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A Systolic Algorithm for Riccati and Lyapunov Equations™

J.-P. Charliert and P. Van Doorent

Abstract. Riccati and Lyapunov equations can be solved using the recursive
matrix sign method applied to symmetric matrices constructed from the cor-
responding Hamiltonian matrices. In this paper we derive an efficient systolic
implementation of that algorithm where the LDLT and UDUT decompositions
of those symmetric matrices are propagated. As a result the solution of a class
of Riccati and Lyapunov equations can be obtained in O(n) time steps on a
bidimensional (triangular) grid of O(n?) processors, leading to an optimal speedup.
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1. Introduction

Matrix Lyapunov equations and matrix Riccati equaiions continue to receive
attention in the control literature [BS], [B1], [B3], {B4], [L1], [PLS], [H1], [V],
mainly because of their key role in various control and filtering problems. In this
paper we give a new numerical technique for solving a class of such equations. The
method nicely combines symmetric factorization techiniques with the matrix sign
algorithm. The resulting algorithm has the particular advantage of being easily
implemented on parallel architectures of distributed type. To our knowledge it is
the first parallel implementation developed specifically for these equations and it
results in an O(n)-time algorithm when using a “-iangular array of O(n?) processors.
The basic operations of the iterative algorithm amount to solving triangular systems
of equations and updating (skew-)orthogonal decompositions of nearly triangular
matrices. The interleaving of these recursive operations on a triangular array of
processors is optimized in order to yield a minimum time delay between two con-
secutive recursions. On pipeline machines (supercomputers such as CRAY, CYBER,
etc) the algorithm should also perform well [DS] since the basic operations are
typically of vector type and allow efficient “chaining.”

In the next section we first recall the matrix sign algorithm and its use for solv-
ing various symmetric quadratic matrix equations. We follow the development
of Gardiner and Laub [GL] from which this paper is strongly inspired. Then we
present a factored version of the matrix sign algorithm as applied to these symmetric
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equations, which is in a sense the main idea of this paper. In Section 3 we give some
basic results on symmetric recursions which are then used in Section 4 for tackling
a class of more general algebraic Riccati equations using factored recursions. Qur
factored version can be rewritten in a combined forward and backward factorization
algorithm which is crucial to obtain a parallel implementation with a minimum of
transmission lags, as pointed out in Section 5. The actual implementation details
of this parallel algorithm are then presented in Section 6. There we show how
the combination of the forward and backward recursions can be done on the same
processors without any additional time steps. The last section briefly presents some
numerical aspects of the algorithm.

2. The Matrix Sign Algorithm and Its Variants

2.1. The Sign Algorithm Applied to Hamiltonian Matrices

The matrix sign algorithm has been used [A], [B1], [B4], [GL] for solving both
the Lyapunov equation
PA+A™P+Q=0 (1)

and the more general algebraic Riccati equation (ARE)
PA+ ATP—PBR!BT™P+ (0 =0 (2)

which arise in design problems for continuous-time systems. The key technique here
is to convert those problems to an eigenvalue problem involving the Hamiltonian

matrix .
A —BRB
ne () T ®

{where we take B = 0 for the Lyapunov equation). Standard assumptions which are
made in this context are @ > 0, R > 0, and H has no pure imaginary eigenvalues,
and these will also be assumed in the sequel. We do not consider the case of singular

or indefinite Q, except for a few remarks in the text. In general, an order 2n matrix
H is said to be Hamiltonian if and only if JHJ = H, with

0 I,
J = (—I,, 0). 4

Notethat J™! = JT = —J. Itisknown that the stable subspace 5 of the Hamiltonian
matrix H, written as .

X
H, = < ) )
X,
in an arbitrary basis, yields a solution to the above equations in the form
P=X,X{\ (6)

The matrix sign algorithm is a simple way to compute this subspace. Consider the
following recursion for an N x N matrix H (N = 2n):

1
H,, = 3 [H, + ctH; '], ¢ = |det(H )N (7)
k
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started with H, = H. Notice here that this implies that H, is Hamiltonian for
every k (it is easily seen that the property JH;J = H, 1s maintained at each step of
the recursion). This recursion is known to converge (rather rapidly) to a semisimple
matrix [B1]

sign(H) := H, = lim H, (8)

k=

with all eigenvalues equal to + 1 and with the same stable and unstable invariant
subspaces as H,. In other words, H and H,, have a joint decomposition of the type

H, 0 -1, 0
per (% On mer( o

The null space of H, + I,, is then also the requested stable invariant subspace
#, and P can be computed via [B1], [B4]

Wi, W, W, \*
W= sign(H)+12"=< 1 12>’ P = _( 12) <W11>’
Woy Wi, W,, W,
where (*)* denotes the pseudoinverse. This specializes to

P=—W3'W,=—-W;'W, (10)

when the relevant matrices are invertible.

