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In this paper, we analyze an algorithm to compute a low-rank

approximation of the similaritymatrix S introduced by Blondel et al.

in [1]. This problem can be reformulated as an optimization prob-

lem of a continuous function�(S) = tr
(
ST M2(S)

)
where S is con-

strained to have unit Frobenius norm, and M2 is a non-negative

linear map. We restrict the feasible set to the set of matrices of unit

Frobenius norm with either k nonzero identical singular values or

at most k nonzero (not necessarily identical) singular values. We

first characterize the stationary points of the associated optimiza-

tion problems and further consider iterative algorithms to find one

of them. We analyze the convergence properties of our algorithm

and prove that accumulation points are stationary points of �(S).
We finally compare our method in terms of speed and accuracy to

the full rank algorithm proposed in [1].

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Node-to-node similarity measures compare the nodes of a graph GA with the nodes of an other

graph GB according to some similarity criterion, and have been applied to many practical problems

such as comparing chemical structures [2], navigating in complex networks like theWorld WideWeb

[3], and analyzing different kinds of biological data [4].
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These node-to-node similarity measures are conveniently stored in the so-called similarity matrix,

S, whose (i, j) entry tells how the node i is similar to the node j. In [1], Blondel et al. define a node-

to-node similarity measure as a fixed point of an iterative process, and prove that their measure is

equivalent to the solution of an eigenvalue problemof a dimension that is the product of the number of

nodes inbothgraphs. For largegraphs, computing this similaritymeasure canhencebequite expensive.

In [5], Fraikin et al. approach the similarity matrix defined by Blondel et al. by a rank-k matrix with k

identical singular values (note that this approximation is exact with k = 1when one of the two graphs

to compare is undirected) and propose to reduce the computational cost of the Blondel et al. similarity

by using a low-rank iterative scheme that experimentally converges towards their approximation.

In this paper, we propose two low-rank iterative schemes that converge towards two approxima-

tions of the Blondel et al. similarity matrix with respectively either k nonzero identical singular values

or at most k nonzero (not necessarily identical) singular values, and further analyze the convergence

properties of our algorithms.

This paper is organized as follows. Section 2 introduces the notations further used in the article.

Section 3 recalls the similarity matrix defined by Blondel et al. Section 4 shows that the similarity

matrix defined by Blondel et al. is the solution of an optimization problem. Sections 5 and 6 analyze

different low-rank approximations of this optimization problem. Section 7 analyzes the complexity of

our algorithmsandSection8presents experimental results. Andfinally, Section9givesour conclusions.

2. Notations

Throughout, GA and GB stand for graphs with respectively m and n nodes. These graphs are con-

veniently represented by A ∈ Rm×m and B ∈ Rn×n, their respective adjacency matrices, i.e. Aij = 1

(resp. Bij = 1) if there is an edge fromnode i to node j inGA (resp.GB), otherwise Aij = 0 (resp. Bij = 0).

And CA(i) and PA(i) denote respectively the set of children and parents of node i in GA.

In this paper, we use the following matrix functions:

• The Frobenius inner product defined as

〈·, ·〉F : Rm×n × Rm×n→ R : S1, S2 �→ 〈S1, S2〉F := tr
(
ST1 S2

)
,

along with the associated Frobenius norm, ‖S‖F :=
√〈S, S〉F .

• The vectorization of a matrix is defined as

vec : Rm×n→ Rmn : S =
[
S(·, 1) · · · S(·, n)

]
�→ vec(S) =

⎡⎢⎢⎢⎢⎣
S(·, 1)
...

S(·, n)

⎤⎥⎥⎥⎥⎦ .

We further consider the following sets of matrices of Frobenius norm 1:

S(m, n) := Norm(1,m, n) = {
S ∈ Rm×n : ‖S‖F = 1

}
,

Sk(m, n) :=
⎧⎨⎩UÎkV

T ∈ Rm×n : U ∈ St(k,m), V ∈ St(k, n),

Îk = Ik/ ‖Ik‖F = Ik/
√

k

⎫⎬⎭ , and

S�k(m, n) :=
⎧⎨⎩UDVT ∈ Rm×n : U ∈ St(k,m), V ∈ St(k, n),

D diagonal, ‖D‖F = 1

⎫⎬⎭ ,

where St(k,m) denotes the Stiefel manifold, i.e.

St(k,m) :=
{
U ∈ Rm×k : UTU = Ik

}
.
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That is, Sk(m, n) is the set of allm×nmatriceswith unit Frobenius norm and k nonzero equal singular

values, and S�k(m, n) is the set of allm× nmatrices with unit Frobenius norm and rank less than or

equal to k.

O(m) denotes the set of orthogonal matrices of order m, i.e.

O(m) :=
{
Q ∈ Rm×m : QTQ = Im = QQT

}
.

Diag(k,m, n) denotes a set of diagonal matrices defined as follows

Diag(k,m, n) :=
{
D ∈ Rm×n : D diagonal, and Dii = 0 for all i > k

}
.

SSkew(k) denotes the set of skew-symmetric matrices of order k. SSym(k) denotes the set of symmetric

matrices of order k. 1 is the matrix whose entries are all equal to 1.

Let H be a Hilbert space and S , a non empty algebraic subset of H. A vector ξ ∈ H is an analytic

admissible direction for S at S ∈ S if there exists an analytic curve γ (t) : R �→ H with γ (0) = S, and

γ (t) ∈ S , for all t � 0, such that

lim
t→0

γ (t)− γ (0)
t

= ξ.
According to [6, Proposition 2], the contingent cone (see, e.g., [7]) to S at S, denoted CSS , is equal to the

set of all analytic admissible directions for S at S, i.e.

CSS =
⎧⎨⎩ γ̇ (0) : γ is an analytic curve with γ (0) = S,

and γ (t) ∈ S , for all t � 0.

⎫⎬⎭ .

The normal cone to S at S, denoted NSS , is defined as

NSS := {
ζ ∈ H : 〈ζ, ξ 〉F � 0,∀ξ ∈ CSS

}
.

3. The similarity matrix

Node-to-node similarity measures compare the nodes of a graph GA with the nodes of an other

graph GB according to some similarity criterion. In [1], Blondel et al. introduce a recursive requirement

which states that the similarity between node i and node j should be large if the similarity between

the neighbors of node i and the neighbors of node j is large. More specifically, they define a similarity

measure by means of the following algorithm.

Algorithm A0

Given: graphs GA and GB respectively of order m and n.

S0← 1/ ‖1‖F ∈ Rm×n
for t = 1, 2, . . . , tmax do

St ← M(St−1)∥∥M(St−1)∥∥F , with [M(S)]ij :=
∑

k∈CA(i)
l∈CB(j)

Skl +
∑

k∈PA(i)
l∈PB(j)

Skl

endfor

S← St

where tmax is an even number that is “sufficiently large”.

In this algorithm, they first initialize all similarity scores to the same value, and further update

them in the reinforcement loop, that can be justified as follows:

• [M(St−1)]ij : Stij , the similarity score between node i and node j at step t, is the sum of all (k, l)

entries of St−1 such that node k is a child of node i in GA and node l is a child of node j in GB, plus the
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sum of all (k, l) entries of St−1 such that node k is a parent of node i in GA and node l is a parent of

node j in GB. Doing so, the similarity score between two nodes increases if they have many highly

similar children or parents.

