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Abstract

In this work we extend results from the literature onH∞ design with pole placement constraints to the case of
generalized state space models, for both continuous-time and discrete-time systems. We also propose tests using
linear matrix inequalities of reduced dimension.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In controller design, one is typically concerned with the robustness of certain properties of a nominal
system, in the presence of uncertainties in the model parameters. Linear matrix inequalities are often used
in this context because they yield sufficient conditions expressing that a certain class of perturbations
does not stabilize a nominal system.

In this work we study results obtained previously by Chilali and Gahinet regardingH∞ design with
pole placement constraints in a certain region of the complex plane. These conditions describe a class of
convex regions in which the poles are constrained to lie for the given perturbations. The results derived
in that work are formulated in terms of a standard state space model. In the present work, we extend
them to the case of generalized state space models, for both continuous-time and discrete-time systems.
We also propose modified tests using linear matrix inequalities of reduced dimension. These extensions
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have the advantage of reducing the complexity of the approach and of yielding numerical tests that are
more reliable since the reduction to a standard state space model is not required any longer.

2. Stability margins for continuous- and discrete-time systems

We will consider linear time-invariant dynamical systems of the form

λEx(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t).
(1)

Here E, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and D ∈ R

p×m are given matrices,x(t) is the vector of
n state variables,u(t) the vector ofm inputs andy(t) the vector ofp outputs. The operatorλ stands
for the differential operators (in the Laplace domain) when (1) is a continuous-time system and for the
delay operatorz (in the transformed domain) when (1) is a discrete-time system. We will suppose that
the above realization is minimal and that the open loop system(E, A) is strictly stable, meaning that
the generalized eigenvalue problemλE − A has all its eigenvalues in a prescribed open setΓ of the
complex plane, which is the open left half-plane for continuous-time systems, and the open unit disc for
discrete-time systems. This implies that the matrixE is non-singular since otherwise the system would
have a pole atλ = ∞ [4].

If we now close the loop withu = ∆y, we obtain

λEx(t) = Ax(t) + B∆y(t),

y(t) = Cx(t) + D∆y(t),
(2)

or, after elimination ofy(t),

λEx(t) = A(∆)x(t), A(∆) := [A + B(Im − ∆D)−1∆C]. (3)

This follows from (Im − ∆D)−1∆ = ∆(I p − D∆)−1 which is easily verified by the relation
∆(I p − D∆) = (Im − ∆D)∆.

We then want to know conditions to guarantee that the closed loop system(E, A(∆)) is also strictly
stable. We therefore define the correspondingstability radiusof the perturbed system(E, A(∆)) as the
smallest perturbation∆ destabilizing the system:

rC(E, A, B, C, D) := inf
∆

{‖∆‖2 : (λE − A(∆)) has unstable eigenvalues} (4)

where we use the 2-norm‖∆‖2 = supx �=0
‖∆x‖2‖x‖2

for measuring thecomplexperturbation∆ ∈ C
m×p.

Since eigenvalues are continuous functions of the elements of a pencilλE − A(∆), stability will be
lost only when one of the eigenvalues crosses the boundary∂Γ of the stability regionΓ . An equivalent
formulation of this stability radius is thus given by

rC(E, A, B, C, D) := inf
λ∈∂Γ

{
inf
∆

{‖∆‖2 : det[λE − A(∆)] = 0}
}

. (5)

Testing whether or not

det[λE − A(∆)] = 0
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is equivalent to testing

det

[
λE − A B

∆C Im − ∆D

]
= 0 (6)

sinceλE − A(∆) is the Schur complement of (6) with respect toλE − A, which is assumed non-singular
in the considered regionΓ and its boundary∂Γ . Notice that condition (6) can also be written as

det

([
λE − A B

0 Im

]
+

[
0
Im

]
∆

[
C −D

]) = 0 (7)

and sinceλE − A is invertible this is equivalent to testing

det

(
In+m +

[−(λE − A)−1B
Im

]
∆

[
C −D

]) = 0. (8)

Since det[I + ST] = 0 implies det[I + T S] = 0 for any two conformable matricesSandT , this finally
yields

det[Im − ∆G(λ)] = 0, G(λ) := C(λE − A)−1B + D. (9)

We can thus rephrase the stability radius as follows:

rC(E, A, B, C, D) = inf
λ∈∂Γ

{
inf
∆

{‖∆‖2 : det[Im − ∆G(λ)] = 0}
}

and this is known to be equal to the so-calledH∞ norm of the systemG(·):

rC(E, A, B, C, D) =
[

sup
λ∈∂Γ

‖G(λ)‖2

]−1

= [‖G(·)‖∞]−1. (10)

For continuous-time systems∂Γ = j ω,ω ∈ R, and (10) further simplifies to

rC(E, A, B, C, D) :=
[

sup
ω∈R

‖G( j ω)‖2

]−1

and for discrete-time systems∂Γ = ej ω, ω ∈ R, which simplifies to

rC(E, A, B, C, D) :=
[

sup
ω∈R

‖G(ej ω)‖2

]−1

.