2.2. Generalized and Symmetric Recursions

In [GL] a modified recursion is given which exploits some of the structure of the
matrix H in order to save some computations. We first recall the generalized matrix
sign algorithm presented there:

1
Ziny =752+ GYZ'YL o =ldet(Z,)/det(Y)|VN. (1
k

When applying this recursion to a matrix Z, = Y, Hy Y, with Y = Y, Y, then we
also have the relation Z, = Y, H, ¥, in each step of the recursions (7) and (11).
This is easily seen by muitiplying (11) left and right by Y, and Y, !, respectively,
giving
1
Yz, Y= 7 (Y'Z Y+ (T2, Y )71 ), o = [det(YHZ, Y )M,
k
(12)

which shows the relation with (7). We thus have Z_, = Y, H,. Y, = Y, sign(H)Y,.

While H, is Hamiltonian for every k this is not really exploited in (7). On the
other hand, when using Z, = JH, (ie, Y=Y, = J, Y, = I) the recursion (11)
becomes

1 1
JH = f(JH,‘ + ctJH ) = I(JH" + cZJ(JH,) '), ¢, = |det(JH )N
k k
(13)

and each matrix Z, = JH, is symmetric, which is much easier to exploit algorithmi-
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cally. Similar comments also hold when using Z, = HyJ (ie, Y =L Y =Y, = J)

1 1
HeyJ = 5 - (HeJ + GH) = 5= (HJ + I HI)T), - o = [det(HJ)[.
k k
(14)

Obviously these two recursions are very similar and most results derived for one of
them will also apply to the other. In the sequel we therefore focus on (13) only.

In Section 3 we show that such generalized symmetric recursions could in fact be
constructed for computing sign(M) of any nonsingular matrix M. The construction
of the corresponding Z,, Y,, and Y, matrices, though, are not as simple then as for
a Hamiltonian matrix.

2.3. Factored Recursions

Since in the recursion (13) only symmetric matrices are involved, we would like
to exploit these properties when computing the inverse of JH, as well as the
, updated matrix JH,,,. This leads to the idea of using factorizations of the type
JH, = L,D, LI, where L, is lower triangular and D, is diagonal with nonzero
diagonal elements (equal to + 1 when normalized). Such factorizations exist provided
all the leading principal submatrices of JH, are nonsingular [GV, pp. 82-84]. In
Section 3 it is shown that this in fact follows automatically from the standard
assumptions Q > 0, R > 0, and det(H) # 0; moreover, all normalized D, matrices

are equal to the matrix
I, 0
Z= " . 15
(0 1"> =

Let us thus assume that for each matrix JH, of the recursion (13), we have
JH, = L,XLT. Then we can rewrite (13) as

1 (X 0 LT
Ly ZL{,, = ;(Lk aJLiT) (0 —Z> <c L_liT>‘ (16)
k kLo

This suggests that we look for updating formulas for L, instead of JH,. Such

0
an updating formula amounts to determining a ( 0 Z)-unitary matrix R,:
0 T 0

R Rl = 17
such that

1

——=(Ly &JL R = (Lyyy 0), (18)
2¢y,

where L., is lower triangular. From (17), (18) we indeed derive (16) and it follows
that JH,,, = L,,; ZLY,,. The converse, namely that (16) also implies the existence
of an R, satisfying (17), (18), is the following theorem.

Theorem 1. Let the matrices JH, and JH, ., of the recursion (13) both possess a
decomposition L,ZLT with L; lower triangular (fori = k. k + 1)and £ = diag{—1,,I,}.