• M(St−1)/
∥∥∥M(St−1)∥∥∥

F
: since they are not interested in the absolute value of Stij but only in the

relative score of two different pairs, they normalize the whole similarity matrix St to avoid over-

or under-flow.

One can rewriteM(S) in terms of matrix operations over S, i.e.

[M(S)]ij =
∑
k,l

AikSklBjl +
∑
k,l

AkiSklBlj =
[
ASBT + ATSB

]
ij
. (1)

Since vec
(
ASBT

)
= (B⊗ A) vec(S), Eq. (1) can be rewritten under its so-called vector form:

vec(M(S)) = M vec(S) :=
(
B⊗ A+ BT ⊗ AT

)
vec(S).

In [1], Blondel et al. show that Algorithm A0 is in fact the power method applied to the matrix M.

This matrix is non-negative and hence, according to Perron–Frobenius Theorem, there exists a real

positive eigenvalue ρ , called the Perron root, such that any other eigenvalue λ satisfies |λ| � ρ . Since
M is symmetric, its eigenvalues are real and hence M can have at most two extremal eigenvalues

(i.e. of maximum modulus), ρ and possibly −ρ . As a direct consequence, M2 has only one extremal

eigenvalue, namely ρ2 (but possibly of multiplicity higher than one), and the even iterates of the re-

inforcement loop in Algorithm A0 converge towards S2∞, the normalized orthogonal projection of S0

onto

Eρ2(M2) :=
{
S s.t. ρ2S =M2(S)

}
,

the eigenspace ofM2 associated to ρ2, with respect to the Frobenius inner product (see [1] for details

about the proof of convergence). Notice that, since S2∞ is a fixed point of the even iterates of the

reinforcement loop in Algorithm A0, one can write

ρ2S2∞ =M2(S2∞) .

4. From similarity to optimization

In this section, we show that the similarity matrix defined by Blondel et al. is the solution of an

optimization problem.

One can first observe that the iteration in Algorithm A0 is such that

St ∈ argmax
‖S‖F=1

〈
S,M(St−1)

〉
F
.

This result is easy to prove using to the Cauchy–Schwarz inequality

〈
St,M(St−1)

〉
F
=

〈
M(St−1)∥∥M(St−1)∥∥F ,M(St−1)

〉
F

=
∥∥∥M(St−1)∥∥∥

F

= ‖S‖F
∥∥∥M(St−1)∥∥∥

F

CS

�
〈
S,M(St−1)

〉
F
, since ‖S‖F = 1.

Moreover, one can prove that S2∞ is a solution of

argmax
S∈S(m,n)

�(S) , where �(S) :=
〈
S,M2(S)

〉
F
= tr

(
ST M2(S)

)
, (2)

andM2(S) = M(M(S)) is defined in Eq. (1). Indeed, since the Perron root is equal to the spectral

radius, i.e.

ρ = max‖S‖F=1
‖M(S)‖F , (3)
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and the mapM(·) is self-adjoint (i.e. 〈S1,M(S2)〉F = 〈M(S1), S2〉F ), we have

max‖S‖F=1
〈
S,M2(S)

〉
F
= max‖S‖F=1

‖M(S)‖2F = ρ2 =
〈
S2∞,M2

(
S2∞

)〉
F
. (4)

The problem (2) maximizes a continuous function � on a compact domain. Hence, according to

first order optimality condition, if S2∞ is a maximizer of (2) then S2∞ is a stationary point of (2). The

concept of stationary point in the context of (2) is recalled in Definition 1 below.

The gradient of a differentiable function� at a point S, denoted grad�(S), is defined as the unique

vector that satisfies

〈ξ, grad�(S)〉F = D�(S)[ξ ] , (5)

for all admissible directions ξ .

Definition 1. A point S ∈ S(m, n) is a stationary point of (2) if grad�(S) belongs to NSS(m, n), the
normal cone to S(m, n) at S, i.e.

grad�(S) ∈ NSS(m, n) := {
ζ : 〈ζ, ξ 〉F � 0,∀ξ ∈ CSS(m, n)

}
. (6)

For example, the tangent cone to S(m, n) = {S : ‖S‖F = 1} at a point S is given by

CSS(m, n) = {
ξ : 〈ξ, S〉F = 0

}
,

and the normal cone to S(m, n) is
NSS(m, n) := {

ζ : 〈ζ, ξ 〉F � 0,∀ξ ∈ CSS(m, n)
} = {αS : α ∈ R} .

Since the linear mapM is self-adjoint (i.e. 〈S1,M(S2)〉F = 〈M(S1), S2〉F ) one can write

D�(S)[ξ ] =
〈
ξ,M2(S)

〉
F
+

〈
S,M2(ξ)

〉
F
=

〈
ξ, 2M2(S)

〉
F
, (7)

and the gradient of� at a point S is then 2M2(S). And clearly, one can observe that

grad�(S2∞) = 2M2(S2∞) = 2ρ2S2∞ ∈ NS2∞S(m, n) =
{
αS2∞ : α ∈ R

}
, (8)

and it follows directly that S2∞ is a stationary point of (2).

When S is large, Algorithm A0 becomes relatively expensive in terms of computational cost. Hence

one can think of modifying the problem in order to find an approximation of S at lower cost. This

paper considers two kinds of low-rank approximations of the similarity matrix S, either by matrices

of norm 1 with k nonzero identical singular values or by matrices of norm 1 with at most k nonzero

(not necessarily identical) singular values. We first characterize the stationary points of the associated

optimization problems and further consider iterative algorithms to find one of them.

5. Approximation with identical singular values

We first consider the following approximations for the feasible set of (2).

Problem 1. Solve (2) with S(m, n) replaced by Sk(m, n), the set of rank-k matrices of norm 1 with k

identical singular values, i.e.

Sk(m, n) :=
⎧⎨⎩UÎkV

T ∈ Rm×n : U ∈ St(k,m), V ∈ St(k, n),

Îk = Ik/ ‖Ik‖F = Ik/
√

k

⎫⎬⎭ . (9)
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Note that if the extremal eigenvalues (i.e. eigenvalues of maximum modulus) ofM are positive,

then Problem 1 is equivalent to the problem considered in [5].

5.1. The feasible set of Problem 1 and its stationary points

Problem 1 is defined on a feasible set that has amanifold structure [8]. In this case, the tangent cone

is called the tangent space since it admits a structure of vector space (see [9, Section 3.5] for details).

The tangent space to the Stiefel manifold St(k,m) at a point U is given by

CUSt(k,m) :=
{
ξ : ξ TU + UTξ = 0k

}
;

see, e.g., [9, Section 3.5.7]. Equivalently,

CUSt(k,m) =
{
U	+ U⊥K : 	 ∈ SSkew(k), K ∈ Rm−k×k} . (10)

where U⊥ denotes any matrix such that
[
U U⊥

]T [
U U⊥

]
= Im. For Problem 1, it follows that the

tangent space to Sk(m, n) at a point S = UÎkV
T ∈ Sk(m, n) is given by

CSSk(m, n) := {γ̇ (0) : γ curve on Sk(m, n)with γ (0) = S}

=
⎧⎨⎩U	VT + UKT

VV
T⊥ + U⊥KUV

T s.t.

