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PLACING ZEROES
AND THE KRONECKER
CANONICAL FOrRM*

Daniel L. Boley' and Paul Van Dooren?

Abstract. Given a linear time-invariant control system. it is well known that the trans-
mission zeroes are the generalized eigenvalues of a matrix pencil. Adding outputs to place
additional zeroes is equivalent to appending rows to this pencil to place new generalized
eigenvalues. Adding inputs is likewise equivalent to appending columns. Since both prob-
lems are dual to each other, in this paper we only show how to choose the new rows to place
the new zeroes in any desired locations. The process involves the extraction of the individual
right Kronecker blocks of the pencil, accomplished entirely with unitary transformations. In
particular, when adding one new output, i.e., appending a single row, the maximum number
of new zeroes that can be placed is exactly the largest right Kronecker index.

1. Introduction

The placement of transmission of zeroes via synthesis of new outputs and/or inputs
has been studied from the point of view of system theory, and certain algorithms
have beendeveloped [8], [9],[1], [11]. As for the assignment of zeroes via feedback
design, the assignment of zeroes via output synthesis can be analyzed in terms of
the theory of matrix pencils, so that a complete characterization of the number
of zeroes that can be placed in any given case can be obtained. In [8], [9] an
algorithm to synthesize outputs to assign the zeroes was proposed based on the
desired form of the transfer function. In {1], a method was proposed to assign
zeroes for a SISO system as well as to assign zeroes to the input/output maps from
individual inputs to individual outputs. In this paper. we study this problem using
the Kronecker theory of pencils [5]. Specifically, we study the problem of zero
placement for an arbitrary matrix pencil by the addition of new rows or columns
in terms of the structure of the Kronecker Canonical Form (KCF). We show how
additional rows or columns can be appended to a pencil to place as many zeroes
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as possible, and discuss the limits on this placement. Asin [1], [11], our approach
ends up reducing the problem to a problem of pole placement, for which several
algorithms are available (see e.g., [7], [10]}. However, we are able to synthesize
outputs to place the zeroes for an entire MIMO system, as well as determining the
limits on the number of new zeroes that can be placed.

We treat this problem by studying the problem of assigning the generalized
eigenvalues of a general matrix pencil. The zero placement problem will then be
a special case. The methods in this paper are all based on the transformation of
the original pencil to one that can be partitioned into the various components of
the Kronecker canonical form. The transformations are carried out entirely using
unitary transformations, and hence enjoy some numerical stability properties. The
computations are based on the so-called staircase algorithm in [12], which sepa-
rates the left and right Kronecker parts and computes the values of the individual
Kronecker indices. We propose a new extension to this algorithm, still based on
unitary transformations, that can actually extract the individual Kronecker blocks.
Once the individual Kronecker blocks have been extracted, the zeroes may be
placed within each Kronecker block in a manner very similar to that of [1].

This paper is organized as follows. First we describe the basic theory that
relates the Kronecker theory of matrix pencils to the problem of placing zeroes or
more generally placing the generalized eigenvalues for a pencil. Next we describe
our computational procedure for extracting the Kronecker blocks and placing the
zeroes. We include in an Appendix a step-by-step description of the new process
used to extract the individual Kronecker blocks.

2. Basic theory

Consider a linear time-invariant generalized state-space system of dimension »:
EX(t) = AX(t) + Bu(t), y(1) = Cx(t) + Du(t), (h
which is irreducible, i.e., where

(A—AE B) and (A’(,M)

both have full rank n for all finite A (this also means reachable and observable at

finite points), and where
E
(E B) and (C)

both have full rank n (this also means reachable and observable at infinity). It is
well known that the transmission zeroes of the system are also the zeroes of the
matrix pencil [4], {13], [6]:

(2)

G_)\F___(A—)\b B)

C 1))
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We would like to add outputs or inputs to (1) to place new zeroes in desired
locations in the complex plane. This corresponds to appending rows or columns,
respectively, to (2) to place the zeroes of the embedded system. We discuss the
general question of how many zeroes can be placed by appending rows, and outline
a procedure to compute the rows to append to place the zeroes at given locations.

To fix ideas, we analyze how many zeroes we can place by a judicious choice
of additional rows appended to (2). We write the generalized Schur form for (2)

[5]:

G, — AF, * *
P(G-AF)Q = < 0 Grex'_anﬁu * )’ (3)
0 0 Gy —AF,

where P and Q are unitary (orthogonal in the real case) and G, — A F, contains the
right (short fat) Kronecker blocks, G, — A F; contains the left (tall thin) Kronecker
blocks, and G,,, — A F,,, is the regular part. The blocks are characterized by the
properties that G, — AF, has full row rank and G, — » F; has full column rank
for all values of A in the complex plane (including infinity), and G,., — AF,
is square and nonsingular except at a finite number of isolated values of A, the
eigenvalues of the pencil. The finite eigenvalues are the finite zeroes of the pencil.
The infinite eigenvalues correspond to the infinite zeroes of the pencil, except that
each (k x k) Jordan block Iy — AJ at infinity has only & — 1 zeroes at infinity
(but k infinite eigenvalues) [13]. Notice that this definition implies also that the
total number of zeroes equals rank(F,,,) [13]. In the Kronecker Canonical Form
P, QO are nonsingular matrices, the entries * are zero, and G, — A F, has the block
“diagonal” form

Ri(A) 0
G, - AF, = . {4)
0 Ri(A)

where each R;(A) is §; x (s; + 1), has full row rank for all A, and represents a
single Kronecker block. The {s;}’s are the right Kronecker indices of the pencil,
and we assume without loss of generality that these indices are in nondecreasing
order. In the sequel, we will show how to obtain an upper triangular version of the
overall form (4), but with nonzero entries above the diagonal blocks, using only
unitary transformations. In any case, G, — A F; will have a similar upper triangular
form, but with rectangular diagonal blocks with one more row than column and
full column rank.
We append some number p of new rows to (2) to obtain

