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Abstract. In this paper we show how to compute recursively an approximation of the left and
right dominant singular subspaces of a given matrix. In order to perform as few as possible operations
on each column of the matrix, we use a variant of the classical Gram–Schmidt algorithm to estimate
this subspace. The method is shown to be particularly suited for matrices with many more rows than
columns. Bounds for the accuracy of the computed subspace are provided. Moreover, the analysis
of error propagation in this algorithm provides new insights in the loss of orthogonality typically
observed in the classical Gram–Schmidt method.
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1. Introduction. In many problems one needs to compute the projector on the
dominant subspace of a given data matrix A of dimension m× n. The type of appli-
cation we are thinking of here implies m � n, and for the sake of simplicity we will
assume A to be real. In addition, we assume that the matrix A is produced incre-
mentally, so all of the columns are not available simultaneously. Several applications
have this property. For example, approximating a matrix A in which each column
represents an image of a given sequence amounts to an SVD-based compression [5].
Such an approximation is also used in the context of observation-based model reduc-
tion for dynamical systems. The so-called proper orthogonal decomposition (POD)
approximation uses the dominant left space of a matrix A where a column consists
of a time instance of the solution of an evolution equation, e.g., the flow field from a
fluid dynamics simulation. Since these flow fields tend to be very large only a small
number can be stored efficiently during the simulation, and therefore an incremental
approach is useful [11]. Finally, the dominant space approximation is also used in text
retrieval to encode document/term information and avoid certain types of semantic
noise. The incremental form is required when documents are added or when the entire
matrix is not available at one point in time and space [3].

In each of these applications, one can interpret the columns of the matrix A as
“data vectors” with some “energy” equal to their 2-norm. Finding the dominant space
of dimension k < min(m,n) amounts to finding the k first columns of the matrix U
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in the singular value decomposition of A:

A = UΣV T , UTU = In, V V T = V TV = In, Σ = diag{σ1, . . . σn},(1.1)

and where the diagonal elements σi of Σ are nonnegative and nonincreasing. This
decomposition in fact expresses that the orthogonal transformation V applied to the
columns of A yields a new matrix AV = UΣ with orthogonal columns of nonincreasing
norm. The “dominant” columns of this transformed matrix are obviously the k leading
ones. A block version of this decomposition makes this more explicit:

A = UΣV T =
[
U1 U2

] [ Σ1,1

Σ2,2

] [
V1 V2

]T
,(1.2)

where U1 and V1 have k columns and Σ1,1 is k × k. An orthogonal basis for the
corresponding space is then given by U1, which is also equal to AV1Σ

−1
1,1. The cost

of this decomposition including the construction of U is 14mn2 + O(n3). For an
additional O(n3) operations it is also possible to compute an orthogonal basis for the
columns of V1, which is required in several applications.

A cheaper procedure is to first perform a QR decomposition of A, followed by a
singular value decomposition of the smaller matrix R [4]:

A = QR, R = UΣV T .(1.3)

From these equations it is easy to see that AV = QUΣ, and again this has orthogonal
columns of nonincreasing norms. This decomposition costs typically 6mn2 + O(n3)
[8]. It is even more economical to use the normal equations (or covariance matrix) of
A. Its eigenvalue decomposition gives

ATA = V ΛV T ,(1.4)

and comparing this with (1.1) shows that the same matrix V is constructed and that

(AV )T (AV ) = Λ = ΣTΣ.

This algorithm requires mn2 operations to construct ATA and mnk + O(n3) oper-
ations to obtain U1 = AV1Σ

−1
1,1. Unfortunately, using the covariance matrix is not

recommended because it is more sensitive to rounding errors [8].
In this paper we consider applications where m is huge, and where every column

operation on A or on the basis U not only is costly in operations but also involves swap-
ping data from the main memory, which will slow down the algorithm significantly.
We present an algorithm that yields an approximate decomposition but requires only
8mnk + O(nk3) operations and also works recursively on the columns of A; i.e., the
columns of A (or data vectors) can be produced recursively and A need not be stored
in its entirety.

The paper is organized as follows. In sections 2 and 3 we derive an economical
sequential procedure to approximate a matrix A by a low-rank factorization. In
section 4 we derive bounds for the residual error and compare our method with the
“optimal” singular value decomposition approach. In section 5 we illustrate these
bounds via numerical experiments. In section 6 we study the effect of round-off
and prove backward stability as well as preservation of orthogonality of our computed
basis vectors under some mild conditions. This surprising feature (of a classical Gram–
Schmidt-like method) is explained and illustrated numerically in the last section.



RECURSIVE CALCULATION OF DOMINANT SINGULAR SUBSPACES 447

2. A recursive procedure. In this section we propose a recursive procedure to
estimate the dominant subspace of a given matrix A using a sequential (and incremen-
tal) processing of the columns of A. Bounds for the accuracy of this decomposition
are derived later. The algorithm is based on an efficient calculation of the dominant
k-dimensional space of an m× (k + 1) matrix M . Assume that a QR decomposition
of M is available:

M = QR.(2.1)

Then compute the smallest singular vector uk+1 of R (i.e., Rvk+1 = uk+1µk+1) and
construct an orthogonal transformation Gu such that GT

uuk+1 = ek+1. Now apply
GT

u to the rows of R and let Gv be an orthogonal transformation putting GT
uR back

in triangular form:

GT
uRGv = Rup.

In this new coordinate system the right singular vector uk+1 becomes ek+1, a unit
vector with 1 in the (k + 1) element, and vk+1 is transformed to a new vector v̂k+1.
Therefore,

Rupek+1 = µk+1v̂k+1, RT
upv̂k+1 = µk+1ek+1.