	 ∈ SSkew(k), KU ∈ Rm−k×k, KV ∈ Rn−k×k

⎫⎬⎭ .

And subsequently, the normal space to Sk(m, n) at a point S = UÎkV
T ∈ Sk(m, n) is given by

NSSk(m, n) := {
ζ : 〈ζ, ξ〉F � 0,∀ξ ∈ CSSk(m, n)

}
=

{
UHVT + U⊥KVT⊥ s.t. H ∈ SSym(k), K ∈ Rm−k×n−k} .

As mentioned in Definition 1, a matrix S is defined to be a stationary point of (2) if grad�(S)

(= 2M2(S)) belongs to the normal cone to the feasible set at S. Hence, S = UÎkV
T ∈ Sk(m, n) is a

stationary point of Problem 1 if and only if

M2(S) ∈ NSSk(m, n) =
⎧⎨⎩UHVT + U⊥KVT⊥ s.t.

H ∈ SSym(k), K ∈ Rm−k×n−k

⎫⎬⎭ . (11)

5.2. Algorithm for Problem 1 and its convergence analysis

We now propose an algorithm and further prove that it converges towards stationary points of

Problem 1 (see Theorem 5.5).

Algorithm A1

1: S0← 1/ ‖1‖F
2: for t = 1, 2, . . .
3: Compute St ∈ Sk(m, n) according to

St (= Ut Îk[Vt]T ) ← f (St−1) := argmax
S̃∈Sk(m,n)

〈
S̃,M2(St−1)

〉
F

(12)

4: end

whereM2(S) =M(M(S)) is defined in Eq. (1).
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LetM2(St−1) have an ordered singular value decomposition (SVD)

M2(St−1) =
[
P1 P2

] ⎡⎣
1 0

0 
2

⎤⎦⎡⎣QT
1

QT
2

⎤⎦ , (13)

with P1 ∈ Rm×k, P2 ∈ Rm×(m−k), Q1 ∈ Rn×k, Q2 ∈ Rn×(n−k), 
1 ∈ Rk×k and 
2 ∈ R(m−k)×(n−k).
Let ν(St−1) denote the singular value gap,

ν(St−1) := σmin(
1)− σmax(
2) = σk(M2(St−1))− σk+1(M2(St−1)). (14)

When ν(St−1) �= 0 (i.e., ν(St−1) > 0), the next iterate St is uniquely defined by (12) and is equal to

P1 ÎkQ
T
1 , as we will show in Lemma 5.1 below. When ν(St−1) = 0, however, St is no longer uniquely

defined by (12); in this case, St is chosen arbitrarily in argmax
S̃∈Sk(m,n)

〈
S̃,M2(St−1)

〉
F
. In practice, in our

numerical experiments, we systematically choose St := P1 ÎkQ
T
1 , where P1 and Q1 are returned by the

SVD function.

We first state a few intermediate results in order to prove convergence of Algorithm A1 to the

stationary points of Problem 1.

Lemma 5.1. Let M ∈ Rm×n and its ordered singular value decomposition

M =
[
P1 P2

] ⎡⎣
1 0

0 
2

⎤⎦⎡⎣QT
1

QT
2

⎤⎦ = P
QT (15)

with P1 ∈Rm×k, P2 ∈Rm×(m−k), Q1 ∈Rn×k, Q2 ∈Rn×(n−k),
1 ∈ Rk×k and
2 ∈ R(m−k)×(n−k). Then
max

S=UÎkV
T∈Sk(m,n)

〈S,M〉F = tr
(
Îk
1

)
. (16)

Moreover, if ν := σmin(
1)−σmax(
2) > 0, then themaximizing solution S is unique and equals P1 ÎkQ
T
1 .

Proof. We have

tr
(
ÎkU

TMV
)
�

k∑
i=1
σi(ÎkU

TMV)

�
k∑

i=1
σi(Îk) σi(
1) � tr

(
Îk
1

)
(17)

according to [10, Formulas 3.1.10b, and Lemma 3.3.1]. The upper bound is reached for U= P1, and

V =Q1. The uniqueness of P1 ÎkQ
T
1 is a well known result discussed, e.g., in [10, Theorem 3.1.1 and

3.1.1’]. �
Theorem 5.2. LetM2(S) have an ordered singular value decomposition

M2(S) =
[
P1 P2

] ⎡⎣
1 0

0 
2

⎤⎦⎡⎣QT
1

QT
2

⎤⎦ = P
QT , (18)

with P1 ∈ Rm×k, P2 ∈ Rm×(m−k), Q1 ∈ Rn×k, Q2 ∈ Rn×(n−k), 
1 ∈ Rk×k and 
2 ∈ R(m−k)×(n−k),
and S+ := f (S), with f the function defined in Algorithm A1. Then

�(S+)−�(S) �
∥∥∥M(S+ − S)

∥∥∥2
F
+ ν √k

∥∥∥S+ − S
∥∥∥2
F

(19)

with � the function defined in Eq. (2), and ν = σmin(
1) − σmax(
2). In particular, Algorithm A1 is an

ascent iteration for�.
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Proof. Adding and subtracting S to S+ and using the self-adjointness ofM yield

�(S+ − S + S) =
∥∥∥M(S+ − S)

∥∥∥2
F
+ 2

〈
S+ − S,M2(S)

〉
F
+�(S) (20)

According to Lemma 5.1, S+ = P1 ÎkQ
T
1 . Hence, using the ordered singular value decomposition of

M2(S), the second term of the right-hand side of Eq. (20) becomes〈
S+ − S,M2(S)

〉
F
= tr

((
Îk − QT

1 S
TP1

)

1

)
− tr

(
QT
2 S

TP2
2

)
(21)

Moreover, one can observe that(
Îk − QT

1 (UÎkV
T )TP1

)
ii

� 1√
k

(
1−

∥∥∥VT (Q1)·i
∥∥∥
F

∥∥∥UT (P1)·i
∥∥∥
F

)
� 0 . (22)

As a consequence, the first term of the right hand side of (21) is bounded below by

tr
((

Îk − QT
1 S

TP1

)

1

)
� tr

(
Îk − QT

1 S
TP1

)
σmin(
1) , (23)

and the second term of the right hand side of (21) is bounded below by

−tr
(
QT
2 S

TP2
2

)
� −tr

(∣∣∣QT
2 S

TP2Im−k,n−k
∣∣∣) σmax(
2) . (24)

Using (23) and (24) with (21) yields〈
S+ − S,M2(S)

〉
F

� tr
(
Îk − QT

1 S
TP1

)
σmin(
1)

−tr
(∣∣∣QT

2 S
TP2Im−k,n−k

∣∣∣) σmax(
2) .

(25)

Adding and subtracting σmax(
2) to σmin(
1) along with QT
1 S

TP1 � |QT
1 S

TP1| yields〈
S+ − S,M2(S)

〉
F

� tr
(
Îk − QT

1 S
TP1

)
(σmin(
1)− σmax(
2))

+
[
tr
(
Îk

)
− tr

(∣∣∣QTSTPIm,n

∣∣∣)] σmax(
2) .