For the caseE = In these connections are rather standard and we recall them in the following theorem
given for arbitraryE.

Theorem 1. Let (E, A) be a strictly stable open loop system; then the closed loop system(E, A(∆)) is
strictly stable if and only if∆ ∈ C

m×p satisfies

‖∆‖2 < γ −1

 , γ
 := ‖G(·)‖∞ := sup

λ∈∂Γ
‖G(λ)‖2 (11)

where∂Γ = j R in the continuous-time case and∂Γ = ejR in the discrete-time case.

We point out here that when imposing the condition that∆ is real, (11) becomes only a sufficient
condition for stability. But the theorem implies that stability is guaranteed for all∆ (real or complex)
satisfying (11). The key issue for the computation ofγ
 is constructing computable conditions for an
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upper boundγ of γ
. Such aγ > γ
 must satisfy

G
(λ)G(λ) + γ 2Im � 0, ∀λ ∈ ∂Γ

whereG
(λ), λ ∈ ∂Γ meansG
( j ω) := [G(− j ω)]T in the continuous-time case andG
(ej ω) :=
[G(e− j ω)]T in the discrete-time case.

It was shown in [3] that for the continuous-time caseγ > γ
 ≥ 0 if and only if[−ETY A− ATY E −ETY B
−BTY E γ 2Im

]
−

[
CT

DT

] [
C D

] � 0, Y = YT (12)

and for the discrete-time caseγ > γ
 ≥ 0 if and only if[
ETY E− ATY A −ATY B

−BTY A γ 2Im − BTY B

]
−

[
CT

DT

] [
C D

] � 0, Y = YT. (13)

For standard state-space systems (i.e. forE = In), other linear matrix inequalities were derived in [2]
for the continuous-time case:

−X A− AT X −X B CT

−BTX γ Im DT

C D γ I p


 � 0, X = XT (14)

and for the discrete-time case:
X − ATX A −ATX B CT

−BTX A γ Im − BTX B DT

C D γ I p


 � 0, X = XT. (15)

But for invertible E, one can write the above conditions for the standard state space model
{E−1A, E−1B, C, D}. Replacing thenX by ETY E, one finally obtains the following equivalent
conditions for the continuous-time case:

−ETY A− ATY E −ETY B CT

−BTY E γ Im DT

C D γ I p


 � 0, Y = YT, (16)

and for the discrete-time case:
ETY E − ATY A −ATY B CT

−BTY A γ Im − BTY B DT

C D γ I p


 � 0, Y = YT. (17)

We point out that the pair of conditions (12), (13) and (16), (17) essentially are equivalent to the bounded
real lemma and that they can also be derived from each other via the use of Schur complements and
appropriate scalings.

3. LMI regions and D-stability

We first recall here definitions taken from [1], which we will need later on.

Definition 2. An LMI region is any subsetD of the complex plane that can be defined as

D = {z ∈ C | D0 + zD1 + zDT
1 ≺ 0} (18)

whereD0 andD1 are real matrices andDT
0 = D0.



D. Bouagada, P. Van Dooren / Applied Mathematics Letters 19 (2006) 451–457 455

Inspired by [2], we describe here a few examples:

• Half planeR(z) < α: D0 = −2α, D1 = 1,

• Ellipse with main axes 1/(α ± β): D0 = −I2, D1 =
[

0 α

β 0

]
,

• Parabola−R(z) > (α�(z))2: D0 =
[−1 0

0 0

]
, D1 =

[
0 α

−α 2

]
.

Definition 3. A system isD-stable if and only if all its poles are in the LMI regionD.

A first extension of the results of [2] is now given below.