It easily follows that Rup has the form

Rup =

[
R1,1 0
0 µk+1

]
.(2.2)

We therefore have the updated QR decomposition

MGv = QupRup = (QGu)(G
T
uRGv),

and since Rup has the required block form (1.2) we have found a basis for the dominant
k-dimensional subspace of M in the form of the first k columns of Qup.

Both matrices Gu and Gv can be constructed as a product of k 2 × 2 Givens
transformations, allowing an elegant update of R using only O(k2) operations. But
the costly part of the algorithm is the update of Q, and hence it is preferable to
choose Gu to be a Householder transformation. When retriangularizing GT

uR one
then needs to perform again a QR factorization, which requires O(k3) operations, but
since k < n� m, this is of no concern. The cost of the update of Q to Qup is that of
a Householder transformation applied to an m× (k+1) matrix and is thus 4m(k+1)
operations. The vector uk+1 can be computed with a few steps of inverse iteration or
with a shifted inverse iteration. The cost of this calculation as well as the update of R
is thus O(k3) and hence negligible with respect to the update of Q. A more involved
technique uses modified Givens transformations since their complexity is the same as
that of Householder transformations for the product QGu, and is of O(k2) when used
for forming the product GT

uRGv. Unfortunately, this requires storing and updating
additional diagonal scaling matrices, which typically hurt the performance of codes
used for parallel machines.

How is this now applied to finding the dominant subspace of A? We start with a
QR factorization of the first k columns of A:

A(:, 1: k) = Q(k)R(k).(2.3)
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Then we recursively apply the following update and downdate of this decomposition.
For i = k + 1 to n, append the next column ai

.
= A(:, i) to the current matrix

decomposition and perform a QR decomposition of it. The formulas for this are
standard. Define ri = QT

(i−1)ai; then âi
.
= ai − Q(i−1)ri is orthogonal to Q(i−1).

Define ρi as its norm, and q̂i = âi/ρi. Then

[
Q(i−1)R(i−1) ai

]
=
[
Q(i−1) q̂i

] [ R(i−1) ri
0 ρi

]
.(2.4)

Update this matrix decomposition to “deflate” its smallest singular value as above,

[
Q(i−1) q̂i

]
Gu ·GT

u

[
R(i−1) ri

0 ρi

]
Gv =

[
Q(i) qi

] · [ R(i) 0
0 µi

]
,(2.5)

and delete the last columns to obtain the new Q(i) and R(i). The complexity of
this algorithm is 10mkn + O((n − k)k3) when using Givens transformations for Gu

and 8mkn + O((n − k)k3) when using a Householder transformation or modified
Givens transformations for Gu. This is clearly cheaper than all earlier algorithms if
m� n� k.

The algorithm thus computes at each step a decomposition that “deflates” the
smallest singular vector of the current m× (k+1) matrix and then appends to it the
next column of A. All columns of A therefore are passed through once and compared
with the current best estimate of this dominant subspace. At first sight this is a very
heuristic algorithm, but in the next section we show that quite good bounds can be
obtained for the quality of this basis.

Remark 2.1. Although we do not consider in this paper the updating problem to
dimension k + l for l > 1, it can be done in a very similar manner. If appropriately
implemented, this “block” version still has θ(mkn) complexity. Convergence results
are essentially the same and good performance can be expected on parallel architectures
(see also [2]).

3. Updating a two-sided decomposition. The algorithm above yields at step
i an approximation Q(i) of the dominant left singular subspace of A(:, 1 : i), but in
several applications it makes sense to update simultaneously an approximation of the
corresponding right singular subspace of this matrix. This can be done with little
extra cost.

We start from the notation introduced in (2.3), which we rewrite as

A(:, 1: k)V(k) = Q(k)R(k),(3.1)

where V(k) = Ik. We show by induction that at each step i ≥ k we have a decompo-
sition

A(:, 1: i)V(i) = Q(i)R(i),(3.2)

where V(i) ∈ R
i×k satisfies V T

(i)V(i) = Ik. From (3.1) it is obvious that this holds for
i = k. For the induction step we start by assuming that it holds for i− 1:

A(:, 1: (i− 1))V(i−1) = Q(i−1)R(i−1).

We then append a column ai to A(:, 1: i− 1) to get A(:, 1: i) and obviously

A(:, 1: i)

[
V(i−1) 0
0 1

]
=
[
Q(i−1)R(i−1) ai

]
.(3.3)
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Now use (2.4), (2.5) to update this to

A(:, 1: i)

[
V(i−1) 0
0 1

]
Gv =

[
Q(i)R(i) qiµi

]
.(3.4)

Taking the first k columns of both sides of this equation yields (3.1) with

V(i) =

[
V(i−1) 0
0 1

]
Gv

[
Ik

0 . . . 0

]
∈ R

i×k,(3.5)

which obviously satisfies V T
(i)V(i) = Ik. The additional work for updating the approx-

imation V(i) is just the multiplication (3.5), which requires 6ik flops and hence leads
to a total of

n∑
i=k

6ik ≈ 3k(n+ k)(n− k + 1)

additional flops for the full decomposition. This additional work can be neglected if
m� k.

We terminate this section by writing a decomposition for the matrix A(:, 1 : i) if
we would not delete the last column at each step. There exists an orthogonal matrix
Vi ∈ R

i×i embedding V(i):

Vi =
[
V(i) V ⊥

(i)

]
.