(26)

One can observe that

tr
(∣∣∣QTSTPIm,n

∣∣∣)= tr
(
QTV ÎkU

TPĨm,n

)
= tr

(
ÎkU

TPĨm,nQ
TV

)

=
k∑

i=1
1√
k
(U·i)TPĨm,nQTV·i �

k∑
i=1

1√
k

∥∥∥PTU·i∥∥∥
F

∥∥∥QTV·i
∥∥∥
F
= √k = tr

(
Îk

)

where (Ĩm,n)ij = (Im,n)ij sign
(
(Q·j)TV ÎkUTP·i

)
. And Eq. (26) reduces to〈

S+ − S,M2(S)
〉
F

� tr
(
Îk − UTP1 ÎkQ

T
1 V

)
(σmin(
1)− σmax(
2)) . (27)

Finally, one can see that∥∥∥S+ − S
∥∥∥2
F
= 2

1√
k
tr
(
Îk − UTP1 ÎkQ

T
1 V

)
. (28)

Combining (28), (27), and (20) gives the desired result. �

Lemma 5.3. If S is a fixed point of Algorithm A1, then S is a stationary point of Problem 1.
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Proof. Let S = UÎkV
T be a fixed point. Then, in view of Lemma 5.1, the ordered singular value de-

composition ofM2(UÎkV
T ) = U+
1[V+]T + U⊥
2V

T⊥ with UÎkV
T = U+ Îk[V+]T . Since UÎkV

T and

U+ Îk[V+]T are two singular value decompositions of the samematrix, there must be a square orthog-

onal matrix Q such that U+ = UQ and V+ = VQ .

Hence,

M2(UÎkV
T ) = U Q
1Q

T VT + U⊥
2V
T⊥ , (29)

and we conclude that S = UÎkV
T is a stationary point of Problem 1 since Eq. (29) satisfies the station-

arity condition (11). �

Lemma 5.4. Let S be a nonstationary point of Problem 1. There exists an ε > 0 such that for all ‖Sε‖F < ε,
S + Sε is not a stationary point.

Proof. The critical points of an analytic (non-constant) function form a closed set with empty interior

(actually an analytic set). �
The next theorem states the main convergence result for Algorithm A1. Note that the existence of

an accumulation point is guaranteed by the fact that the iteration evolves on the compact set Sk(m, n).
In practice, in our experiments, the sequences of iterates always had a single accumulation point S′,
with ν(S′) �= 0; by virtue of the next theorem, it thus follows that S′ is a stationary point of Problem 1.

Moreover, since the iteration is an ascent iteration for�, convergence to stationary points that are not

local maxima is not expected to occur in practice.

Theorem 5.5. Let S′, with ν(S′) �= 0 (14), be an accumulation point of the sequence {Si} constructed by

Algorithm A1. Then S′ is a stationary point of Problem 1.

Proof. This proof relies heavily on [11, Section 1.3 and Theorem 3]. Let S′ be such an accumulation

point, i.e. Si → S′ for i ∈ K where K ∈ N is an infinite index set. Assume that S′ = U′ ÎkV ′T is not a

stationary point of the iteration. Let B̄ε(S
′) denote the closed ball {S ∈ Rm×n : ‖S− S′‖ � ε}. One can

choose an ε > 0 using Lemma 5.4 such that all S ∈ B̄ε(S
′) are nonstationary points with nonzero gap.

In view of Lemma 5.3, these points are not fixed points either, i.e.,
∥∥S+ − S

∥∥2
F > 0. In view of Theorem

5.2,�(S+)−�(S) > 0 for all S ∈ B̄ε(S
′).

In order to proceed, we need to show that �(S+) − �(S) is actually bounded away from zero

on B̄ε(S
′), i.e., (30). To this end, it is sufficient to show that S �→ �(S+) − �(S) is continuous

for all S ∈ B̄ε(S
′). The function S �→ �(S) is continuous in view of the definition of � in (2). To

conclude the continuity argument, we show that the function S �→ S+ is also continuous at all

points where the gap is nonzero. To see this, observe that S �→ S+ is the composition of the func-

tion S �→ M2(S) and of the function M �→ P1 ÎkQ
T
1 = 1

k
P1Q

T
1 defined from Lemma 5.1. The first

function is continuous; it remains to show that the second one is. Consider M< ∈ M2(B̄ε(S
′)). Let

LM be an orthonormal basis of the dominant k-dimensional left singular subspace of M such that

M �→ LM is continuous at M<; this is possible in view of [12, Theorem 6.4]. Let RM be chosen likewise

for the right singular subspace. We then have P1 = LMP̃1 and Q1 = RMQ̃1, where P̃1, Q̃2 ∈ O(k).

Thus M = LMP̃1
1Q̃
T
1 R

T
M + P2
2Q

T
2 and LTMMRM = P̃1
1Q̃

T
1 = P̃1Q̃

T
1 Q̃1
1Q̃

T
1 . Hence, in view of

the polar decomposition, P̃1Q̃
T
1 = LTMMRM((L

T
MMRM)

T LTMMRM)
−1/2. Finally, P1QT

1 = LMP̃1Q̃
T
1 R

T
M =

LMLTMMRM((L
T
MMRM)

T LTMMRM)
−1/2RTM . This function is continuous at M = M<. (Note that the argu-

ment of the square root is positive-definite locally in view of the nonzero gap assumption.) Since M<

is arbitrary, the claim follows. We have thus shown that

δ := min‖S−S′‖F�ε
�(S+)−�(S) > 0 . (30)

Since Si → S′ for i ∈ K , there exists a k ∈ K such that for all i � k, i ∈ K ,∥∥∥Si − S′
∥∥∥2
F

� ε and thus �(Si+1)−�(Si) � δ . (31)
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Hence, for any two consecutive Si, Si+j points of the subsequence, with i, i + j � k, i, i + j ∈ K , we

must have

�(Si+j)−�(Si) � �(Si+1)−�(Si) � δ > 0 . (32)

But, since� is continuous, the sequence {�(Si)}i∈K must converge. This is contradicted by (32), which

implies S′ has to be a stationary point of Problem 1. �

6. Approximation of rank at most k

We now consider the following approximations for the feasible set of (2).

Problem 2. Solve (2) with S(m, n) replaced by S�k(m, n), the set of matrices of norm 1 with rank at

most k, i.e.

S�k(m, n) :=
⎧⎪⎨⎪⎩
UDVT ∈ Rm×n : U ∈ St(k,m), V ∈ St(k, n),

D diagonal, ‖D‖F = 1

⎫⎪⎬⎪⎭ . (33)

Note that S�k(m, n) is an algebraic set since rank(S) � k is equivalent to saying that all minors of

S of order k+ 1 are equal to zero.

6.1. The feasible set of Problem 2 and its tangent cone

Problem 2 is defined on a feasible set that does not have a manifold structure. Indeed, as we will

further see, the tangent cone CSS�k(m, n) is no longer a tangent space when rank(S) < k.