A Systolic Algorithm for Riccati and Lyapunov Equations 113

Then there exists a diag{Z, — Z}-unitary transformation R, such that
1

J2¢,

Proof. Let £ be an arbitrary sign matrix of dimension A x # and let 4 and B be
two 1t x A matrices satisfying

Ly aJLiT)R, = (L¢sy 0). (19)

A-S-AT=RB-£-B". (20)
Then there always exists a £-unitary matrix § such that
A-§S=8 (21)

if A-£- AT = B-£- B" has full rank s [B2] (note that this condition implies i < 7).
Since L, ., was assumed to be nonsingular, the theorem follows directly from this
result. ]

In Section 5, where we look at parallel implementations of such factored recursions,
we show that it has some advantages to propagate two types of factorizations at
once, namely

JH, = L, ZL] (22)

and
J(WJH)J = —HJ = UZU/, (23)

where U, is chosen to be upper triangular. That such a decomposition is again
possible for all k is proved in the next section. This then leads to the coupled
recursions (derived from (13) and (14), respectively)

1 {2 0 LT
Ly LY = Z;(Lk ¢ Ug ) (O ):> <Ck Ul;—1>, (24)

1 (% 0 ur
Uk+IZUkT+1='2_C—'(Uk ckLkT)<O Z)(ck[jr;l)' (25)

k

- X0
Obtaining L, and U,,, from L, and U, then amounts to determining < 0 Z)-

unitary matrices S, and T, such that

1
——=(L ckUk_T)Sk=(Lk+1 0) (26)
 2¢y
and
1
(U aLiNT = Uy 0. (27)

 2¢,

When comparing the single recursion (19) with the combined system (26), (27),
it appears that we are doing too much work in the latter. But the system (26), (27)
has a number of important advantages. First there is no need to multiply with
the matrix J as is done in (19). At first sight, this is not a true improvement because
of the form of J. However, for the general symmetric recursion analyzed in the next
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two sections, multiplication with J is replaced by multiplication with a full matrix Y
and savings can then be significant. Secondly, all matrices in (26), (27) are triangular
which leads to a faster triangularization than for (19). Last, but not least, the com-
putations in (26), (27) are completely analogous and the algorithm for both reduc-
tions to triangular form is better suited for implementation on a parallel machine
than the one for (19). These different aspects are further discussed in later sections.

3. General Results on Symmetric Recursions

In this section we look at general symmetric recursions of type (11) and analyze
their properties in view of deriving factored forms for them. We especially look at
properties inspired from the special cases (13), (14) related to Hamiltonian matrices.
The idea is to use these general recursions for solving Lyapunov and Riccati
equations, for example, those encountered in implicit and/or discrete-time systems
to which the classical sign algorithm cannot be directly applied.

Below we show that for any nonsingular matrix M we can derive a generalized
recursion (11) which involves symmetric matrices only. The necessary and sufficient
conditions for the recursion (11) to yield symmetric Z, for all k are in fact easily
given in terms of Z, and Y only. '

Lemma 1. Let Y and Z, be nonsingular matrices. Then all matrices Z, of the
recursion (11) are symmetric and nonsingular if and only if Z, and YZ;'Y are
symmetric.

Proof. The symmetry of all Z, clearly implies that of Z, and YZ;'Y. We use
induction, showing that Z,,, and YZ. !, Y are symmetric when Z, and YZ. 'Y are.
This follows from the identities

1
Zyri =5 [Z+ YZ'Y], (28)
2¢,

1
Yz, V) = 70 [(YZI'Y)™ + /27, (29)
k

which can be derived from one another. The nonsingularity of Z, and Y is clearly
required for the existence of the above recursions. That this is also preserved for
each k follows easily from (12): the standard sign recursion (7) (with the matrices
Y,7'Z, Y, !) is known to yield invertible matrices at each step [B1], whence it is
clear that the matrices Z, are all invertible as well. |

In order to find a symmetric recursion of type (11) for M, we have thus only to
find matrices Y; and Y, (with Y = Y, Y,) such that Z,:= Y, MY, and YZ;'Y:=
Y, M 'Y, are both symmetric. This is always possible, since any matrix M possesses
a factorization M = S7'S, where both S; and S, are symmetric [U]; one solution
is then given by Y, = S, and Y, = I, which yields the symmetric matrices Zy = S,
and YZ;'Y = §,8,'S,. We do not claim that such matrices are easy to find
{in general this involves an eigenvalue problem [U], but it turns out that for our
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example, M = H, they are trivial to find as is shown in (13), (14). It is worth
mentioning here, on the other hand, that if one symmetric form is known then it is
easy to derive others by merely replacing ¥, and ¥, by UY, and Y, U7, respectively,
where U is an arbitrary invertible matrix. This in fact amounts to a congruence
transformation of the recursion (11), which of course preserves symmetry.