Choosing appropriate basis vectors for V ⊥
(i), we obtain a decomposition of the type

A(:, 1: i)Vi =
[
Q(i)R(i) q̃i . . . q̃n

]
,(3.6)

where q̃j = qjµj and ‖q̃j‖2 = µj . From this we obtain the additive decomposition

A(:, 1: i) = Q(i)R(i)V
T
(i) +

[
q̃i . . . q̃n

]
V ⊥T

(i) ,(3.7)

which will be used later on to derive error bounds.

4. Accuracy bounds. It is clear that after the first step i = k + 1 we obtain a
decomposition

[A(:, 1: k+1)]GT
v =

[
Q(k+1) qk+1

] · [ R(k+1) 0
0 µk+1

]
.(4.1)

Let σi, i = 1, . . . , n, be the singular values of A and σ̂
(j)
i , i = 1, . . . , k, those of R(j).

Then according to the above decomposition, A(:, 1: k + 1) has singular values

σ̂
(k+1)
1 , . . . , σ̂

(k+1)
k , µk+1.

But since this is a submatrix of A obtained by deleting a number of columns, we have
the inequalities [8]

σ̂
(k+1)
1 ≤ σ1, . . . , σ̂

(k+1)
k ≤ σk, µk+1 ≤ σk+1.(4.2)

Similarly one easily shows that each intermediate matrix

[
Q(i) qi

] · [ R(i) 0
0 µi

]
(4.3)
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with singular values

σ̂
(i)
1 , . . . , σ̂

(i)
k , µi

is also orthogonally equivalent to a submatrix of A. Therefore we have in general

σ̂
(i)
1 ≤ σ1, . . . , σ̂

(i)
k ≤ σk, µi ≤ σk+1.(4.4)

Finally, since the matrix[
A(:, 1: (i−1)) ai

]
=
[
Q(i−1)R(i−1) Q(i−1)ri + q̂iρi

]
(4.5)

=
[
Q(i) qi

] [ R(i) 0
0 µi

]
GT

v

has singular values σ̂
(i)
1 , . . . , σ̂

(i)
k , µi and Q(i−1)R(i−1) is its submatrix, we have the

inequalities

σ̂
(i−1)
1 ≤ σ̂(i)

1 , . . . , σ̂
(i−1)
k ≤ σ̂(i)

k .(4.6)

All this says that the singular values µi that are dismissed at each step are all

smaller than σk+1 and that the singular values σ̂
(i)
j , j = 1, . . . , k, that are updated

increase monotonically towards the first k singular values of A. To obtain bounds at
the end of the iterative procedure we need to relate A to the computed quantities.
For this, we point out that there exists an orthogonal column transformation V which
relates A and the intermediate results of the recursive algorithm:

AVn =
[
Q(n)R(n) µk+1qk+1 . . . µnqn

]
.(4.7)

The transformation Vn indeed consists of all the smaller transformations Gv and
appropriately chosen permutations to obtain (4.7). Using the singular value decom-
position of R(n),

R(n) = ÛnΣV̂
T
n ,

one then constructs orthogonal transformations such that

AVn

[
V̂n 0
0 I

]
=
[
Q(n)Ûn Q⊥

(n)

] [
Σ̂ A1,2

0 A2,2

]
,(4.8)

where Q⊥
(n) is orthogonal to Q(n) and where the columns of A2

.
= [A1,2

A2,2
] have 2-norms

µi. The Frobenius norm of this submatrix is therefore equal to ‖ [µk+1, . . . , µn] ‖2.
From (4.8) one already finds a bound for the accuracy of the computed singular

values. The singular values of A are also those of M
.
= [ Σ̂0

A1,2

A2,2
]. Applying the

Wielandt–Hoffman theorem for singular values to this [8] yields

k∑
i=1

(σi − σ̂(n)
i )2 ≤ ‖A2‖2

F =

n∑
i=k+1

(µi)
2 ≤ (n− k) · σ2

k+1.(4.9)

If we know the singular values have a considerable gap γ
.
= σk−σk+1, then this bound

says that the k largest singular values are well approximated. If γ is large, the space
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spanned by the corresponding singular vectors is also insensitive to perturbations.
Moreover, one can improve the bounds for the singular value perturbations provided
by the Wielandt–Hoffman theorem. To analyze this in more detail we use the following
theorem proven in [10].

Theorem 4.1. Let Ĥ and E be square Hermitian matrices partitioned as

Ĥ =

[
Ĥ1,1 0

0 Ĥ2,2

]
, E =

[
E1,1 E1,2

E2,1 E2,2

]
,

and define ε = ‖E1,2‖2 and δ = min |λ(Ĥ1,1)− λ(Ĥ2,2)| − ‖E1,1‖2 − ‖E2,2‖2.
If δ > 2ε, then there exists a unitary matrix X of the form

X =

[
Ik −PT

P In−k

] [
(I + PTP )−1/2 0

0 (I + PPT )−1/2

]
such that

H
.
= XT (Ĥ + E)X =

[
H1,1 0
0 H2,2

]
,

where ‖P‖2 < 2ε/δ.
This theorem is used to estimate the accuracy of both the left and right dominant

subspaces of A as follows. Suppose

Ĥu =

[
Σ̂2 0
0 0

]
(4.10)

is the current “approximation” of the eigenvalue decomposition of

Hu
.
=MMT =

[
Σ̂2 0
0 0

]
+

[
A1,2

A2,2

] [
AT

1,2 AT
2,2

]
.(4.11)

The left dominant “singular” subspace of M is also the dominant eigensubspace of
Hu. The dominant eigensubspace of the nearby matrix Ĥu is clearly Im[ Ik0 ] and the

corresponding eigenvalues are the diagonal elements σ̂
(n)
1 , . . . , σ̂

(n)
k of Σ̂2. But due

to the perturbations A1,2 and A2,2 these are incorrect. After transforming MMT to
XT

uMM
TXu we obtain its true eigenvalues (i.e., the squared singular values of M)

in the matrix H1,1 and the true dominant subspace as Im[ IkPu
]. The norm of Pu is a

measure for the angular rotation of this subspace, and it is bounded by 2εu/δu. The
largest canonical angle θk between the spaces Im[ Ik0 ] and Im[ IkPu

] in fact satisfies [10]

cos θk = 1/
√
1 + ‖Pu‖2, sin θk = ‖Pu‖/

√
1 + ‖Pu‖2, tan θk = ‖Pu‖

and measures the “rotation” of the dominant subspace with respect to its approxima-
tion.