Theorem 6.1. Let S ∈ S�k(m, n) be of rank r � k and let

S =
[
Ur Ur⊥

] ⎡⎣Dr 0

0 0

⎤⎦⎡⎣ VT
r

VT
r⊥

⎤⎦
be and ordered singular value decomposition, with Ur ∈ Rm×r , Ur⊥ ∈ Rm×(m−r), Vr ∈ Rn×r , Vr⊥ ∈
Rn×(n−k), Dr ∈ Diag(k, k, k).

The tangent cone to S�k(m, n) at S is given by

CSS�k(m, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Ur Ur⊥

] ⎡⎢⎣A B

C Rk−r

⎤⎥⎦
⎡⎢⎣ VT

r

VT
r⊥

⎤⎥⎦ :
B, C arbitrary, tr(ADr) = 0,

rank(Rk−r) � k − r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(34)

Proof. Let us first define the surjection

ψ : M̂→ S�k(m, n) : (U,D, V) �→ UDVT (35)

where M̂ := O(m)×(Diag(k,m, n)∩Norm(1,m, n))×O(n). Let γ̂ (t) : R �→ Rm×m×Rm×n×Rn×n
be an analytic curve with γ̂ (0) = (U,D, V), and γ̂ (t) ∈ M̂, for all t � 0, and γ be a curve defined as

γ (t) : R �→ Rm×n : t→ γ (t) := ψ(γ̂ (t)) .
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Clearly, γ (0) = UDVT , and γ (t) ∈ S�k(m, n), for all t � 0. Moreover, since ψ is analytic, γ is also

analytic, and we have

γ̇ (0) = Dψ(U,D, V)
[ ˙̂γ (0)] .

This holds for any analytic curve γ̂ , so one can write

CSS�k(m, n) ⊇
⋃

(U,D,V)∈ψ−1(S)
Dψ(U,D, V)

[
C(U,D,V)M̂

]
. (36)

The next step, which will be fulfilled in (48), is to show that the right-hand side of (36) is equal to

the right-hand side of (34).

One can show that M̂ is a manifold, and its tangent space at a point Ŝ = (U,D, V) ∈ ψ−1(S) is
given by

C
Ŝ
M̂ =

⎧⎪⎨⎪⎩
(	UU, ξD, 	VV) : 	T

U + 	U = 0m , 	
T
V + 	V = 0n,

ξD ∈ Diag(k,m, n) , tr
(
ξ TDD

)
= 0

⎫⎪⎬⎪⎭ . (37)

Let us choose ξ := (ξU, ξD, ξV ) = (	UU, ξD, 	VV) ∈ C
Ŝ
M̂, and write the differential ofψ at Ŝ in that

direction

Dψ(Ŝ) [ξ ] = ξUDVT + UξDV
T + UDξ TV = 	US + UξDV

T + S	T
V . (38)

Let us first change the variables and rewrite	U and	V as follows

	U =
[
Ur Ur⊥

]
	̃U

⎡⎢⎣ UT
r

UT
r⊥

⎤⎥⎦ , and 	V =
[
Vr Vr⊥

]
	̃V

⎡⎢⎣ VT
r

VT
r⊥

⎤⎥⎦ . (39)

The conditions on	U and	V can directly be translated in terms of 	̃U and 	̃V , i.e.

	̃T
U + 	̃U = 0m, and 	̃T

V + 	̃V = 0n .

Moreover, since (U,D, V) is in ψ−1(S), there must be P ∈ O(k) ∩ {−1, 0, 1}k×k and Q ∈ O(k) ∩
{−1, 0, 1}k×k such that

[
PT 0
0 Im−k

]
D
[
Q 0
0 In−k

]
=

[
Dr 0
0 0

]
. Let us change the variable and rewrite ξD as

follows

ξD =
[
P 0
0 Im−k

]
ξ̃D

[
QT 0
0 Im−k

]
. (40)

The conditions on ξD translate to

ξ̃D ∈ Diag(k,m, n), and tr
(
ξ̃ TD

[
Dr 0
0 0

])
= 0.

Finally, let us define UP := U
[
P 0
0 Im−k

]
, VQ := V

[
Q 0
0 Im−k

]
, and d1, . . . , ds, r1, . . . , rs such that

Dr =
⎡⎣ d1Ir1

. . .
dsIrs

⎤⎦
with d1 > d2 > · · · > ds > 0 and r1 + r2 + · · · + rs = r. Since

S = UP

⎡⎢⎣Dr 0

0 0

⎤⎥⎦ VT
Q =

[
Ur Ur⊥

] ⎡⎢⎣Dr 0

0 0

⎤⎥⎦
⎡⎢⎣ VT

r

VT
r⊥

⎤⎥⎦ ,
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one can show that

[
Ur Ur⊥

]T
UP = RU :=

⎡⎢⎢⎣
R1

. . .
Rs

R⊥U

⎤⎥⎥⎦ (41)

and

[
Vr Vr⊥

]T
VQ = RV :=

⎡⎢⎢⎣
R1

. . .
Rs

R⊥V

⎤⎥⎥⎦ (42)

where R1, . . . , Rs, R⊥U , and R⊥V are square orthogonal matrices respectively of order r1, . . . , rs,m− r

and n− r.

By using the Eqs. (39), (40), (41), and (42), one can rewrite (38) as

Dψ(Ŝ) [ξ ] = [ Ur Ur⊥ ]
(
	̃U

[
Dr 0
0 0

]
+ RU ξ̃DR

T
V +

[
Dr 0
0 0

]
	̃T

V

) [
VT
r

VT
r⊥

]
. (43)

Let us write 	̃U , ξ̃D, and 	̃V as follows

	̃U =
⎡⎢⎣ωU −KT

U

KU ω⊥U

⎤⎥⎦ , ξ̃D =

⎡⎢⎢⎢⎢⎣
ξ̃r1

. . .

ξ̃rs
ξ̃⊥

⎤⎥⎥⎥⎥⎦ , and 	̃V =
⎡⎣ωV −KT

V

KV ω⊥V

⎤⎦ .

The conditions on 	̃U , ξ̃D, and 	̃V translate to ωT
U + ωU = ωT

V + ωV = 0r , KU , KV , arbitrary matrices,

ξ̃⊥ ∈ Diag(k − r,m− r, n− r), and ξ̃ri ∈ Diag(ri, ri, ri) such that

tr

⎛⎜⎜⎝
⎡⎢⎢⎣
ξ̃r1

. . .

ξ̃rs

⎤⎥⎥⎦
T

Dr

⎞⎟⎟⎠ = 0 . (44)

One can further change the variables and rewrite ωU and ωV as follows

ωU = ω1 + ω2 , and ωV = ω1 − ω2 . (45)

The previous conditions translate to ωT
1 + ω1 = ωT

2 + ω2 = 0r . Eq. (43) then becomes

Dψ(Ŝ) [ξ ] =
[
Ur Ur⊥

] ⎡⎢⎣ A DrK
T
V

KUDr R⊥U ξ̃⊥ R⊥V T

⎤⎥⎦
⎡⎢⎣ VT

r

VT
r⊥

⎤⎥⎦ , (46)

with

A = ω1Dr − Drω1 +
⎡⎢⎣ R1 ξ̃r1R

T
1

. . .
Rs ξ̃rs R

T
s

⎤⎥⎦+ ω2Dr + Drω2 . (47)

One can first see that Skew(A) = ω2Dr +Drω2. Moreover, the skew-symmetric part of A can be made

equal to any skew-symmetric matrix	 by choosing ω2 such that

[ω2]ij = 	ij

[Dr]ii + [Dr]jj .
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One can further see that

Sym(A) = ω1Dr − Drω1 +
⎡⎢⎢⎣

R1 ξ̃r1R
T
1

. . .