Remark 1. Notice that while Z, and YZ;!Y are required to be symmetric, no such
condition isimposed on Y itself. In practice, though, if Z, is symmetric, it is sufficient
to take Y symmetric or antisymmetric (e, ¥ = + Y7) in order to guarantee the
symmetry of YZ;'Y. A simple example of this is the choice Y = J in the previous
section. Other possible choices of Y are functions of Z, and are therefore less
tractable. -

We now want to find sufficient conditions on the matrices Z, of our recursion
such that they possess a factorization L, XL with L, lower triangular and invertible
and % some diagonal sign matrix, possibly different from the one in (15). Such
conditions are now derived using the following general Lemmas about the inertia
In(M) of a symmetric matrix M (i.e., the number of its negative eigenvalues, zero
eigenvalues, and positive eigenvalues), denoted in the sequel by In(M) = [n_, ng, n, ].

Lemma?2. Let M be a principal submatrix of a symmetric matrix M, with respective
inertias [A_, Ag, A, ] and [n_, ny, n.’|. Then
{n_ + ng > A_ + Ay,

30
ne + 1y =My + A, (30)

Proof. This follows from the interiacing property of eigenvalues of symmetric
matrices [GV, p. 269]. =

Lemma 3. Let M be an N x N. nonsingular symmetric matrix. If M has two
principal submatrices of dimensions p x p and q X q with p + q = N, which are,
respectively, negative and positive semidefinite, then In(M) = [p, 0, ¢1.

Proof. Let In(M)=[n_, ny, n.]. Then Lemma 2 implies that n_ + ny, > p and

ne + n,. > q. Since M is nonsingular we have n, = 0 which completes the proof.
|

Remark 2. Notice that applying this result to JH and HJ where H is the matrix
described in (3), we immediately find that In(JH) = In(HJ) = [n, 0, n].

Lemma 4. Let M be a symmetric matrix with inertia [p, 0, q]. Then it has a
decomposition LEL" with L lower triangular and invertible and with X equal to

—1, 0
()

if and only if the p x p leading principal submatrix M, is negative definite.
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Proof. From the triangularity of L it follows that M,; = —L,,I,L],, where L,,
is the p x p leading principal submatrix of L. This thus proves necessity.

For sufficiency, we first recall that a decomposition M = LELT with L lower
triangular and invertible is known to exist if all the leading principal submatrices
of M are nonsingular [GV]. (The inertias of the corresponding leading principal
submatrices of M and T are then also equal.) The k x k leading principal sub-
matrices M of M with k < p are also those of M, and hence are nonsingular since
M,; < 0[GV].For the k x k leading principal submatrices M of M with k > p we
give a proof by contradiction. Let In(M) = [#A_, A, A, ] for such a k x k singular
submatrix M. Then A_ + A, > p + 1 by Lemma 2 (since M,, is its submatrix).
Using again Lemma 2 this would also imply that the nonsingular matrix M —with
inertia [n_, 0, n,]—has n_ > p + 1 negative eigenvalues (since M is a submatrix
of M). But this contradicts Lemma 3, which says that In(M) = [p, 0, ¢].

Finally, for the sign pattern of the normalized Z we need to prove that the inertias
of the leading principal submatrices of M are also those of the leading principal
submatrices of Z as given in (31). This follows from the above arguments on inertias
of M. [ |

Lenima 5. Let M be a symmetric matrix with In(M) = [p, 0, q]. Then the leading
p X p principal submatrix of M is-negative (semi)definite if and only if the g x g
trailing principal submatrix of M ™! is positive (semi)definite.

Proof. Let us first assume that the leading principal submatrix M,; of M is
negative definite. Then it follows from Lemma 4 that there exists a decomposition
of M of the type

M= (M“ M271> - (L“ 0 )(-1,, °><L1T1 L?) =LILT, (32)
MZI M22 L21 L22 0 Iq 0 L22
where L is lower triangular. Now define N := M ' and U := LT (U is thus upper
triangular). Then it follows that

N= (N“ Ngl) - (U“ U”)(‘IP O><U1:1 0 > - UsUT. (33)
N21 N22 0 U22 0 Iq U12 U22
From N,, = U,, UL, we derive that N,, is positive definite. To prove the converse
we follow similar arguments.

