whethier dy # 0 and so Toith,

Third, assume that (5.35) holds. We need to acconnt for the faet that we are really
solving an n x n problem. Althongh the 2 x 2 sabproblem is alicady numerically diagonal,
itis not snfllicient to set §y, = {; = oo, which will Teave the 2 x 2 product unchanged. The
n ox nodata need to be reordered, calling Tor iy = £, = 0; i, the allected rows and
colurmms will be pernited. Ynfortunately, while applying the symmetric permutation,
the triangular structures of hoth Ay and Ay are destroyed. Therelore, 1, and 1y are

determined from the recarrences.

6. Numerical Examples

In this seelion, we present a few exaniples to show why we liave paid so mmch attention to

special cases and why we think we have developed a supenor numerical scheme. Thie hiest
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nerical

example illustrates how a different reference angle can lead Lo a much ror
crror.
Example 6.1.  Consider the case when [ 0] s numerically “sinall”. For instance,
let .
\ a b 107 107"
A= =
0 d 0 1
| prodi | vodiagonal and thos the diagonal clements need o he per-
od On flace, 1t seems hike erther £y or Ly can be set 1o ze1ro 5 {y s
(ted as the reference angle. Phien the recurrence formula ds
~_ -0
g b
lf = —— = 10"".
a

On the othier hand, chivosing I, as the reference angle resulls in Lhe answers

~‘_ —0 )

[ = ———=-10""

Taking into account limited word fength, we find that the first scheme giv the updated
product
0 | 107 —1 I 1o-7
i & A . =11{ ¢, 1 o ,
-1 0 1 10" 0 —-10 410
W /1 + 1077 On the other hand, the second choice yields
e -1 ! (0 Y (! 10-%
S Y S [ AR U I VAR WU [ A
where & = _\(\ 10730 Hence, il Ja | <} d |, we should set I, to zero and compute {
fron recurrence ?:‘ la. ]
A seemingly obvious way to solve the product SVD problem is to first calendate l
[, via an SVD of A, and then determine & and fy Lo restore the bty of Q4

ar from mathematical

(21)

"
abion

s anal

and AQT The transformed nidd

ationships. ludeed, we enforce its triangularity by “truncating”

x A, mnst be triang
ment to

he next example show how this scheme may give rise to a large “tem rror.

7010,

Example 6.2, Assume Lhat the given dala malrices are

. 0.21131896972656  0.750872- 3
= 0 0008728027 ._:“:.1 :
- 0800616606 11531 0.45243835119219
e 0 0.80719511718750 ) °

i
|
!
i

An Accware Product SVD Algoritun

and

Ay =

0

They generate the maknix product

o (0.17109368671663 0171093686657
0 0.705 - 10-"?

N
!

d o, from by, cquation (3 124)
updated data

We nse equation (3 8d) to ealeulate {,, cquation {3 6) 1o 6
find ty lrom f,, doequation (3.120) to determ

Uiices hecome

¢y frome (0 1

" 00233850233086 0 003 10801509370
/ = - . N i}
! 0 0.783708962000965

- 0.7068026372618 1 0.39635737357002
T (0.900558 - 10°%  0.920990 11351931 )
. 0301512 1072 1.AT1T720663028¢
: 0 0661110361

Before the (2, 1) element of A% s set Lo zevo, the matrix produet

e i sy 0.498 - 10-12 (.87 -107 '
A= AL AL AL = 5 _

0201077 0.20196301214092

ich is numerically diagonal. Now, we need Lo commit an error of O(07%) 1 tiancating

Ay to a triangular matrix, say /5. The actual matnix productis thus

W g = (0198107 0.101108 - 1077
T = 0 0.21196300237621 )

e matiix product has

which is not quite diagonal. ITlence, the ofl-diagonal mass of

increased substantially as a result of truncation of the middle matnx. J

strate the need for choo: ~correcl i
ng it Method Ree

starts the recurrence from £y, calling it Method Recur Left.

nally, we wish to

shall compare our algorithm, ca against an approach that always

ich are of (ull rank hut are

zed s of U

sxample 6.3, We use § x § data matrices, all of w

possibly ill-conditioned. The product matrix € to be form

G

Upon convergence, we have found orthogonal transformations, say U and V, such that

Ut raW = D
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where 1) is a diagonal matrix. We choose lo compare accuracy based on the error term

| 1~ EUDVTG

Lo 8 x 8 matrix inve

on needs to be performed. To justily our promotion of

cit algorithms, we include a thitd scheme which involves an SV of the explicitly

we matrix product. We refer to this approach as Mcthod xphcit.

st of Lests. AW

ber of the matns A with respect to the 2 nonm
b e

matix [ stays constant thi

(M) to denote the
h

In Table 1, we flom o

B

noowe fix

midd

~_ wee _

ase the value of v (1))

test sel:

(

1 and  &(F) =109

We ran cach algorithim for six sweeps and assumed convergence.

than Method
Paplicit, Indeed, it appears that the crrors of the former method are proportional to
w{(17), wh
vise to Linge errors. On close analysis, one finds that the i to correetly treat
ki fost in Urat

nontrivial numerical quantity is moved between the diagonal and the strictly vpper

As expected, we find that Method Recur provides more accurate resy

 Lhose for the latter to &(C). Perhaps surprisingly, Method Recur-Lelt gives

method fa

oblems of 1

2ox 2

portrayed i BExample 6.1. In [act, convergence is

triangnlar parts of O Tor a detailed discussion of this phenomenon, sce [3]. [

Table 1. Product SVD: Frror Comparison

| - EUDVTC

K( 1)) x(C) Recur Recur-Lelt Fxplicit
1.00- 1042 Slptor 5.22- 1071 5881071 3.90 -0
Loo- 1ot 56910198 5.83- 107" 9610 1.00 - 1o~ 10

391070
G.31-10°"?

1.00 - 1014° 5691042 5.10-10°" 9.50 - 1079
1.00- 1048 1.05 . 10416 381079 G.27 - 10t
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