P 0 G F
(5 DIE)-+(5)]e
G, - AF, * *
0 Greg — AF,
0 0 Gy~ AF,

Zr Zrt’L’ Zi
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The object is to choose these p new rows so as to place as many zeroes as possible.
The rightmost block column (x, x, GT —AF], ZI)" has full column rank regard-
less of the choice of Z,. The middle block column (. G/, =4 F/, .0, Z], )" has
lose rank only at values of A where G,,, — AF,,, already loses rank (i.e., only at
existing generalized eigenvalues) and only for certain choices of Z,.,. The entry
Z, ¢ can sometimes be chosen so that the middle block column does not lose rank
(or loses less rank than does G, — A F;., alone) at any particular existing eigen-
value. In the presence of a G, — A F, block. the result may be that the existing
eigenvalue disappears from the augmented pencil (5) (or the eigenvalue remains
with a smaller multiplicity). But in any case, neither Z,,, nor Z; can be used to
place any new zeroes or to increase the multiplicity of any existing zeroes. Some
of these effects are explained in more detail in the following subsections.

Hence, only Z, can be used to place new zeroes. The choice of Z, is independent
of Z,.4, Z¢, 50 we may set the latter to zero. Actually, it we don’t set those to zero,
there will be coupling between the parts. The effect ot this coupling is discussed
in the following subsections, but in general it will not aftfect newly placed zeroes,
unless they happen to coincide with zeroes already present in G, — AF,,,. We
need only consider the subpencil of (5)

Ri(}) *
G, - AF, i
r ry . ’ (6)
( Z’ ) 0 RH)\)
zZ - 7

where each R; is 5; x (s5; + 1) and represents a single Kronecker block. It will
be seen that the zeroes can be placed by choosing the p rows to be appended,

Z, =(Zy,...,Z;),to have the form

0o - 0 sz—p+1 0 e 0

0 zl(*p+3
Z, = : (7

: : : : 0

0O -~ 0 0 0 ZZ
where each row vector ziT is computed so that the individual (s; + 1) x (s5; + 1)
pencil R;(T)\) has a subset of the desired zeroes. fort =k — p+4+1,--- k.

t . -
The rest of this section and the next section are devoted to filling in many of
the theoretical and computational details, respectively, behind the zero-placement
algorithm.

2.1. How many zeroes can be placed’

We discuss the specific question: How many zeroes can be placed by appending
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one row or multiple rows? For this we first need to recall some basic results on
pencils and their polynomial null spaces.

Let r be the normal rank of the (m x n)-pencil G — + F, then it has n, C
right null vectors v; (A) and m, &f i —r left null vectors u, (i), which can be chosen

to be polynomial. Collecting these vectors in an (n x n,) polynomial matrix V(i)
and in an (m X m,) polynomial matrix U (A) we thus have:

(G=LF)V(W) =0, U (WG -rF)=0. (8)

Now the columns of V (1) and U () are said to be a minimal basis for the respective
null spaces if their column degrees are minimal. This 1s the case if and only if [6,
p. 458]:

e V(A), respectively U(A), has full column rank or all finite A
o the highest column degree coefficient matrix of V(A), respectively U (A),
has full column rank.

One proves [5] that if V(X), respectively U(4), is minimal then its column
degrees are (up to a permutation) equal to the right Kronecker indices {s;}, re-
spectively left Kronecker indices {#;}, of G — A F. Moreover, the minimality of the
bases refers to the fact that any other polynomial basis tor these null spaces must
have Aigher column degrees. A consequence of all this 1s also that the number & of
right Kronecker indices is equal to n,, and the number of left Kronecker indices is
equal to m,. One defines then the orders o, and o, of the right and left null spaces
to be the sum of the column degrees of their minimal bases. i.e., 0, = Y [~ s; and
o = Y 1, t;. A simple consequence of this 1s (see [12]):

e G, — AF, has dimension o, x (o, + n,)
e G, — A F,; has dimension (0, + m,) X 0y.

In order to use this for bounding the number of assignable zeroes when append-
ing rows or columns we need the following result, proved in [13]:

Lemma 1. Let G — A F be a pencil with null space orders o, and o, and number
of finite and infinite zeros oy and oy, (multiplicities counted), then rank(F) =
oyt 0, + 05 + 0.

Notice that in the above result we count zeroes at infinity, not eigenvalues, to be
compatible with their system theoretic interpretation (see text above (4) or [13}).

Since now appending constant rows or columns does not change rank(F) we
can only increase the number of zeroes by minimizing the null space orders. We
now give certain inequalities that will lead to the main result.

Theorem 1. Let G — AF be an (m X n)-pencil with normal rank r and with
Kronecker indices and null space orders o, = > "5, and 0, = Z;":', t;. Then
appending p constant rows and denoting this pencil by G — A F' yields new normal
rank and null space orders v, o), and o, satisfying:

r§r’§r+p.
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0, < 0y, with equality onlyifr' =r + p,
{ i
ZSJSE spforl<i<n-—r.
j=1 j=1

Proof. The first result is trivial because the normal rank of a pencil is its rank for
almost any value of A, and appending p rows in a constant matrix then immediately
gives the bounds r < r’ < r + p. For the second bound we start from (5) and
perform a generalized Schur decomposition on the subpencil consisting of the
upper left part to get:

z Zyeg

r
l
(0 1) 0 Greg — Al | * (0 ])
0 0 I Gy - AF,
G, —F * * *
_ 0 G,eg ——)»ﬁ,eg * *
- 0 0 Gy — hFy *
0 0 0 G, — AF,

Since the subpencil . R
G( — )»F( *
0 Gy — AF

has full column rank for all values of A (including infinitv) its number of columns
equals the new left null space order 0;_, and hence o, > o,. Moreover, equality is
only met when G, — A Fy is void. But then we also have that the new dimension
of the left null space equals the old one, i.e., m + p —r = m — r, which yields
the required result.