For the case of semidefinite matrices we cannot use the above arguments, but
the result easily follows by continuity arguments. This completes the proof. u

Remark 3. Notice that we can only relate properties of M,, and N,,, not of M,
and M,,, as is easily seen from the following example with inertia [1, 0, 1]:

(3 w0

Using this result we now derive simple sufficient conditions (in terms of Z, and
Y only) for all Z, to have a decomposition Z, = L, XLT with T independent of k.
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Theorem 2. Let the N x N matrices Y and Z,, be nonsingular and let Zy and YZ5'Y
be symmetric. Then if Zy, and YZ;'Y both have a leading p x p principal submatrix
which is negative definite and a trailing q x q principal submatrix which is positive
semidefinite (with p + q = N), then this property is preserved for all matrices Z, and
YZ.'Y. The matrices Z, then also possess a decomposition L, LT with L, lower
triangular and T = diag{—1,, I;}.

Proof. We prove the theorem by induction. Let the property hold for k. Then from
(28) it readily follows that the linear combination Z, ., also has a leading p x p
principal submatrix which is negative definite and a trailing principal submatrix
which is positive semidefinite. By Lemma 5, both Z; ' and (YZ;'Y)™" have a trailing
q x g principal submatrix which is positive definite and a leading principal submatrix
which is negative semidefinite, and from (29} it again follows that this also holds
for the linear combination (YZ_!; Y)™'. By again applying Lemma 5, we conclude
that YZ. !, Y has a leading p x p principal submatrix which is negative definite and
a trailing ¢ x g principal submatrix which is positive semidefinite. Using Lemmas 3
and 4, the existence of the desired decomposition for Z, follows. |

Using similar arguments we easily derive the following corollary.

Corollary 1. Under the conditions of Theorem 2, a factorization
(YZ'Y)' = U ZU]

always exists at each step k, where U, is upper triangular.

Remark 4. The above only proves sufficiency of the conditions. It follows from
Lemmas 4 and 5 that the negativity of the p x p leading principal submatrices of
Z, and YZ;Y is necessary for the existence of L, and U,. (The other conditions
could perhaps be relaxed.) For our example from optimal control, though, all
conditions are met if we take Z, = JH, Y =J, and hence (YZ;1Y) ™' = —HJ
and if we make the standard assumptions Q > 0 and H nonsingular. Indeed we then

have
-0 —AT _ BR7!BT A4 \7!
Zy, = YZ,'Y = — , 34
0 <—A BR—lBT ’ 0 AT _Q ( )

which satisfy the conditions of Theorem 2 because of Lemma 5.

4. Symmetric recursions and Hamiltonian Pencils

The conditions of Theorem 2 on Z, and YZ;'Y are met when we deal with the
special case of the ARE encountered in optimal control of continuous-time systems;
see Remark 4. In this section we investigate how this can be extended to other
Lyapunov and Riccati equations encountered in discrete-time and continuous-time
systems—possibly also defined with generalized state space models. These exten-
sions are strongly inspired by the work of Laub and coworkers [GL], [L2],
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[PLS] and are based on Hamiltonian pencils, ie., pencils Z; — AYy for which
ZyJYs = —~Y,JZF.
We first recall that these extensions can be reduced to one involving a pencil of

the type
Zy,—AY =T(JH — A)TT, (35)

where H is a Hamiltonian matrix. Note that JH — AJ is a Hamiltonian pencil,
while the pencil Z, — AY is not Hamiltonian in general. From the discussion of
Section 2 it is clear that the matrices Z, corresponding to both pencils Z, — AY and
JH — AJ are related by the same congruence transformation T and that eventually
they both lead to the sign matrix H, of the underlying Hamiltonian matrix H.
Moreover, the Z, corresponding to (35) are all symmetric by application of Lemma 1.