Rs ξ̃rs R
T
s

⎤⎥⎥⎦ .
Moreover, the symmetric part of A can be made equal to any symmetric matrix H with tr(HDr) = 0

by choosing ω1 and R1, . . . , Rs, ξ̃r1 , . . . , ξ̃rs according to the constraints: block-partition H as

H =

⎡⎢⎢⎢⎢⎣
H11 · · · H1s

...
...

Hs1 · · · Hss

⎤⎥⎥⎥⎥⎦ ,

with Hij ∈ Rri×rj and choose

ω1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
H12

d2−d1 · · · H1s

ds−d1
H21

d1−d2 0
. . .

...

...
. . . 0

Hs−1,s
ds−ds−1

Hs1

d1−ds · · ·
Hs,s−1

ds−1−ds 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Riξ̃ri R

T
i = Hii ,

to get Sym(A) = H. The condition tr(HDr) = 0 comes from (44).

These observations yield that A can be made equal to any arbitrary matrix as long as

tr(ADr) = 0 .

Returning to (46), let us define B := DrK
T
V , C := KUDr , and Rk−r := R⊥U ξ̃⊥ R⊥V T . Clearly, B and C

can be set to any matrix by choosing KT
V = D−1r B and KU = CD−1r , and, since ξ̃⊥ ∈ Diag(k − r,m −

r, n − r), Rk−r can be any arbitrary matrix of rank less or equal to k − r by choosing R⊥U , ξ̃⊥, R⊥V T

equal to its ordered singular value decomposition. In view of (36), we conclude that

CSS�k(m, n) ⊇

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Ur Ur⊥

] ⎡⎢⎣A B

C Rk−r

⎤⎥⎦
⎡⎣ VT

r

VT
r⊥

⎤⎦ :
B, C arbitrary, tr(ADr) = 0,

rank(Rk−r) � k− r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(48)

The “⊆” part follows directly from [13, Theorem 1], that is, if t �→ S(t) is a matrix-valued curve,

then there exists a decomposition S(t) = U(t)D(t)V(t)T , where U(·) and V(·) are orthonormal and

analytic and D(·) is diagonal and analytic. �

6.2. Characterization of the stationary points of Problem 2

Let now S ∈ S�k(m, n) be of rank r � k, with an ordered singular value decomposition given by

S =
[
Ur Ur⊥

] ⎡⎣Dr 0

0 0

⎤⎦⎡⎣ VT
r

VT
r⊥

⎤⎦ .
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Since grad�(S) = 2M2(S), S is a stationary point of Problem 2 if and only if

M2(S) ∈ NSS�k(m, n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
Ur Ur⊥

] ⎡⎣αDr 0

0 R⊥

⎤⎦⎡⎣ VT
r

VT
r⊥

⎤⎦ :
α ∈ R, R⊥ = 0 if r < k, R⊥ arbitrary if r = k

⎫⎪⎪⎪⎬⎪⎪⎪⎭

=
{
αS + Ur⊥R⊥VT

r⊥ : α ∈ R, R⊥ = 0 if r < k, R⊥ arbitrary if r = k
}

(49)

6.3. Algorithm for Problem 2 and its convergence analysis

We now propose the following algorithm to find a stationary point of Problem 2.

Algorithm A2

1: S0← 1/ ‖1‖F
2: for t = 1, 2, . . .
3: Compute St ∈ Sk(m, n) according to

St (= UtDt[Vt]T ) ← f (St−1) := argmax
S̃∈S�k(m,n)

〈
S̃,M2(St−1)

〉
F
. (50)

4: end

whereM2(S) =M(M(S)) is defined in Eq. (1).

When ν(St−1) �= 0 (14) or σk(M2(St−1)) = 0, the next iterate St is uniquely defined by (50) and is

equal to 1
‖
1‖F P1
1Q

T
1 , as we will show in Lemma 6.2 below. Otherwise, (i.e., when σk(M2(St−1)) =

σk+1(M2(St−1)) > 0), St is no longer uniquely defined by (50); in this case, St is chosen arbitrarily in

argmax
S̃∈S�k(m,n)

〈
S̃,M2(St−1)

〉
F
. This case was never observed in our numerical experiments, but if it did, a

possible choice would have been St := 1
‖
1‖F P1
1Q

T
1 , where P1, 
1 and Q1 are returned by the SVD

function.

We first state a few intermediate results in order to prove convergence of Algorithm A2 to the

stationary points of Problem 2 (see Theorem 6.6).

Lemma 6.2. Let M ∈ Rm×n and its ordered singular value decomposition

M =
[
P1 P2

] ⎡⎢⎣
1 0

0 
2

⎤⎥⎦
⎡⎢⎣QT

1

QT
2

⎤⎥⎦ = P
QT (51)

with P1 ∈ Rm×k, P2 ∈ Rm×(m−k), Q1 ∈ Rn×k, Q2 ∈ Rn×(n−k), 
1 ∈ Rk×k and 
2 ∈ R(m−k)×(n−k).
Then

max
S=UDVT∈S�k(m,n)

〈S,M〉F = tr
(

̂1
1

)
. (52)

where 
̂1 := 
1/ ‖
1‖F .
Moreover, if ν := σmin(
1) − σmax(
2) > 0 or if ‖
2‖F = 0, then the maximizing solution S is

unique and equals P1
̂1Q
T
1 .



Author's personal copy

T.P. Cason et al. / Linear Algebra and its Applications 438 (2013) 1863–1882 1877

Proof. We have

tr
(
DVTMU

)
�

k∑
i=1
σi(DV

TMU) �
k∑

i=1
σi(D) σi(V

TMU) �
k∑

i=1
σi(D) σi(
1) � tr

(

̂1
1

)
(53)

according to [10, Formulas 3.1.10b, and Lemma 3.3.1]. The upper bound is reached for U = P1, D = 
̂1

and V = Q1. The uniqueness of P1
̂1Q
T
1 is a well known result discussed, e.g., in [10, Theorem 3.1.1

and 3.1.1’]. �

Theorem 6.3. Let S ∈ S�k(m, n) andM2(S) have an ordered singular value decomposition

M2(S) =
[
P1 P2

] ⎡⎣
1 0

0 
2

⎤⎦⎡⎣QT
1

QT
2

⎤⎦ = P
QT , (54)

with P1 ∈ Rm×k, P2 ∈ Rm×(m−k), Q1 ∈ Rn×k, Q2 ∈ Rn×(n−k), 
1 ∈ Rk×k and 
2 ∈ R(m−k)×(n−k),
and S+ := f (S), with f the function defined in Algorithm A2. Then

�(S+)−�(S) �
∥∥∥M(S+ − S)

∥∥∥2
F
, (55)

with � the function defined in Eq. (2), and ν = σmin(
1) − σmax(
2). Moreover, if ν = σmin(
1) −
σmax(
2) > 0, then the inequality becomes an equality iff S is a fixed point of the iteration, i.e. S+ = S.