For the last inequality, let V(1) be an (m + p) > (m + p — r’) minimal basis
for the right null space of G’ — A F’. Then obviously, we also have

(G=AFYV' ) =0

which implies that the right null space V'(X) of (G' — 4 Iy 1s a subspace of the
right null space V(i) of (G — AF). As a subspace, 1t then tollows from the theory
of minimal bases [6, §6.5.4] that there exists a polvnomial matrix M (}) such that

VI = V() ML),

Let V; and V, be the coefficient matrices of the highest column degrees in V'(3)
and V(1) (these are the column coefficients of A" and " . respectively). Since
V'(A) and V(1) are minimal bases, we know that V, and V), both have full column
rank. From this it follows that element 1, ; (1) of the matrix M () can not have
degree larger than d; ; &ef s; — s;. Moreover, the coetficient matrix M, with the
coefficient of A%~% as the (j, i)th entry, also has full column rank, since [6]:

V=V, M,
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For every nonzero element m;’, in M, we know that s) = s5; +d;; > s; since d; ;
must be nonnegative and no cancellation can occur between columns in this matrix
product due to the linear independence ot the columns in V,, Vj, and M),. Since
M), has full column rank, there must exist distincr indices Jy, ..., j,_ such that

h
m; ; # 0 and hence

n—r'

n—r’
/
§ S ZE Sy,

i=1 i=t
Since the sequence {s;} is increasing, this implies that

n—r'

n—r'
!
E S = E S,

i=1 =
Finally, the same reasoning can be applied for the first i columns of the matrices
V, and M, yielding the desired third bound. U

This then automatically leads to the following main result.

Theorem 2. Let G — AF be a pencil with right Kronecker indices sy < - < s,.
Suppose we append p rows to obtain

G F
— A )
The maximum number of new zeroes that can be placed 1s

Sw—pa1 e F S

and a matrix Z can be found to place that many zeroes at any previously chosen
locations in the complex plane. This can be achieved by embedding the p largest
Kronecker blocks only. The other right Kronecker indices sy, -, s, _, of the
augmented pencil will then be unchanged.

Proof. From the inequalities in the previous theorem 1t s clear that

nor

n—r'
oy + o0, >0,+ Zsj =0, +0, - Z 5;.
j=1 o+
Since rank( F) is not affected by the embedding, i1t follows from Lemma 1 that the
maximum increase in number of zeroes satisfies

o’f +o,, — (0f +0) < Z 5,
J=n-r o+i
The right hand side of this inequality is maximized by taking as many terms as
possible, i.e., by taking r' = r + p and hence:

0p + o0, — (0 +0y) < Z 5,.

j=n-r—p=+1|
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Moreover, by using the embedding suggested in (5), (6). and (7)with Z, =0 = Z,,
this upper bound is actually met. Indeed, each block P, (i) &f (R;(T)\)> with

zl.T # 0 is regular and has s; zeroes. After a permutation of rows in (6) we have
that each P; (1) appears on the diagonal and becomes part of the new regular part
Grop —AJ[ o of G'— AF'.

The blocks for which z] = 0 decouple, and the corresponding right Kronecker
blocks remain intact in the augmented pencil. This can be seen by noting that the
right annihilating vectors corresponding to these blocks in the original pencil (4)
(or its upper triangular equivalent) remain so for the augmented pencil (6), with
the same degrees in A. Similarly, the left Kronecker blocks remain unaffected for
the same reason.

To place the zeroes for an individual Kronecker block, suppose that R(X) =
(b, A) — x(0, U) (with A, U square) is a single right Kronecker block and hence
has full row rank for all A. Suppose we add the single row z" = (y, y7). Then

def

observe that the finite zeroes of P(1) = (RZ(TM ) are exactly the eigenvalues of

the pencil A +by ~'y? — AU. We can choose ¥ = | and choose y’ by standard
pole placement techniques [7], [10]. The vector y” always exists and is generally
unique. When we choose y = 0, P(X) has at least one infinite zero. In fact, as long
asz! # 0 the number of trailing zeros in that row indicates the number of infinite
zeroes in P(A). O

In order to compute the proper rows Z,, it is necessary to extract the individual
right Kronecker blocks. The procedure to do this i1s described in detail in the next
section, but a brief outline is as follows. We first apply the staircase algorithm [12]
to extract the right Kronecker part and compute the corresponding indices. We
then permute the rows and columns to extract the smallest right Kronecker block
into the upper left corner and decouple this block from the rest of the pencil. On
the remaining collection of right Kronecker blocks we repeat this step to extract
the next smallest right Kronecker block, until all the right Kronecker blocks have
been extracted. At each step, to decouple the upper left from the lower right,
we annihilate the entries in the lower left block—in a very particular order that
completely fills in the upperright block. All the transtormations applied are unitary
transformations, and the result will be an upper triangular version of the pencil
(4), where sy < 5p < -+ < sy,

2.2. The effect of coupling

In this section, we illustrate some of the variations 1n the Kronecker structure that
can occur when a row is appended. The scheme suggested above implies that the
matrix Z, has a decoupled form as in (7), which is not strictly required. Since
the method proposed below adds one block P, (1) at a time to the regular part, let
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us analyze what happens when we append a single row 2’ = (z!, z ) to a right
Kronecker block R(A) and a regular block G,., — AFy,, as in:

R(3) 0
P = ( 0 Gre[; - )\Fn'g) , 9

T T
z z;

If one of z{ or z] is zero, then the two parts decouple. so let us assume thatz! # 0
and zI' # 0. Let A, be a zero of P(1) with corresponding left eigenvector u” =
(1)
z]
eigenvalue A,. Once this condition is satisfied. one can always find au; satisfying
W) (Grep — A Frep)+v2) =0, to makeu’ the left ergenvector of P(A,), assuming
Ay is not an eigenvalue of (G, ., — AF,,). For then (G, - A, Frep ) has full column
rank, and a solution always exists.