Clearly here εu = ‖A1,2A
T
2,2‖2 and δu = (σ̂

(n)
k )2 − ‖A1,1‖2

2 − ‖A2,2‖2
2. Notice

that ‖A2‖2
F =

∑
i µ

2
i and that we actually compute these values during our recursive

calculations. It would therefore be convenient to bound 2εu/δu in terms of these
“discarded” singular values µi. One easily derives the bounds

‖A1,2A
T
2,2‖2 ≤ 1

2

∥∥∥∥
[
A1,2

A2,2

] [
AT

1,2 AT
2,2

] ∥∥∥∥
2

=
1

2

∥∥∥∥
[
A1,2

A2,2

]
︸ ︷︷ ︸

A2

∥∥∥∥2

2
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and

‖A2‖2
2 ≤ ‖A1,2A

T
1,2‖2 + ‖A2,2A

T
2,2‖2 = ‖AT

1,2A1,2‖2 + ‖AT
2,2A2,2‖2 ≤ 2‖A2‖2

2.

Defining

µ
.
=

∥∥∥∥
[
A1,2

A2,2

]∥∥∥∥
2

(4.12)

we then have

εu ≤ µ2/2, (σ̂
(n)
k )2 − µ2 ≥ δu ≥ (σ̂

(n)
k )2 − 2µ2,(4.13)

and provided that σ̂
(n)
k ≥ √

3µ we obtain

δu ≥ 2εu ⇒ ‖Pu‖2 ≤ 2εu/δu.

For the right dominant singular subspace of M we must consider

Hv
.
=MTM =

[
Σ̂2 0
0 0

]
+

[
0 Σ̂A1,2

AT
1,2Σ̂ AT

1,2A1,2 +A
T
2,2A2,2

]
.(4.14)

For the quantities εv and δv corresponding to Theorem 4.1, we find

εv
.
= ‖Σ̂A1,2‖2 ≤ µ‖A‖2, δv

.
= min |λ(Σ̂2)| − ‖A2‖2

2 = (σ̂
(n)
k )2 − µ2.

Provided that (σ̂
(n)
k )2 ≥ 16

7 µ‖A‖2 we obtain

δv ≥ 2εv ⇒ ‖Pv‖2 ≤ 2εv/δv.

Applying the same reasoning as above we denote the true dominant subspace as
Im[ IkPv

]. The norm of Pv is then a measure for the angular rotation of this subspace,
and it is bounded by 2εv/δv. The corresponding largest canonical angle φk satisfies
again [10]

cosφk = 1/
√
1 + ‖Pv‖2, sinφk = ‖Pv‖/

√
1 + ‖Pv‖2, tanφk = ‖Pv‖

and measures the “rotation” of the right dominant singular subspace with respect to
its approximation. We summarize this discussion in the following theorem.

Theorem 4.2. Let

M̂ =

[
Σ̂ 0
0 0

]
, M =

[
Σ̂ A1,2

0 A2,2

]
, µ

.
=

∥∥∥∥
[
A1,2

A2,2

] ∥∥∥∥
2

.

Then the angles θk and φk between the k-dimensional left and right singular subspaces
of M and M̂ , respectively, satisfy the bounds

tan θk < µ
2/((σ

(n)
k )2 − 2µ2) if µ < σ

(n)
k /

√
3

and

tanφk < µ‖M‖2/((σ
(n)
k )2 − µ2) if µ < 7(σ

(n)
k )2/16‖A‖2.

These are also the angles of the left and right singular subspaces of Q(i)R(i)V
T
(i) and

A.
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Unfortunately, we do not compute the matrices A1,2 and A2,2, and so we have to
estimate µ. Bounding µ2 in terms of the Frobenius norm

µ2 ≤
∑
i

µ2
i

would yield serious overestimates since δ may become negative. Therefore we have to
make some simplifying assumptions. The ith column of A2 at step i of the recursive
calculation contains what could be considered “residual noise vectors,” and we assume
therefore that they are randomly distributed. It is shown in [7] that an (n − k) × n
matrix B with elements chosen independently from a standard Gaussian distribution
has column norms tending to

√
n and a spectral norm ‖B‖2 tending to

√
n(1 +√

(n− k)/n) as n becomes large. If our matrix A2 has equal column norms (hence
equal to maxi µi rather than

√
n), we then obtain the approximation

max
i
µi ≤ µ ≤ c.max

i
µi, c ≈ (1 +

√
(n− k)/n).

On the other hand, if the columns are of very different norm, one gets closer to the
lower bound since the number of relevant columns entering the above analysis becomes

smaller than (n− k), and thus c tends to 1. We will simply use µ̂ = max
i
µi and σ̂

(n)
1 ,

respectively, as estimates of µ and ‖A‖2, which leads to the following approximations
for our bounds:

ε̂u ≈ µ̂2/2, δ̂u ≈ (σ̂
(n)
k )2 − µ̂2, ε̂v ≈ µ̂σ̂(n)

1 , δ̂v ≈ (σ̂
(n)
k )2 − µ̂2.