Proof. Adding and subtracting S to S+ and using the self-adjointness ofM yield

�(S+ − S + S) =
∥∥∥M(S+ − S)

∥∥∥2
F
+ 2

〈
S+ − S,M2(S)

〉
F
+�(S) . (56)

One can observe that
〈
S+ − S,M2(S)

〉
F
is positive since S+maximizes the scalar productwithM2(S),

and hence〈
S+,M2(S)

〉
F

�
〈
S,M2(S)

〉
F
. (57)

The Eq. (56) combined with (57) gives the desired result.

Moreover, if ν = σmin(
1) − σmax(
2) > 0, Lemma 6.2 ensures that the maximizing solution is

unique. Hence, unless S+ = S, the last term of the right hand side is strictly positive. �

Lemma 6.4. If S is a fixed point of Algorithm A2 then S is a stationary point of Problem 2.

Proof. Let S = UDVT be a fixed point, i.e. S+ = U+D+[V+]T = UDVT and the ordered singular value

decomposition ofM2(UDVT ) is

M2(UDVT ) =
[
U+ U⊥

] ⎡⎣αD+

2

⎤⎦⎡⎣[V+]T
VT⊥

⎤⎦ , (58)

with σmin(αD
+)� σmax(
2). Remark that if the rank of U+D+[V+]T is lower than k, then σmin(αD

+)
= 0 and
2 = 0m−k,n−k .
Let us now remind that the gradient of� at a point S is 2M2(S). One can verify that this expression is

in the normal cone given by Eq. (49) and is hence a stationary point. �
Notice that all stationary points are not fixed points since 
2 has to be such that σmin(αD

+) �
σmax(
2).

Lemma 6.5. Let S be a nonstationary point of Problem 2. There exists an ε > 0 such that for all ‖Sε‖F < ε,
S + Sε is not a stationary point.
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Proof. Since S = UrDrV
T
r is not a stationary point, we have

2M2(UrDrV
T
r ) =

[
Ur Ur⊥

] ⎡⎣M11 M12

M21 M22

⎤⎦⎡⎣ VT
r

VT
r⊥

⎤⎦ , (59)

with either, if r = k,

δmax := max

⎛⎝∥∥∥∥∥M11 − ‖M11‖F
‖Dr‖F Dr

∥∥∥∥∥
2

F

, ‖M12‖2F , ‖M21‖2F
⎞⎠ > 0 , (60)

or, if r < k,

δmax := max

⎛⎝∥∥∥∥∥M11 − ‖M11‖F
‖Dr‖F Dr

∥∥∥∥∥
2

F

, ‖M12‖2F , ‖M21‖2F , ‖M22‖2F
⎞⎠ > 0 . (61)

SinceM2(·) is a continuous mapping, for all δ > 0 there always exists ε(δ) > 0 such that for all

‖Sε‖F < ε(δ), we have
∥∥∥M2(S + Sε)−M2(S)

∥∥∥
F
< δ. A reasoning similar to the one held for Lemma

5.4, when one chooses δ � δmax , yields the desired result. �
The next theorem states themain convergence result for AlgorithmA2. Note that the existence of an

accumulation point is guaranteed by the fact that the iteration evolves on the compact set S�k(m, n).
In practice, in our experiments, the sequences of iterates always had a single accumulation point S′,
with ν(S′) �= 0 or σk(M2(S′)) = 0; by virtue of the next theorem, it thus follows that S′ is a stationary
point of Problem 2.Moreover, since the iteration is an ascent iteration for�, convergence to stationary

points that are not local maxima is not expected to occur in practice.

Theorem 6.6. Let S′, with ν(S′) > 0 (14) or σk(M2(S′)) = 0, be an accumulation point of the sequence
{Si} constructed by A2. Then S′ is a stationary point of Problem 2.

Proof. A reasoning similar to the one held for Theorem 5.5, along with Theorem 6.3 and Lemmas 6.5,

6.4, yields the desired result. In this parallelism Theorem 5.2 is replaced by Theorem 6.3, which lacks

the term ν
√

k
∥∥S+ − S

∥∥2
F . However, Theorem 6.3 still ensures that�(S+)−�(S) > 0 holdswhenever

S is not a fixed point of the algorithm. The continuity argument for S+ still holds since we now simply

have S+ = LMLTMMRMRTM . Thus the reasoning in the proof of Theorem 5.5 still holds for Problem 2, and

the result follows. �

7. Complexity analysis

Let A and B respectively contain mα and nβ nonzero elements.

Let us first consider the complexity of one step of Algorithm A0, i.e.

St ← ASt−1BT + ATSt−1B∥∥ASt−1BT + ATSt−1B
∥∥
F

Assuming that St−1 is a densematrix, the productsASt−1 andATSt−1 require less than2mnα flops each,

while the subsequent products (ASt−1)BT and (ATSt−1)B require less than 2mnβ flops each. The sum

and the calculation of the Frobenius norm requires 2mn flops, while the scaling requires one division

and nm multiplications. Then, the total complexity per iteration step is of the order of 4(α + β)mn

flops.

Let us now consider the complexity of one step of Algorithms A1 and A2. In these algorithms, the

rankof S is atmost k. Hence, in practice,wedonot reallyworkwith S ∈ Rm×n itself butwith its singular

value factorization (U,D, V) ∈ Rm×k × Diag(k, k, k)×Rn×k. When k is small, the space required to



Author's personal copy

T.P. Cason et al. / Linear Algebra and its Applications 438 (2013) 1863–1882 1879

store the factors of S (i.e. mk + k + nk elements) is smaller than the one required to store S itself (i.e.

mn elements). Similarly, in practice, we do not really computeM2(S) ∈ Rm×n itself but its singular

value factorization. We now show howwe compute the factors of the singular value decomposition of

M2(S). Notice first thatM2(UDVT ) can be written as UA (I4 ⊗ D) VT
B with

UA :=
⎡⎢⎣

UTAA

UTAAT

UTATA

UTATAT

⎤⎥⎦
T

, (I4 ⊗ D) :=
⎡⎣ D

D

D

D

⎤⎦ , and VB :=
⎡⎣ VTBB

VTBBT

VTBTB
VTBTBT

⎤⎦T

. (62)

One can further compute QA ∈ Rm×4k and RA ∈ R4k×4k (resp. QB ∈ Rn×4k and RB ∈ R4k×4k), the
factors of the QR decomposition of UA (resp. VB), i.e. QARA = UA, with QT

A QA = I4k and [RA]ij = 0 for

all i > j, and rewrite Eq. (62) asM2(UDVT ) = QARA (I4 ⊗ D) RTBQ
T
B . We further compute (Ū, D̄, V̄) ∈

R4k×4k×Diag(4k, 4k, 4k)×Rn×4k, the factors of the singular value decomposition of RA (I4 ⊗ D) RTB .