If A.,u; is an eigenvalue and left eigenvector of (G ey — AF,eq), then a left
eigenvector of P () corresponding to A is (0, u} , 0) regardless of whether or not

(ulT, uzT, v). Then (ulT, v) must be a left eigenvector of ( ) corresponding to

the pencil RG. )) also has an eigenvalue A,. We illustrate this case with the
zj
following (3 x 3) example:

R(M) 0 D
P(A):(O G,eg—AF,eA,):( | A).

z] & z  n
Regardless of the choice of z] , {5, the entire pencil has an eigenvalue 0 with left

eigenvector (0, 1, 0). If we set z1 = (0, 1) so that the pencil < @ )> also has
|

an eigenvalue 0, and we set £, = 1 to couple the two parts together, the resulting

pencil is
A1 O
P(A):(O 0 A)
0 1 1

This is a regular pencil with characteristic polynomial det P(1) = —AZ%. It has a
double, defective eigenvalue at zero. If the two parts are decoupled by setting ¢, =
0, the characteristic polynomial remains unchanged, but the double eigenvalue
at zero becomes nondefective. If instead we set z/ = (1. 1), the characteristic
polynomial becomes A — A2, yielding sample eigenvalues at O and 1, independent
of the choice of £,. So if both individual pencils < Rz(,)\) ) and (G,ep — A Fyep) have

|
a common eigenvalue, that eigenvalue may remain 1n the full pencil P(1) with a

Jordan chain combined from the Jordan chains from the individual pencils, or else
the common eigenvalue may have a new independent Jordan chain. This implies
that when placing new zeroes, it is best to avoid any existing zeroes if one wants
to keep Jordan chains as short as possible.

We can summarize some of this discussion with the following theorem.
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Theorem 3. Consider the augmented pencil (5). As long as the newly placed
zeroes do not coincide with any zeroes already existing in G .., — AF,,,, the block
Z, may be computed to place those zeroes independent of Z,.,, Zy. If new zeroes
are placed over existing ones, their Jordan chains might or might not coalesce.

The same comment applies whenever common zeroes are chosen between added
blocks P;(X) = R;(Tk)

i
above diagonal in (6) as well. Since this paper focuses only on the placement of
zeroes and not their Jordan structure, we do not pursue this discussion here.

since coupling is likely to occur via the nonzero elements

3. Computational procedure

We sketch an algorithm to place the zeroes. The algonthm consists of three stages.
In the first stage, we essentially compute the generalized Schur form (3), separating
the left Kronecker part from the regular part and the night Kronecker part. This
can be carried out using the staircase algorithm [[2] [2]: we will not discuss
this process in detail. In the second stage, we extract the individual Kronecker
blocks, via a new elimination procedure proposed in this paper. Finally, in the
third stage we compute the rows to be appended 1n order to place the zeroes. The
entire extraction process (the first two stages) 1s carried out using only unitary
transformations, hence it enjoys a backward stability property. The zero placing
part also enjoys a backward stability property, hence the numerical stability of the
whole process is favorable.

The broad steps of the process are as follows.

Algorithm 1. Zero Placement

1. Use the staircase algorithm [12], [2] to extract the left and right Kronecker
part from the pencil. Assume the left Kronecker part of the pencil is the
(m x n)-pencil Gy — AFy, withn = m + k. Choose p < k as the number of
rows to appends.

2. Extract the individual Kronecker blocks from the staircase form.

3. To the largest Kronecker blocks compute the row(s) that must be appended
in order to place the desired zeroes.

4. Append the computed rows and back-transform through all the accumulated
basis transformations back to the original basis for the given pencil G — A F.

We fill in some of the details for each step in turn.



THE KRONECKER CANONICAL FOorRM 793
3.1. Staircase form

The staircase form is a form that can be obtained from the original pencil that
exposes the various Kronecker indices and orders of a pencil, as well as exposing
any regular part. In fact, the presence of a regular part can be determined by
the staircase algorithm, except that it may not be as numerically reliable as the
approach in [3]. (This is still an open area of research.) The algorithm used to
extract the left and right Kronecker part is the variant described in [2] to which we
refer the reader for all the details, particularly on how to handle the presence of a
regular part or left Kronecker blocks.
The result of this algorithm is of the typical form shown in Figure 1.

G Gia Gia - Gy Gig

0 Grz Gaz - Grp Gogy

Gy —rFp=| 0 0 Gss - Giy Gipy
0 0 0o . :
0 0 0 0 G,; Gias

Sk k [y (10)
0 F, A3 Fa - SN
0 0 Fs Faa - P
~x10 0 0 Fa - Faer |

0O 0 0 0 , :

0 0 0 0 O i

Figure 1. Typical staircase form.

where the matrices F; ;41 are n; X n; nonsingular and the matrices G; ; are n; X n;_)
and of full row rank n;. Therefore, the sequence {n,,: = |, ..., k}is nonincreasing
and its dual sequence consists of the right Kronecker indices {s;, i — I, ..., n,},
1e.,

e there are n,,| — n; indices equal to i fori = 0,. &

where we have assumed n;; = 0. Notice that this implies that if the smallest
Kronecker index is sy = g, then the first g matnces G, fori = 1....,q are
square invertible as well.

Finally, we need to use a variant of the above form where the square matrices
F;i+1 are upper-triangular and the rectangular matrices G, ; have leading zero
columns and a trailing upper-triangular matrix. This form can always be obtained
as explained in [2] and will be exploited in the subsequent steps.