Notice that these approximations have the advantage that δ̂u and δ̂v will always be

positive since σ
(n)
k ≥ σ(i)

k+1 = µi. The resulting estimates for the norm of Pu and Pv
then become

‖Pu‖2 ≈ tan θ̂k
.
= 2

ε̂u

δ̂u
=

µ̂2

(σ̂
(n)
k )2 − µ̂2

,(4.15)

‖Pv‖2 ≈ tan φ̂k
.
= 2

ε̂u

δ̂u
=

µ̂σ̂
(n)
1

(σ̂
(n)
k )2 − µ̂2

.(4.16)

It is possible to estimate the quality of the computed singular values using a
simpler analysis. From Theorem 4.1 it follows that

N
[
I + PT

]([ Σ̂2 0
0 0

]
+

[
A1,2

A2,2

] [
AT

1,2 AT
2,2

]) [ I
P

]
N = H1,1,(4.17)

where

N = (I + PTP )−
1
2 , N = NT ≤ I.

This yields the residual equation

H1,1 −N Σ̂2N = R
.
= N

[
I PT

] [ A1,2

A2,2

] [
AT

1,2 AT
2,2

] [ I
P

]
N,

and since

N Σ̂2N ≤ Σ̂2
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we have

H1,1 − Σ̂2 ≤ H1,1 −N Σ̂2N = R.

But

‖R‖2 =

∥∥∥∥
[
A1,2

A2,2

]∥∥∥∥2

2

= µ2,

from which we obtain the strict bound

|σ2
i − (σ̂

(n)
i )2| ≤ ‖H1,1 − Σ̂2‖2 ≤ µ2.

This analysis is very simple and does not take into account any information about P ,
which can be used to improve the bound. Instead, we replace µ by its estimate µ̂,
which yields

|σi − σ̂(n)
i | ≈ µ̂2/(σi + σ̂

(n)
i ) ≤ µ̂2/2σ̂

(n)
i .(4.18)

We point out that all of the estimates are quadratic in µ̂, which should give very

accurate results if µ̂ � σ̂
(n)
i . This is the case if the gap γ at the kth singular value

is large, and the quality of the estimate should be expected to deteriorate when this
gap becomes small. We illustrate the quality of these bounds in the examples of the
next section.

Remark 4.1. If A has rank k, then this approach produces an exact decomposition
since each submatrix A(i) has rank less than or equal to k and hence µi = 0 at each
step.

5. Numerical tests of the approximation. We generated random matrices
of dimensionm = 1000 by n = 50 and attempted to track the k = 5 dominant singular
values and vectors. At every step we keep at most k+1 = 6 vectors in our basis. We
thus update to a subspace of dimension 6 and then deflate the smallest singular value
to fall back to a space of dimension 5 at each step.

In Figures 1 and 2, the true singular values σi (i = 1, . . . , n) are represented by the

solid line, the approximations σ
(n)
i of the i = 1, . . . , k leading singular values are the

asterisks, and the dismissed singular values µi (i = k + 1, . . . , n) are the circles. Two
different gaps are used to illustrate the trend of a larger gap improving the quality
of the approximations. Both figures are accompanied by a table (see Tables 1 and

2) listing the singular values σi, their approximations σ̂
(n)
i , the corresponding errors

|σi−σ̂(n)
i | and their estimate µ̂2/(2σ̂

(n)
i ), and finally the cosines of the canonical angles

cos θi and cosφi, the smallest of which indicate the rotation of the dominant left and
right singular subspaces versus their approximation, and the estimated angles cos θ̂k
and cos φ̂k. We also give the true value of µ, its estimate µ̂, and finally the k + 1
singular value.

From these examples it appears that the method works reasonably well. It should
be pointed out that Theorem 4.2 applies only to the second example and that the
estimates are very good. Nevertheless the estimates are still acceptable even when
the conditions of this theorem do not apply, as is shown by the first example, which
has virtually no gap! Notice that µ/µ̂ remains smaller than 2, as suggested by the
statistical arguments of section 4. We also analyzed intermediate values of γ, which
confirmed the remarks made above.
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true sv’s σi(A), ∗ approximated sv’s σ̂
(n)
1 , . . . , σ̂

(n)
k

, ◦ dismissed sv’s µk+1, . . . , µn

Fig. 1. Matrix with small gap γ = 0.01375.

true sv’s σi(A), ∗ approximated sv’s σ̂
(n)
1 , . . . , σ̂

(n)
k

, ◦ dismissed sv’s µk+1, . . . , µn

Fig. 2. Matrix with large gap γ = 0.85541.

6. The effect of round-off. In this section we analyze the propagation of
round-off in the proposed algorithm. The first aim is to prove some kind of back-
ward stability of the algorithm. We show that at each step i the algorithm produces
“approximate” matrices V̄(i), Q̄(i), and R̄(i) that satisfy exactly the perturbed equa-
tions

[A(:, 1 : i) + E]V̄(i) = Q̄(i)R̄(i), (V̄(i) + F )
T (V̄(i) + F ) = Ik,(6.1)

where

‖E‖F ≤ εe‖A‖2, εe ≈ u, ‖F‖F ≤ εf ≈ u,
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Table 1