Theorem 4. The eigenvalue problemλE−A, with E non-singular, isD-stable if there exists a symmetric
matrix Y such that

MD(Y) := D0 ⊗ (ETY E) + D1 ⊗ (ETY A) + DT
1 ⊗ (ATY E) ≺ 0, Y � 0. (19)

Proof. This follows easily from applying the result of [1] to the standard eigenvalue problemE−1A and
then substituting inX = ETY E. �

Let us now suppose thatλE − A is D-stable. We are looking for a sufficient condition to guarantee
that λE − A(∆) is alsoD-stable. As shown above, this pencil describes the poles of the closed loop
matrix (2). We therefore need to check that det[I − ∆G(λ)] = 0 for λ ∈ D, as given in the following
theorem [1].

Theorem 5. The eigenvalue problemλE − A(∆) is strictlyD-stable if and only if‖∆‖2 < γ −1
D where

γD := ‖G(·)‖D∞ := supλ∈∂D ‖G(λ)‖2.

Sufficient conditions can be derived from a similar result reported in [1].

Theorem 6. The pencilλE − A(∆) is D-stable for all‖∆‖2 < γ −1 if there exist matrices Y∈ R
n×n

and P∈ R
k×k such that

 MD(Y) MT
1 ⊗ ETY B MT

2 P ⊗ CT

M1 ⊗ BTY E −γ P ⊗ I P ⊗ DT

P M2 ⊗ C P ⊗ D −γ P ⊗ I


 ≺ 0, P � 0, Y � 0 (20)

where D1 = MT
1 M2 is a factorization with M1 and M2 of full row rank k.

Proof. This follows easily from applying the result of [2] to the standard state space realization
{E−1A, E−1B, C, D} of the system (1) and then substituting inX = ETY E. �

We now derive a new equivalent linear matrix inequality constraint of smaller size.

Theorem 7. The pencilλE − A(∆) is D-stable for all‖∆‖2 < γ −1 if there exist matrices Y∈ R
n×n

and P∈ R
k×k such that P� 0, Y � 0 and[

MD(Y) MT
1 ⊗ ETY B

M1 ⊗ BTY E −γ 2P ⊗ I

]
+

[
MT

2 ⊗ CT

I ⊗ DT

]
P ⊗ I

[
M2 ⊗ C I ⊗ D

] ≺ 0. (21)

Proof. The inequality (21) is the Schur complement of
 MD(Y) MT

1 ⊗ ETY B MT
2 P ⊗ CT

M1 ⊗ BTY E −γ 2P ⊗ I P ⊗ DT

P M2 ⊗ C P ⊗ D −P ⊗ I


 ≺ 0, (22)
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with respect to the negative definite block−P ⊗ I . And (22) is obtained from (20) by replacingP by
γ P and dividing the last row and column byγ . All conditions are thus equivalent. �

We end this work by giving a few examples for the above theorem.

Example 1. Guaranteed damping of a continuous-time system corresponds to the LMI regionD0 +
zD1 + z̄DT

1 ≺ 0 with D0 = −2α, D1 = DT
1 = 1. We can chooseM1 = M2 = 1 andP becomes a

positive scalarp. The inequality (20) reduces toY = YT � 0, p > 0 and[−2αETY E + ETY A+ ATY E ETY B
BTY E −γ 2 p ⊗ I

]
+ p

[
CT

I ⊗ DT

] [
C I ⊗ D

] ≺ 0. (23)

Notice that if we replaceY by pY, chooseα = 0 and divide byp, then we recover from this the
inequality (12) for continuous-time robust stability.

Example 2. Eigenvalues inside an ellipse with principal axes 1/(α ± β) correspond to the LMI region

D0+zD1+ z̄DT
1 ≺ 0 with D0 = −I2, D1 =

[
0 α
β 0

]
. If we chooseMT

1 = D1 andM2 = I2, the inequality

(20) then reduces toY = YT � 0, P = PT � 0 and



−ETY E αETY A+ β ATY E 0 αETY B
βETY A+ αATY E −ETY E βETY B 0

0 βBTY E −γ 2P 0
αBTY E 0 0 −γ 2P




+
[

I2 ⊗ CT

I2 ⊗ DT

]
(P ⊗ I )

[
I2 ⊗ C I2 ⊗ D

] ≺ 0.

4. Concluding remarks

In this work we derived sufficient conditions for a perturbed pencilλE − A(∆) to have all its
eigenvalues in a regionD described by a simple LMI. The conditions are conservative forreal
perturbations∆ but strict for complex perturbations. It remains an open problem how to find necessary
and sufficient conditions. The conditions we developed here are an extension of those of [1] to
generalized state space models. Such models have often the advantage of being sparser that the equivalent
standard state space models. Moreover, the LMI conditions developed in this work are of smaller
dimension than those of [1] and should therefore lead to faster algorithms.
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