3.2. Extract individual Kronecker blocks

The next step is to extract the individual Kronecker blocks. We do this by permuting
toward the upper left the entries of the matrix corresponding to the Kronecker
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block of interest, and then annihilating the coupling elements in the appropriate
off-diagonal block. Because of the nature of the Kronecker structure, it is necessary
to first extract the smallest Kronecker block, then extract the next smallest from
what is left, and so on.

It is easier to illustrate the process and then describe it formally. Let g be the
number of leading diagonal G blocks that are square. That is, let ¢ be the numbers
such that G 1, ..., G4 in (10) are square, but G, 4 44, 1s not. Then the smallest
Kronecker index is 5; = ¢g. In the example worked out below we assumed that
there are 3 such blocks, so the smallest Kronecker index 1s sy = 3. In this particular
example, we must thus form a (3 x4)-block. We form this block from the 1,1 entries
of those first 3 square G blocks together with the 1.1 entries of the corresponding
F blocks. That is, we permute the rows and columns of G, F to collect together
the upper left entries of all the leading square G blocks. This will form a leading
(3 x 4)-submatrix. Then we must decouple this leading (3 x 4)-submatrix by
eliminating the coupling entries.

To show how this works in more detail, we partition all the blocks of Figure 1
to expose the 1,1 scalar entries, showing the result as Figure 2. We denote scalar
entries by g, f, column vectors by g, f, row vectors by g', f (completely unrelated
to the transpose of any corresponding column vector), and submatrices by G, F.
Note that potentially the row, column, and matrix blocks could be empty. We
permute the leading 1,1 entries into the upper left position to obtain Figure 3 in
which the (3 x 4)-block is exposed.

We then decouple the (3 x 4) Kronecker block trom the rest by annihilating
one by one the column entries in the lower left part. This is done with (almost)
alternating left and right unitary transformations. The entries in the lower left are
annihilating in a very particular order, starting with the “outer” diagonal strip.

In this example, the first items eliminated are the entries in the outer diagonal
(marked with - in Figure 3), eliminated in order: g, f24. 3. 13, 2},. Then the next
diagonal entries are eliminated in order: gy4, f14, g11. Then finally g4 is eliminated.
The entries in G are eliminated using unitary transformations from the right. and
the entries in F using transformations from the left, as illustrated in the appendix.
Each elimination results in a fill in the corresponding position in the upper right
block. This example is sufficiently general to show the pattern of fills in the g, f
part for the general case.

The result is shown in Figure 4. In Figure 4, " denotes entries that were modified
from Figure 3, 0 denotes entries that were purposely eliminated, and X denotes
entries that were filled in during this process.

We summarize the process as follows.

Algorithm 2. Kronecker Block Extraction

0. Start with an (m x n)-pencil G — AF in staircase torm, withk = n —m. Let
q = 51 (0 < g < k) be the number of leading diagonal G blocks that are
square in the staircase form (Figure 2).
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[ o1 g | 92 giz 913 813 | 914 84 g5 ]
0 Gii|gi2 Giafgis Gia|ga Gua|Gis
0 0 |g22 8 |923 Eh | 924 &ha | 8hs
0 0 0 Gaalgas Gaz[B2a4a Gaa| Gos
0 0 |0 0 |g3s g3 ]93¢ B3 | &hs
0 0 0 0 0 Gs3|gss Gsa|Gss
0 0 [0 010 010 GulGaul-—
"0 0 [0 010 00 0 |Gl -l
( 0 0)fio iy |fis fiz | fia £l4 | £5 |- ]
0 010 Fip{fis Fizg{fia Fiq| Fis| -
0 00 0 | fas £33 | fou 34 | f2s
00/ 0 0|0 Fulhhs FolFo
0 0] 0 00 0 |fos Bl | B
00[0 010 0|0 Ful|Ful-
0 0[]0 010 00 0 [Ful o
o000 o oo oo

Figure 2. Partitioned staircase form.

[911 912 913 914 | 81 &l2 Bz 81 Els 1
0 g2 923 gaa | 0 g% 8% 85 &
0 0 g3 g34] O 0 83 B85 8
0 B2 213 g14|Gn G2 Gz Gia Gis
0 0 Ea goa| 0 Gaa Gaz G Gas
0 0 0 E| O 0 Gas Gz Gss
0 0 0 0 0 0 0 Gig Ggs ---
Lo 0 0 0]0 0 0 0 Gs -
[0 fiz fis fia (O ff, fi3 f, ffs -]
0 0 fos faulO O fo;  f1, fo. -
0 0 0 fal0 0 0 f, £
0 0 fi3 fia |0 Fis Fis Fi4 Fis
0 0 0 f2q|0 O Foy Foq Fo5
0 0 0 0 (0 0 0 F3q4 Fias
0 0 0 010 0 0 0 Fas -+
L0 0 0 0 (0 O 0 0 o -
Figure 3. Permuted form.
1. Permute rows and columns of the pencil so that the **1,1” entries of the blocks

G, Fij,i=1,---,q,j=1,.--,g+ 1, are in the upper left, as in Figure
3. Denote the partitioned (m x n)-pencil by

G(l,l) G(I,Z) g F(l.l) F(I.Z)
cgeh gen ) M pen pexn ).

where each block is partitioned as in Figure 3. The leading block G- —
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[911 12 G135 qua| B &1z Bls Bl 8ls
0§22 23 Gua| X 82 &3 B i
0 0 ga3 gaa| x X  Zhs B3s B3
0 0 0 0 |Gu G2 Gis Gia G:15
0 0 0 0] 0 0 Ga G Gss
0 0 0 0 0 0 0 G Ggs
L0 0 0 00 0 0 0 Gs -]
( 0 fiz fizs fra| X fi. fis fi, i
0 0 fiz fu|X 23 Da s
0 0 0 fas|x x x f3, fi
0 0 0 010 Fiz Fis Fia Fys
0 0 0 0 {0 0 F3 Fou Fyps
0 0 0 04{0 O 0 Fa4 F3s
0 0 0 010 0 0 0 Fas
00 0 00 0 0 0 o0 ]

Figure 4. Result from extraction of smallest Kronecker block

. Eliminate the entries G

LFUD s g % (g + 1). In the partitioning of Figure 3 for 1 <i < g, G, are
kxk,so thatG(1 D G(] 2) G 2.0 Gl(l. = are, respectively, 1 x 1,1 x (k—1),
G—1)x L k= 1) % (k — 1),

@n F(2 " in the permuted matrices. This modifies
parts of all four blocks (1 1) (1 2), (2,1), (2.2).