σi σ̂
(n)
i |σi − σ̂i| µ̂2

(2σ̂
(n)
i

)
cos θi cos θ̂i cosφi cos φ̂i

0.98833 0.93436 0.05398 0.27320 0.97419 0.36164 0.95272 0.34189
0.97975 0.91122 0.06852 0.28725 0.94833 0.11482 0.91511 0.10679
0.95684 0.87986 0.07698 0.30809 0.88082 0.04148 0.84415 0.03815
0.89977 0.86969 0.03008 0.31534 0.80644 0.11320 0.75753 0.10941
0.89390 0.84136 0.05253 0.33693 0.16487 0.27966 0.14274 0.26322

µ = 0.97905 µ̂ = 0.69067 σk+1 = 0.88014

Table 2

σi σ̂
(n)
i |σi − σ̂i| µ̂2

(2σ̂
(n)
i

)
cos θi cos θ̂i cosφi cos φ̂i

0.98299 0.98299 2.0 10−7 0.00030 0.99999 0.99999 0.99999 0.99999
0.96689 0.96689 1.0 10−7 0.00032 0.99999 0.99999 0.99999 0.99999
0.93424 0.93424 1.0 10−7 0.00034 0.99999 0.99999 0.99999 0.99999
0.90161 0.90161 0.5 10−7 0.00036 0.99999 0.99999 0.99999 0.99999
0.89032 0.89032 1.5 10−7 0.00037 0.99999 0.99999 0.99999 0.99999

µ = 0.03491 µ̂ = 0.02430 σk+1 = 0.03491

in which u is the so-called unit round-off of the IEEE floating point standard (see,
e.g., [9]). This is used to prove that the effect of round-off remains small despite the
fact that this is a classical Gram–Schmidt procedure.

The proof of the following theorem is given in the appendix.
Theorem 6.1. The recursive algorithm described in sections 2 and 3 produces

“approximate” matrices V̄(i), Q̄(i), and R̄(i) that satisfy exactly the perturbed equation
(6.1) with the bounds (up to O(u2) terms)

‖E‖F ≤ εe‖A‖2, εe ≤ 26k
3
2nu, ‖F‖F ≤ εf ≤ 9k

3
2nu.

We point out here that these bounds do not depend on m, the largest dimen-
sion of A. Moreover, if one uses Householder transformations rather than Givens
transformations, the results are very similar.

Remark 6.1. Although Theorem 6.1 indicates that the error ‖E‖F grows with
the number of columns n, it does not seem to grow in actual experiments. This can
be explained as follows. Assume that at step i we have the perturbed equation[

Q(i−1) + E(i−1) q̂i + ei
]
Gu =

[
Q(i) + E(i) qi + gi

]
,(6.2)

where E(i) accounts for the loss of orthogonality in Q(i), and ei is the local error in
the vector q̂i, and gi is the resulting error in the vector qi. If we assume the errors in
the right-hand side of (6.2) to be evenly distributed over the matrix, then it follows
that

‖E(i)‖2
F ≤ k

(k + 1)
‖E(i−1)‖2

F + ‖ei‖2
2,(6.3)

which for growing i tends to a limit

‖E‖2
F ≤ (k + 1)max

i
‖ei‖2

2
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that is independent of n. The same reasoning can be applied to the error ‖F‖F . The
corresponding bounds of Theorem 6.1 become

εe ≤ 26k2u, εf ≤ 9k2u.

We now turn our attention to the loss of orthogonality in the computed matrix
Q̄. This can be bounded using a perturbation result for the QR factorization of

(A+ E)V̄ = AV̄ + EV̄
.
= AV̄ +G,

where, using the bounds of Theorem 6.1, we have

‖G‖F = εg‖A‖2, εg ≤ εe +O(εeεf ) ≈ u.

Theorem 6.2. Let (a given matrix) V̄ ∈ Rn×k “select” k columns of the matrix
A ∈ Rm×n, and let

AV̄ = QR, QTQ = Ik,

with R upper triangular, be its exact QR factorization. Let

AV̄ +G = Q̄R̄, ‖G‖F = εg‖A‖2 ≈ u‖A‖2(6.4)

be a “computed” version, where Q̄ = Q + ∆Q, R̄ = R + ∆R. Then under a mild
assumption, namely, condition (6.6), we can bound the loss of orthogonality in Q̄ as
follows:

‖Q̄T Q̄− Ik‖F ≤
√
2εgκ2(R)κR(AV̄ ) ≤ 2εgκ

2
2(R), εg ≈ u.

Proof. Since Q̄ is not necessarily orthogonal we first compute its QR factorization:

Q̄ = Q0R0, QT
0Q0 = Ik.

So we can consider the perturbation of the QR decomposition of AV̄ :

AV̄ = QR, AV̄ +G = Q0(R0R̄).(6.5)

The loss of orthogonality in Q̄ can be measured by R0 since

Q̄T Q̄− Ik = RT
0 Q

T
0Q0R0 − Ik = RT

0 R0 − Ik.

To measure this, we first use a perturbation analysis of [6] for (6.5) to obtain

‖R0R̄−R‖F ≤ εgκR(AV̄ )‖R‖2,

where κR(AV̄ ) is the “refined” condition number of the factor R of the QR factoriza-
tion (6.5) of AV̄ [6]. If we define ∆0

.
= R0 − Ik, we then have

R0R̄−R = (Ik +∆0)(R+∆R)−R = ∆0R̄+∆R ≈ ∆0R+∆R

and, hence,

‖∆0R+∆R‖F ≈ ‖∆0R̄+∆R‖F ≤ εgκ2(R)‖R‖2.
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We now assume that there are no strong cancellations between ‖∆R‖F (measuring
the perturbation of R) and ‖∆0R‖F (measuring the perturbation in Q) and hence
that ‖∆0R‖F and ‖∆R +∆0R‖F are of the same order of magnitude:

‖∆0R‖F ≈ ‖∆R +∆0R‖F .(6.6)

From ‖∆0R‖F ≤ εgκR(AV̄ )‖R‖2 it then follows that

‖∆0‖F ≤ εgκR(AV̄ )‖R‖2‖R−1‖2.