Consider the generalized ARE encountered in continuous-time systems modeled
by generalized state-space systems:

ETPA + ATPE — ETPBR™'BTPE + Q =0, (36)

where E is nonsingular. In [GL] it is shown that the solution P of this equation
boils down to the computation of the generalized sign recursion applied to the pencil

-Q AT 0 ET
Zy—AY = — . 37
o4 (—A sr57) "\ £ o (37)
This pencil is congruent to a Hamiltonian pencil as in (35), using the transformation
I 0
T= . 38
<0 E) (38)

Lyapunov equations of the type
ETPA+ ATPE+ Q=0 (39)

are encountered in stability analysis of generalized state space systems and can be
viewed as a special case of (37) by putting B = 0. Other extensions considered
in [GL] are the corresponding Lyapunov and Riccati equations encountered in
discrete-time systems using generalized state-space models. These can both be
represented by the equation (with B = 0 for the Lyapunov equation)

ATPA — ETPE — ATPB(R + B"PB)"'BTPA + Q = 0. (40)
In [GL] it is shown that the matrix M defined as

M:=<I BR"BT>"< AE™? O) @1)

0 ET4T ~ETQE™ 1
is symplectic (i.e., MJMT = J) and that the matrix H defined as
H=M+D)7'M-1I) 42)
is Hamiltonian (i.e., HJ = —JHT). Here a classical assumption is that M has no

eigenvalues on the unit circle, since by (42) they are mapped to eigenvalues of H
located on the imaginary axis. The solution P of (40) can thus be found from the
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generalized sign recursion applied to the pencil
Zy— Yy =JM+ D' (M~1)—AJ. 43)

In order to simplify this expression in terms of the matrices occurring in (40), we
first use the congruence transformation T; = (M + I)JT to obtain the following
pencil:

MZy—AY)Tf =M -DIM+ DT - AM+DJM+ DT (44)
to which the generalized sign recursion can also be applied. Then a second congruence
transformation

I BR™'BT
T, = (O 4T > 45)

further reduces this pencil to the more tractable form

Z, - 2Y=T,T,(Zy — AYy) T T
_(A—E —BR'B™\/0 -E™\"'/4+E BRTBT\T
"\ —-Q¢ ET-4TJ\E o0 —Q ET4+ 4T

AA+E BR™'BT\/0 —E"\'/A+E  BR'BT\T (46)
~-Q ET+A4AT)\E 0 —Q ET+A4T)°

We now prove that pencils Z, — 1Y such as defined in (37) and (46) can always

be used as a starting point for a factorized version of the generalized sign recursion.
For this we prove the following theorem.

Theorem 3. Let Z, — AY be a pencil congruent to the Hamiltonian pencil JH — iJ
(e, Zg— AY = T(JH — AN)TT for some T). Then there always exists an updating
congruence T such that T(Z, — AY)T7 satisfies the conditions of Theorem 2, i.e., both
TZ,TT and TYZ;*YTT have an n x n leading principal submatrix which is negative
definite and an n x n trailing principal submatrix which is positive semidefinite.

Proof. We prove the result by reducing it to simpler ones in successive steps.
First, it is clear that it suffices to prove it for the pencil JH — AJ itself, since the
congruence transformation T~ can always be absorbed in T Secondly, it suffices
to prove it for the pencil

0 —AT
JH, — 3J = TF(JH = ANT, = < 5) —AJ, 47)
- AS - X
where T; is the symplectic unitary matrix reducing H to its Schur form with Ag
stable (see [PV]), i.e,,
A X

HTl:Tl(o — AT
S

) with TTJT, = J. (48)

This follows again from the fact that T can also be absorbed in T. For (48) we show
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below that there is an updating symplectic transformation T,

P —I
T, = " with TJJT, = J, (49)
I, ©
such that
—I, A
JH, = TJJH, T, = ( AT 05>. (50)

If this holds then both JH, and

B [0 AN —AFTATT At
JUH:)™) = —(H )™ = <A 15> :< 4T o ) Y

have an n x nleading principal submatrix which is negative definite. A T, satisfying
(49) is in fact obtained from the solution P of the Lyapunov equation

’ PAT + AP =1 — X. (52)

* Since Ag is stable, (52) always has a symmetric solution P. |

Note that this theorem only proves the existence of a desired updating con-
gruence transformation T, albeit by constructing it. This construction is indeed more
involved than the actual generalized sign recursion since it uses the Schur form of
H and hence implicitly solves the underlying Riccati equation. There is definitely
a need for a simpler construction of an updating transformation T such that
T(Z, — AY)TT satisfies the conditions of Theorem 2. It was shown at the end of
Section 3 that for the standard algebraic Riccati equation (2) with @ > 0 such
an updating transformation is superfluous but for the extensions considered in this
section, T is crucial for the existence of factored recursions.