2.1 Fori=gq,--,2,1:

22 For j =1, 2 I:

23 Push Gj( i +14+4—; Tight into G
24 If j > 1, Push F(zll);+]+k y upmm F+k [ ki

The resulting modified “(1,1)” block is not further modified by this algorithm,
so we denote it by Gm —AF[?‘] The modified *“(2.2)" block is still in staircase
form. The modified “(1 2)” block is full and the modified “(2,1)” block is
all zero.

If k > 1, apply this algorithm recursively to the (m — k) x (m — k — 1)-
pencil G2 — xF@2_ Apply all the resulting umtary transformations from
the right also to the block GU-2 — A F- 2,

In the above algorithm description, we use the short hand “push right” and “push
up”’ to mean the following.

e Push G(z'l) right into Gf‘};z) means: Find a unitary transformation Q5 such

that (G(2 el 22)07 = (0, 6(2*2)) where G2 is upper triangular. Then

apply the transformation to the entire pencil: 1.e.. for all ¢, compute (G(2 2
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G2?) = (GG, G2P)0s, and replace G; . G2V with G5V, G2?.
Do likewise with F(2 1), F(),Z'Z).
e Push Fof?,‘” up into F(ﬂ means: Find a unitarv transtormation Qg such that
F(l D 'F:(l 1)
o () (%)
Then apply the transformation to the entire pencil: 1.e., for all ¢ compute
7,1 (0
(% ) o)
2,1 (2
F@D F
and replace F)f}'”, F2D with I?)Ef*]), ﬁ;f‘ ', respectively. Do likewise with
1,1 2.1)
FD, FRD.
The final form of this extraction process is

Ql[zl(G[]] _ )\FH])Q[RZJ — (G|2| _ )\FIZ\)

124 121 -2 12]
Gy o GY Fo Fii an
121 12l
0 G 0 Fii
where foreachi = 1, |k, GE?] is 5; x (8; + 1), upper trapezoidal, and F,.[,.2| =

(0, U;) with U; s; x s;, upper triangular, where s, = s, . are the right Kronecker
indices defined as in Theorem 2, in nondecreasing order. The s; x (s; + 1)-pencil
GE?] - AFi[izl has full row rank s; for all values 4. Of course. this is not the Kronecker
Canonical Form, but it is an analogous form achievable via unitary transformations.
Each diagonal block is equivalent to a single Kronecker block. For almost most
any purpose for which the Kronecker form would be required, one can make use
of this form just as well.

We remark that in this extraction process, all the entries that are annihilated
are never filled in during subsequent steps. Assume we use Givens rotations to
annihilate the entries. Applying each rotation costs (J(n) operations, including
the cost of accumulating the Givens rotations. At most ()(n?) such rotations are
generated, since there are no more than O(n?) entries to annihilate (we can’t
annihilate more entries than there are in the whole matrix!). Hence the entire
extraction process takes O (n*) operations. Of course. a more precise analysis is
possible, but it is difficult because the exact cost will range from free to O(n*)
depending on the exact distribution of the Kronecker indices.

3.3. Place zeroes

def
To the form (11) we can compute the p rows needed to place s = Sp,F S, —pi
zeroes. Let py, - - -, iy be the given set of new zeroes to be placed. Then the rows
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to append have the following form

0 - 0z _, 0 0
: : 0 . :
z2= . : : 5 L ay
; : : .0
0 -0 0 0 o

where we have n —s = 51+ - +5,,_, leading columns of zeroes, and the nonzero
entries are computed as described below. Foreachi = n,,n, —1,--- ,n, — p+1,
each z,.T is an s;-vector chosen so that the square (s, + 1) x (s; + 1)-pencil

121 121
Gn,+lfi,n,+l—i Y Fn,+l e, Hh—i (13)
ZiT 0

has zeroes {5, ; }'J‘f’zl. Recall from (11) that the pencil (13) has the general form
(b;, A;) — A(0, U;) where U; is square, upper triangular, and nonsingular. Let

b, A, —AU;
T

z] = (y,y]). Then observe that the zeroes of ( ) are exactly the

Vi Y,
eigenvalues of the pencil A; +b; y,-’lyiT — AlU,. We can choose y; = | and choose
y; by standard pole placement techniques (7], [10]. In this case, the new row is
generally unique.

To see that the {ziT} chosen in this way places the zeroes for the entire pencil,
we can permute the rows to put the new regular part of the pencil in the lower right
and the remaining right Kronecker structure in the upper left:

Gn Glz Y Fi Fl?)
0 Gzz 0 Fa A

12l
(%) 0

zn,—p+l 0

0 Gl

0 2/

2

Fr[z,l—p+1<nr—p+1 o *

0 0

R,
("%")

where

Gy — AFp =

— A
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is regular with the desired zeroes, and
2] 121
G ... ¢

ln, - p
G —AF = . :

2l n */’-"lr7'] P
Fll Fl~n,4p

— A 5 :
0 F)!

n,—pa,—p

has the right Kronecker structure left over.
Returning to the original pencil G — A F, our oniginal problem was to compute
a (p x m)-matrix Z to place s zeroes. We collect together all the transformations

to obtain the formula for Z:

Q(ZIQ”] G F A2 Gl Fl2i
(8 DE)-+(0)]evar= (G ) -+(")

so that ot
Z = 2" (o,

where (17 denotes the conjugate transpose of [J.