This can now be used to bound ‖RT
0 R0 − Ik‖F = ‖∆0 +∆T

0 +∆T
0 ∆0‖F ≈ √

2‖∆0‖F ,
which yields

‖RT
0 R0 − Ik‖F ≤

√
2εgκ2(R)κR(AV̄ ).(6.7)

Using the overestimate κR(AV̄ ) ≤
√
2κ2(R) of [6] we approximate this finally by

‖RT
0 R0 − Ik‖F ≤ 2εgκ

2
2(R).(6.8)

Remark 6.2. Assumption (6.6) is crucial to the proof of Theorem 6.2. It is easy
to see that any factorization of the type (6.4) will not yield the bounds (6.7) or (6.8):
consider, e.g., the factorization

AV̄ +G = (Q̄U)(U−1R̄),

where U is any invertible upper triangular matrix. This clearly satisfies the conditions
of the theorem, except for assumption (6.6). The critical quantity for this new factor-
ization then becomes ‖UTRT

0 R0U − Ik‖F , and since U can be chosen arbitrarily, it
is impossible to bound it. Assumption (6.6) is therefore crucial, and we show in the
next section that it indeed holds in practice.

7. Numerical tests for the error propagation. In this section we present
numerical evidence that the analysis of the previous section can be applied to the
tracking problem of the dominant spaces of a given matrix. The numerical exper-
iments we ran show that the loss of orthogonality in the computed matrix Q̄(i) of
(6.1) remains bounded by the condition number squared of the matrix R that we are
“tracking.”

We show in Figures 3 and 4 two plots that compare the loss of orthogonality in
the proposed algorithm based on the classical Gram–Schmidt method (labeled CGS)
and a “fully orthogonal” method, which we obtain by performing two steps of CGS,
rather than one, at each iteration. This second method, labeled CGS2, was analyzed
in [1] and shown to yield a Q factor that is close to orthogonal. We chose this as an
alternative to the Householder method because in the iterative scheme considered in
this paper, CGS2 involves significantly fewer operations than the Householder method.

As suggested by Remark 6.1, the backward error E(i) and the quantity εe can be
bounded independently of the step i. We therefore compare the loss of orthogonality
‖RT

0 R0 − Ik‖F with the quantities uk2κ2(R(i))κR(A(:, 1 : i)V̄(i)) for the CGS method
and uk2 for the CGS2 method. These “simplified” quantities are indicators to show
that the loss of orthogonality is of the order of magnitude predicted by our error
analysis. To show the effect of the condition number of the triangular factor R(i), we
let it grow in the two examples by choosing a growing condition number for A.
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CGS bound uk2κ2(R(i))κR(A(:, 1 : i)V̄(i))), CGS2 bound uk2,

∗ loss of orthogonality in CGS method, ◦ loss of orthogonality in CGS2 method

Fig. 3. κ2(A) = 41.806, κ2(R(n)) = 1.156, κR(AV̄(n))) = 1.492.

CGS bound uk2κ2(R(i))κR(A(:, 1 : i)V̄(i))), CGS2 bound uk2,

∗ loss of orthogonality in CGS method, ◦ loss of orthogonality in CGS2 method

Fig. 4. κ2(A) = 6928, κ2(R(n)) = 134.7, κR(AV̄(n)) = 7.028.

The following observations can be derived from these experiments:

• The condition numbers κ2(R(i)) and κR(A(:, 1 : i)V̄(i)) do not affect the loss
of orthogonality of the CGS2 method, as expected from the analysis of [1].
(The product κ2(R(i))κR(A(:, 1 : i)V̄(i)) can be inferred from the gap between
the CGS and CGS2 bounds.)

• The statistical assumption of Remark 6.1 seems to hold since there is no
growth in the loss of orthogonality of the computed matrices Q̄(i): this should
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‖∆0R‖F , ‖∆R +∆0R‖F

Fig. 5. Verification of assumption (6.6) for examples Figures 3 and 4.

depend on the backward error E(i), which does not depend on i if the assump-
tion of Remark 6.1 holds

• Assumption (6.6) made in Theorem 6.2 was verified in these experiments
and validates the resulting bounds (6.7), (6.8) of that theorem; the graphs
in Figure 5 give the norms of the two quantities for the two examples given
earlier and illustrate that the assumption that those quantities are of the
same order of magnitude is reasonable.

• The loss of orthogonality remains very reasonable when the condition number
κ2(R(i)) is not too large, which is a reasonable assumption in applications
where a “dominant matrix” R(i) is being tracked.

We observed no difference in the computed spaces for the CGS or CGS2 meth-
ods. We conclude from our analysis and the experimental evidence that the cheapest
version of the algorithm (CGS) can be used safely for the applications represented by
the experiments and mentioned in section 1. By this we mean that the angles cos θk
and cosφk for both methods were equal in the first four digits despite a very small
loss of orthogonality in the CGS method.

8. Conclusions. In this paper we presented an analysis of an efficient incre-
mental algorithm to compute the dominant subspace of a given matrix A. Although
similar algorithms have been discussed in the literature [5], we have given here a more
efficient implementation along with a fairly tight bound on its accuracy and estimators
that can be used in practice to monitor that accuracy.

The contributions of this paper are the following:

• A CGS-like algorithm of complexity close to 8mnk flops was derived for com-
puting a rank k approximation of an m× n matrix A.