5. Parallelism Enhancement

When developing factored versions of a certain matrix recursion, we are usually
thinking of lowering the complexity of the recursion or improving its numerical
performance. In our case we are also guided by the possibility of improving the
inherent parallelism of the resulting version. In this section we use that to com-
pare the variants of the factored recursions described earlier. We first recall these
two variants as applied to pencils of the type Z, — AY with Z, and YZ;'Y
symmetric and where Z, and Y satisfy the conditions of Theorem 2. In this
case the matrices Z, and YZ,'Y can be factorized for all k as, respectively,
Z,=LX2Ll and Y™'Z, Y ! = U, ZUT with L, lower triangular, U, upper trian-
gular, and X as in (15). The following recurrences for the factors L, and U,, in-
volving skew-unitary matrices R,, S,, and T, can then be derived (see Section
2):

Ly ¢ YLk—T)Rk =Ly, 0) (53)

1
2¢k
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involving L, only, if Y is antisymmetric (i.e., Y = — Y7), and

1 _
—(Ly ¢ U; T)Sk =(Li+; 0), (54)

 2¢
1 ur Ul
TT k — k+1
)= (57) 9

- involving both L, and U,, in the general case.

When implementing the factored version (53), we perform at each step the tri-
angularization of a 2n x 4n matrix with the following structure (with » = 3 and

where x denotes a nonzero element):

X X X X X X X
X X X X X X X X
X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X
X X X X X X X X X X X X

The computational complexity of this reduction is 16n* flops! when using skew
Givens rotations and 87> when using skew Householder or modified skew Givens
transformations (see the next section for an explanation of the latter). We also have
to add to that the 4n> flops needed to form YL; 7. The total complexity of one
iteration step is thus 20n* or 12n* depending on the choice of transformations.

When specializing to the case Z, = JH, Y = J discussed earlier, things become
cheaper since then the 2n x 4n matrices involved look like

X X X X
X X X X
X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X

Whether using skew Givens or skew Householder transformations, it is not possible
to avoid partial fill in this triangularization, and in fact it is as if we were treating
a 2n x 4n matrix with the following structure:

x X x x
X X X x x
x X x x X X
X x x X x X x X
X X x X X x X x x X
X X x X X X X X X X

! One “flop,” or floating-point operation, is the work needed to execute y := a» x + b where g, b, and
x are real scalars.
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The computational complexity of this reduction is 10n® when using skew Givens
rotations and 5n* when using skew Householders or modified skew Givens. Adding
to this the $n® flops needed to construct JL™T we come to a total of 114n° or 64n?
flops, depending on the choice of transformations.

When, on the other hand, we use the combined recursions (54), (55), then the

2n x 4n matrices involved are of the form

x x
X x x X
x x X x X X
X X X X X X x
X X X x X X X x Xx
X X X X X X X X X X X X
and
[ ]
X x
X X X
X X X X
X X X x X
X X X X X X
x
x x
x x X
X X x x
X X X x X
_xxxxxxj

Here we have thus to perform two triangularizations and two inversions which
together require 133n® and 8n? flops depending on the choice of transformations.

For a sequential machine we would of course choose skew Househoider trans-
formations because of their speed. In the case Y = J the fastest factored form is (53)
(which takes only 64n® flops per iteration) but in fact this is still slower than
the nonfactored forms (13) or (14). These indeed require only 4n* flops per iteration
when symmetry is exploited. In the case of a general Y, the most interesting factored
recursion is (54), (55), which requires 8n° flops per iteration and is thereby even
faster than the nonfactored form (11). The latter requires 10%n* flops even when
exploiting symmetry.

When using parallel machines, completely different criteria have to be considered.
Preference goes then to the use of Givens-like rotations, and we consider not
operation counts but “time steps.” This is explained in the next section.

6. Mapping on a Triangular Array of Processors

In this section we deal with the above algorithms implemented on “systolic-like”
arrays [K], [KL]. The aim is not to build up the “best” parallel algorithm, but to
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show that an execution time proportional to the problem size can be achieved on
simple array processors which exhibit fine grain parallelism. Since the combined
factored recursions (54), (55) seem to be the most appealing, we focus here on those.
However, parts of the analysis are also applicable to the single factored recursion
(53). Finally, we assume that the coefficients ¢, are all equal to 1, for simplicity.
The algorithm considered in this section is thus:

1. Initialization. LDLT decomposition of Z, and UDUT decomposition of
Y iz, v 1

Zo=LyELY and Y 'Z,Y!=U,ZUL.