4. Conclusion

We have examined the general problem of placing the generalized eigenvalues to
an arbitrary matrix pencil by the addition of new rows of constant coefficients.
We found that the number of zeroes that can be placed is limited to the order of
the right Kronecker part (the sum of all the right Kronecker indices). In addition,
when p rows are added and there are multiple right Kronecker indices, the number
of zeroes that can be placed is limited to the sum ot the p largest right Kronecker
indices. When the number of rows added is just right to make the system square,
then the number of zeroes that can be placed is equal to the sum of all the right
Kronecker indices.

We have outlined a new method based entirely on unitary transformations to
compute the right Kronecker indices and to extract the individual Kronecker blocks.
By combining this procedure with pole placement algorithms in the literature,
we arrive at a complete method for assigning the generalized eigenvalues for a
pencil, that has good numerical stability properties because of the use of unitary
transformations. From a control point of view, this method places the transmission
zeroes by the synthesis of new outputs. It could also just as easily be used to
synthesize inputs.

The new decomposition in which the individual Kronecker blocks are extracted
represents a unitary analog to the Kronecker Canonical Form (KCF) in much the
same way as the Schur decomposition is a unitary analog to the Jordan canonical
form.
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Appendix

We show the process to decouple the (3 x 4) Kronecker block from the rest by
annihilating one by one the entries in the lower left. starting with the state of Figure
3. This is done with almost alternating left and right unitary transformations. The
entries in the lower left are annihilating in a very particular order, starting with
the “outer” diagonal strip (marked with an overbar - in Figure 3). We show the
step-by-step annihilations for this particular example. where the rows and columns
affected by the individual Givens rotation are marked with arrows, the entries used
to construct the rotation are enclosed in boxes (e.g.. [(j denotes the entry being
annihilated), and all the other entries modified in that step are marked with a wide
tilde “~ . Fills (zeroes made nonzero) are denoted by “x x” when they occur
and “X” in subsequent steps. Likewise, entries set to sero are denoted ** |0 the
first time and “0" in subsequent steps. The hat * ~ " denotes entries changed from
Figure 3.

In this particular example, Steps | through 5 zero out the outer diagonal strip
of G F blocks (marked “—"" in Figure 3), Steps 6 through 8 zero out the next strip
of each, and Step 9 zeroes out the last, resulting in the situation of Figure 4. Note
also that the G134, F34 blocks and all the entries below and to their right remain
unchanged through this whole process.

Situation of Figure 3:

g g2 g3 Gus | B Bl2 Bls Bl Bl - U fi S fa ) uvof, fiy fi, fiy
0 g2 g23 g | O g B2 g Kk - 00 f faloo0 fy i, T
0 0 g3 gaa | 0 0 gy gl g o G0 0 ful0 0 0 £, fi
e f
0 g2 813 B |Gn G Gi Gy Gy - ¢ 0 fio fu. ‘ 0 Fr2 Py Fiy Fis
0 0 g3 Bu 0 Gy Gaz Gy Gps - 6 0 0 fi ; 0 0 Fn Fu Fyy
0 0 0 ga| O 0 Gia Gy Gay - 00 i 0 ’ 0 0 0 Fy Fa
0 0 0 0 0 0 0 Gay G - 0 0 0 ()] 0 0 0 Foy
0 0 0 o]0 o 0 0 Gsy - o0 o wlo 0o 0 o0 0
Step 1: Rotate from right:
! U 4
g g1z g3 g: gl g« Bls 0 fiz f f}j 0 f], fg i, fiy
. , A3
0 g g2 91 0 24 B2 - 0 0 foo Ju b o0 £, £, f}
0 0 933 Gas 0 g3as B3 - 0 0w Ju]o 0 X f;,  fis
0 g2 g5 gu|Cn G Gis - W0 fi. fa |0 Fu Fa Fu Fs
0 0 g gn| O Gu  Gay - 0 0 0 .0 0 Fy Fu Fy
0 0 0 0 Gu  Gas 0 0 0 [ ] 0 Fa Fi
0 0 0 0 0 Gei Gas - 0 0 0 0|6 0 0 0 Fis
0 0 0 0 0 0 Gsy - 0 o0 0 nojoe 0 0 0 0

Step 2: Rotate from left:

R . 3 £ ] ’
915 gu | Bl B2 Bla Bla By o O fii S S p0fin M fio i

<
=
N

1
0 g2 923 G 0 Bhn &35 Eu B 00 S fu 0 fi, i £
0 0 g gl 0 xXx g gl 8 & 0 0 0 fullo o X £, f, <
0 g2 Bis &4 | Gn (Ln (’_73 Cil_‘, 9\13 0 0 fia fu 0 Fiz Fm Fy Fy
0 0 g3 gn - — =
B23  8x 0 Gy sza Gy Gy 0 0 o h 0 0 B Fun B
0 0 0 0 0 0 Gas Ga Gas
0 0 0 o o o 0 Fa Fyo o
[ 0 0 0 0 Gu G
0 0 0 0 0 0 0 0 G 0 0 0 (] 0 0 0 0 Fus
=5 0 0 0 0o o o 0 0 0
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Step 3: Rotate from right:

g g1z g3 Gu | 8L gld B1s 0 f, fT_, S 0 f?’; fls fi, fls
0 gz 923 g4 0 B2 B2 0 0 fa fu |0 xx i, 3, fis
0 0 gaz s 0 B3 8 - 0 o 0 faif0 0 x  fi fi
0 g2 B Bu | Gu G Gis 0 o f: fiq | O FA‘; Fa Fu Fis
0 0 o | O G G - 0 0 0 w0 0 Fa Fa Fas
0 0 0 0 0 Gax  Gas - 0 0 0 oo 0 0 Fyu B
0 0 0 0 o G Gis - 0 0 0 Wto 0 0 0 Fus
0 0 0 0 o 0 0 0 Gy - 0 0 0 (O TR 0 0 0
Step 4: Rotate from left:
. R r ; Py # ’ s
g gz @13 g | Bl lin gﬁi;‘a 5& g_’l;: 0 fi fi“ ]'f v fi f:f {E {lj
0 g gz gu | XX B2 By Bn B = U I i fu |0 x £, £, fj, &=
0 0 Gz Jas 0 X 8 B B - 0 0 W S |0 0 x f3'¢ f3'5
0 g gTa g | Gn Gz G Gu Gu = 0 0 0l fil0 Fu Fa R Fis oe=
0 0 0 221 0 Gy Gaa Gau Gy - 0 0 .,0 0 lo 0 an 15‘7‘ Fu
0 0 0 0 0 0 Gz Ga Gas .- 0o 0 ] D400 F3  Fss
o 0 6 0,30 0 0 Gu Gs - 0 o 0o alo o 0o 0 Fus
0 0 0 0 0 0 0 0 Ghs e 0 0 0 0 0 0 0 ) 0
Step 5: Rotate from right:
911 @ ¢ g | B 12 Bls Bl Bls 170 1 ful fu | xx £l £, fle s
0 g2 g G| X B B B B 0 0 fu ha| 0 x5, £ fi
0 0 g3z gas 0 X £33 B B - 00 0 fu 0 0 X f3'4 f§5
0 £i13 Eua G Gu Gis 0 0 0 fie 10O Fia Fia Fu Fis
0 0 0 gu] 0 G Gz Gu Gas 0 0 0 0l o 0o Fy By P
o o0 o0 0 0 0 Gi Gu G 000 0 00 0 Fs  Fus
0 0o o o 0 0 0 Gu G 0 0 0 ol o 0 0 0 Fug
L 0 0 0 0 0 0 4] 0 Gy ) 0 4] 0 0 0 0 0 0 0
Step 6: Rotate from right:
g g1z g1a g | B Bl Bis [0 f2 fia fie | % f; fi, £, fl,
0 g y:23 924 x 531 5?5 0 0 fu fulo X f“;';, fz’« f2,5
0 0  gas gxn .0 a4 B - 0 0 0 fu|0 xx x fi, f3
0 0 gz gu | Gu Gu Gis 0 0 0 6.0 Fo Fa Fu Fis
o o 0 0 Gu Gas o 0 o Do 0 Fs Fu Fu
0 0 0 9 0 Gse  Gas 0 0 0 volo o 0 Fyu Fas
0o 0o o oo Gu Gus - 0 0 0 w0 00 0 Fs
Lo 0o o oo L I A N I
Step 7: Rotate from left:
- . . . 5 ¢ c F 33 F F Fa
g 12 gia gue gil gl Bls Bl Bis 0 S he M l Rt f‘l’ f‘(‘ flﬁ
0 g2 g3 G X g g’é E;J [{TRIEE R rL“ 0 x T fa fa
0 0 g3 gsa | XX X By 8y By 0 0 0 |fullo x X f) ff —
Q ot —~ | A v ~ A A T~ — e — —
g 0 g3 Bus C'(;l (G:vn C_v'w gu gls — 0 0 4 }j 0 Fp Fa Fu Fo <
0 0 0 22 Q23 24 e 0 0 0 0 0 0 2 Fu Fas
0 0 0 010 0 G Gu G 000 0 [0 0 0 Fu B
60 0 00 0 0 Gu G oo oo u 0 o 0 0 0 Fu
Lo o o 0ofo 0 0 0 G - Jly 0w wojo 0 0 0 0
Step 8: Rotate from right:
[ g1 g2 gia Gu g:u g2 Bla B Bis o 100 fi2 f‘n S x l1’2 f‘{a f‘l’l f‘l’5
0 g2 g1 gn x géz B2 B B 0 0 fu fu|xx x f3; 5 fis
0 0 g3 Jas B33 8 &3 VI U fu] 0 x x 3. fi
0 0 %14 Gz G Gis 0 0 0 il ’ 0 Fra Py Fu Fs
o o o0 @ 0 Gyu G Gau G - o o 0o 0o 0 Fa Fa Fas
0 0 0 0 0 0 Giz Ga Gas -+ 0 0 i ) 1] 0 0 Fu Fs
0 0 0 0 0 i) 0 Gi Ges - 0 o 0 ) 0 0 ¢ 0 Fus
L o 0 0 0 0 0 0 0 Gss -~ J L0 0 1) ] 0 ] 0 0
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Step 9: Rotate from right, yielding situation of Figure 4:
oL 1ol

flz ];n f:l

e éiz &3 e | gL B2 Bis &l gls 0 < f, s . fi
0 g2 gaa 924 x géz B3 B2 B 0 0 ];u fau x % fz’a fz’« fés
9 0 gaz g x X @i Bh  B3s 00 0 fa | xx % x  fi,  fis
0 0 0 Gn| Gn Gu Gu G 0 0 i 0 0 Fio Fs Fu Fis
0 0 0 0| 0 Gu Gn Gu G 0 0 o 0| 0 0 Fs Fu By
0o 0 0 0 0 0 G € Gas 0o 0 0 0 0 0 0 F3 F3
0 0 o0 o0 0 0 0 G Gas 0 0 0o w0 0 0 0 Fu
0 0 0 0 0 0 0 0 Glss 0 0 4 0 0 0 0 0 0
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