• A posteriori bounds for the accuracy of the approximation error were pre-
sented and their reliability was illustrated.

• The effect of round-off was studied, and it was shown that the algorithm
behaves much better than what can be expected for CGS. An explanation of
this phenomenon was given and illustrated by numerical experiments. The
effect of propagation of round-off errors was also analyzed and shown to be
negligible for the applications considered in this paper.

Appendix. In this section we give the proof of Theorem 6.1. This result is
obtained by analyzing one step i of the recursive algorithm. We first analyze the local
errors in that step and hence assume all quantities at the beginning of step i to be
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exact. For the computations of step i we use x̄ to denote the “computed version” of
x that is actually stored in the computer.

The first part of step i is the Gram–Schmidt update, which corresponds to

r̄i = fl(Q̄
T
(i−1)ai),(A.1)

¯̃qi = fl(ai − Q̄T
(i−1)r̄i),(A.2)

ρ̄i = fl

(√
¯̃qi
T ¯̃qi

)
,(A.3)

q̄i = fl( ¯̃qi/ρ̄i).(A.4)

From (A.2), (A.4), and standard error analysis results it follows that

¯̃qi = ai + di − [Q̄(i−1) + δQ(i−1)]r̄i = ρ̄i[q̄i + fi],(A.5)

where (up to order u2) we have the elementwise inequalities

|[fi]j | ≤ u|[q̄i]j |, |[di]j | ≤ ku|[ai]j |, |[δQ(i−1)]jl| ≤ (k − l + 2)u|[Q̄(i−1)]jl|.

To obtain this result we assumed that the loop on the columns of the Gram–Schmidt
orthogonalization (A.2) progresses from left to right. We can then equate this as
follows:

ai + ei =
[
Q̄(i−1) q̄i

] [ r̄i
ρi

]
, ei = di − δQ(i−1)r̄i + fiρ̄i.(A.6)

We also assume that

‖ [ Q̄(i−1) q̄i
]− [ Q(i−1) qi

] ‖2 = K.u� 1,(A.7)

i.e., there is no complete loss of orthogonality, which allows us to approximate the
2-norm of

[
Q̄(i−1) q̄i

]
or any of its columns by 1 + O(u). We then obtain the

inequalities

‖ei‖2 ≤ ‖di‖2 + ‖fiρ̄i‖2 +
∑
l

‖|δQ(i−1)|:,l‖2.|r̄i|l +O(u2)

≤ u
[
k‖ai‖2 + ‖q̄i‖ρ̄i +

∑
l

‖|Q(i−1)|:,l‖2.(k − l + 2)|ri|l
]
+O(u2)

≤ u
[
k‖ai‖2 +

(
|ρ̄i|+

∑
l

(k − l + 2)|r̄i|l
)]

+O(u2)

≤ u(k‖ai‖2 + ‖[1, 2, . . . , k + 1]‖2‖ai‖2) +O(u
2)

≤ u
(
k +

√
(k + 2)3

3

)
‖ai‖2 +O(u

2),(A.8)

where the next-to-last line was obtained by Cauchy–Schwarz. Notice that all errors
due to this part are superposed on column ai. Therefore the error matrix E1 of this
first part satisfies ‖E1‖F = ‖ei‖2.

The second part of step i consists of the transformations Gv and Gu in (9), which
we assume are each implemented with a sequence of k Givens rotations. For this we
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will use Lemma 18.8 of [9], which we recall in a slightly modified form. (We refer to
[9] for the details of the implementation and construction of each Givens rotation.)

Lemma A.1. Consider the sequence of Givens transformations

Mk = Gk · . . . ·G1M = G ·M.

Then there exists a perturbation ∆M ofM such that the computed matrix M̄k satisfies

M̄k = G(M +∆M), ‖∆M‖F ≤ 6k
√
2u‖M‖F +O(u2).

Applying this to the products Qup · Rup = (QGT
u ) · (GuRG

T
v ) and Vup = (V GT

v )
we obtain

Q̄upR̄up = (Q+∆Q)GT
u ·Gu(R+∆R)GT

v
.
= QRGT

v + E2,

V̄up = (V +∆V )GT
v
.
= V GT

v + F,

where

E2
.
= (∆QR+Q∆R+∆Q∆R)GT

v ,

‖∆Q‖F ≤ 6
√
2ku‖Q‖F +O(u2) = 6k

√
2(k + 1)u+O(u2),

‖∆R‖F ≤ 12
√
2ku‖R‖F +O(u2) = 12k

√
2(k + 1)u‖A‖2 +O(u

2),

and

F
.
= (∆V )GT

v ,

‖∆V ‖F ≤ 6
√
2ku‖V ‖F +O(u2) = 6k

√
2(k + 1)u+O(u2).

The norms of E2 and F can then be bounded by

‖E2‖F ≤ ‖Q‖2‖∆R‖F + ‖R‖2‖∆Q‖F +O(u2)

≤ 18k
√
2(k + 1)u‖A‖2 +O(u

2),

‖F‖F ≤ 6k
√
2(k + 1)u+O(u2).

Combining the bounds for E1 and E2 yields the bound

‖E‖F ≤ 26uk
3
2 ‖A‖2 +O(u

2)

for the local error E in step i. Similarly, the error matrix F on V(i) corresponding to
the local errors of step i can be bounded by

‖F‖F ≤ 9uk
3
2 +O(u2).

In order to sum up these errors over the n− k steps of the algorithm, we can neglect
the second order effects and then only need to multiply these bounds by (n−k). This
then yields the bounds of Theorem 6.1.
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