Finally, one can writeM2(UDVT ) = QAŪ D̄ V̄TQT
B , and the factors of its singular value decomposition

are given by (QAŪ, D̄,QBV̄). And, eventually, Algorithm A2 can be rewritten as follows.

1: (U0,D0, V0)← SVDk(1/ ‖1‖F) ;
2: for t = 1, 2, . . .
3: U′ ← [AUt−1Dt−1, ATUt−1Dt−1] ∈ Rm×2k ;
4: U′′ ← [AU′, ATU′] ∈ Rm×4k ;
5: V ′ ← [BVt−1, BTVt−1] ∈ Rn×2k ;
6: V ′′ ← [BV ′, BTV ′] ∈ Rn×4k ;
7: (QU, RU)← QR(U′′) ∈ Rm×4k × R4k×4k ;
8: (QV , RV )← QR(V ′′) ∈ Rn×4k × R4k×4k ;
9: (U′′′,D′′′, V ′′′)← SVDk(RUR

T
V ) ∈ Rm×k × Rk×k × Rn×k ;

10: (Ut,Dt, Vt)← (QUU
′′′, D′′′
‖D′′′‖ ,QVV

′′′) ;
11: end

We now consider the complexity of computing the singular value decomposition ofM2(UDVT ) with

UDVT a matrix of rank k. The products AU, ATU, AU′, and ATU′ require less than 2mkα flops each,

whereas the products BV , BTV , BV ′, and BTV ′ require less than 2nkβ flops each. The QR factorization of

amatrixM ∈ Rm×k requires 4mk2− 4
3
k3 flops [14, p. 337] and subsequently computingQARA andQBRB

require receptively less than4m(4k)2− 4
3
(4k)3 and4n(4k)2− 4

3
(4k)3 flops. The productRA (I4 ⊗ D) RTB

require less than 2(4k)3 flops. The complexity of computing the singular value decomposition of

ŪD̄V̄ ∈ R4k×4k up to a given precision is of the order of k3 flops. Finally, the products QAŪ and

QBV̄ require less than 2m(4k)2 and 2n(4k)2 flops each. Hence, in total, computing the singular value

decomposition ofM2(UDVT ) requires less than 8mkα + 8nkβ + 96mk2 + 96nk2 + O(k3) flops. Let
nowM2(St−1) admit the following ordered singular value decomposition

M2(St−1) =
[
P1 P2

] ⎡⎣
1 0

0 
2

⎤⎦⎡⎣QT
1

QT
2

⎤⎦
with P1 ∈ Rm×k,Q1 ∈ Rn×k, and
1 ∈ Rk×k. According to Lemmas 5.1 and 6.2, one step of Algorithms

A1 and A2 consists in choosing St respectively equal to P1 ÎkQ
T
1 and P1
̂1Q

T
1 . The number of operations

required to compute one step of Algorithms A1 and A2 is then equal to the one required to compute

the singular value decomposition ofM2(UDVT )which costs

8mkα + 8nkβ + 96mk2 + 96nk2 + O(k3) flops.

Let us remind that one step of Algorithms A1 and A2 are low-rank approximations of two steps of

A0 which costs 8(α + β)mn flops.
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8. Experiments

We look at the performances of our method to compute self-similarity matrices. This means that

A and B are equal. In other words, the self-similarity matrix expresses how a node of a graph is sim-

ilar to other nodes of the same graph. We ran several experiments to compute low-rank approxima-

tions of self-similaritymatrices on random graphs. Results about the average computational time, and
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(b)
Fig. 1. We compute rank-k approximations with exactly k identical nonzero eigenvalues of the self-similarity matrix of a connected

Erdós–Rényi graph with probability 10/m, where m is the order of this graph. The graph is built such that the average number of

outgoing edges of a node is 10. The algorithm stops when ‖�S‖F � 10−6 ‖S‖F . The full rank results are obtained using Algorithm

A0 which was investigated in [1]. (a) shows the average computational time versusm, the order of this graph, (b) shows the average

relative error of the rank-k approximations of the self-similarity matrix of a connected random graph versusm.
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Fig. 2. We compute rank-k approximations with at most k nonzero eigenvalues of the self-similarity matrix of a connected ran-

dom graph. The graph is built such that the average number of outgoing edges of a node is 10. The algorithm stops when

‖�S‖F � 10−6 ‖S‖F . The full rank results are obtained using Algorithm A0 which was investigated in [1]. (a) shows the aver-

age computational time versus m, the order of this graph, (b) shows the average relative error of the rank-k approximations of the

self-similarity matrix of a connected random graph versus m.
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Fig. 3. The (A1) (resp. (A2)) lines refer to the experiment of Fig. 1 (resp. 2) which shows results for Algorithm A1 (resp. A2). The graph

shows the relative distance between an iterate and the extremal point of the corresponding experiment

( ‖St−S∞‖
‖S∞‖

)
versus t, the

number of iterations.

the average relative error with respect to the full rank self-similarity matrices for exactly k identical

nonzero eigenvalues and for at most k nonzero eigenvalues are shown respectively in Figs. 1 and 2.

Results about the speed of convergence are shown in Fig. 3. As expected, we clearly notice that the

smaller the rank of the approximation k, the smaller the computational time. We further notice that,

when the order of the graph m increases, the algorithm for low rank approximation converges faster

than the full rank algorithm. As far as the relative error is concerned, we observe that it does not vary

much withm, the order of this graph. For exactly k identical nonzero eigenvalues, this error increases

when the rank of the approximation increases. Indeed, rank 1 approximation have a relative error

about 0.05 whereas higher rank approximation are about 0.7 up to 1.2 ! This reveals that the equal

eigenvalues assumption is not adequate for this class of graphs. For at most k nonzero eigenvalues,

the results are much more satisfactory since the error decreases when the rank of the approximation

increases.

9. Conclusions

In this paper, we have considered two optimization problems (Problems 1 and 2) whose solutions

are low-rank approximations of the similarity matrix S introduced by Blondel et al. in [1]. The cost

functions of Problems 1 and 2 are the same as the one presented in Eq. (2) whereas their feasible

sets are respectively set to Sk(m, n) and S�k(m, n) instead of S(m, n). We have first characterized the

stationary points of Problems 1 and 2. Then we have considered Algorithms A1 and A2 and proved

that their accumulation points are stationary points of respectively Problems 1 and 2. Next, we have

analyzed the complexity of one step of Algorithms A1 and A2 and compared them to the complexity

of Algorithm A0 used to compute the original similarity matrix S introduced by Blondel et al. We have

further performed numerical experiments and considered the performances of Algorithms A1 and

A2. Finally, we have concluded that Problem 1 is not adequate to find a low rank approximation of

the optimization problem presented in Eq. (2) since the relative error of the approximations of rank

bigger than 2 is about 100%. On the other hand, the solution of Problem 2 appropriately approaches

the solution of the optimization problem presented in Eq. (2). As expected, we have observed that the

relative error of approximation decreases when the rank of the approximation increases, and the ratio

between the time until convergence of Algorithm A2 and the time until convergence of Algorithm A0

decreases as m and n (the size of the problem) grow.
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