2. Iteration. For k=0, 1, ...
(a) Invert L, and U/.
(b) Determine L,,, by the triangularization (54) and U/, by the triangular-
ization (55).
Stop the iteration when converged or after a fixed number of steps.
3. Solve for P.

The core of the above algorithm is the iteration process. Due to the lower tri-
angular structure of the matrices to be inverted and of the blocks of those to be
triangularized, it is natural to look for an implementation of that iteration on
a corresponding lower triangular two-dimensional array consisting of N(N + 1)/2
processors p; (i=1,...,N;j=1,...,i). As sketched in Fig. 1, each processor is
assumed to be connected (at most) to its four nearest neighbors: north, east, south,
and west. Similar implementations are often suggested for classical matrix problems,
e.g., [L3] and [L4]. We take into account the constraint that systolic algorithms
are to be compute-bound, for technological reasons [HB, p. 769]: any pair of
neighboring processors will be allowed to exchange only a limited number (two in
our case) of data at a given time.

In the hope of clarifying the exposition, inversion and triangularization are first
handled separately and a way to link {(and overlap) them together is presented
afterward. Then, the realization of the initial and solution stages of the algorithm
on the same array is discussed.

Fig. 1. The array of processors taken as a reference in the text, here shown for N = 6.
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6.1. Inversion

Examining the simultaneous inversion of L, and U7, we assume that at the starting
time (¢t = 0), elements (i, j) of L, and U/! are in processor p;. In order to simplify
notation we drop the subscript k referring to the recursion step and only consider
explicitly the inversion of L,. The inversion of U/ follows exactly the same process.
In Fig. 2 the systolic inversion of L = (l;;) is detailed. At most one number is
transmitted on a given branch per time step. With the notation L™ = (x), the

{a)

Fig. 2. Inversion of L = (I;}) on the array of Fig. 1, giving L' =(x;),for N = 6.
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triangular array computes

=1
Xy = ——i Z lim X j if i>],
ii m=J
leaving x;; in p; as follows. At time 1, all the diagonal elements x;; are computed
and their value is communicated to the south processor; at the same time all the [;;’s
are shifted one processor to the west. At time 2, the subdiagonal x;. ;’s are obtained,
while the x;;’s and the [;’s are propagated one processor further along, respectively,
the columns and the rows of the array. At time 3, no new x;; are computed: the
values of x;,, ; first have to be passed to the processors p;., ;, due to the communi-
cation constraint; propagation still goes on in rows and columns. At time 4, the x;, , ;s
can be computed. The rest of the inversion is then a succession of steps similar to
the two previous ones; propagation and propagation plus computation of a sub-
diagonal of x; alternate until xy | is obtained in the processor py ;. In Fig. 2(b)
this is summarized by an indication of the time at which the x;;’s are obtained. In
this way, the inversion of L and U7 is carried out in 2N — 2 time steps. It is also
apparent that, prior to the computation of x;;, (i — j) values are stored in the pro-
cessor py;. This possibly imposes excessive needs for local memory, unless other prop-
agation patterns than those of Fig. 2 can be considered. We do not discuss that here,
confining ourselves to basic principles, except for a remark in Subsection 6.3.

6.2. Triangularization

We now deal with the triangularizations (54) and (55). They will be performed simul-
taneously on the triangular array of Fig. 1. As they differ mainly by the fact that (54)
is achieved by means of column transformations and (55) by means of row transforma-
tions, the following description focuses on one of them, say (54). Basically, the meth-
od proposed here is characterized by the use of “elementary” operations acting
“locally” on the matrices to be triangularized, in a way similar to the systolic algo-
rithms developed for classical matrix computations; to a certain extent, this can be
related to the systolic implementation of the Q R-decomposition by Luk [L3], [L4].

zZ 0 . o . % 0 .
The ( 0 E) -unitary matrix in (54) is seen as the product of ( 0 Z) -unitary

rank-two corrections to the identity I,y, hereafter denoted R; (i=1,...,N;j =
1,..., 1), of the form
1 .. 0 -0 - 0
0 v r“ P rij .o 0 ]
Ry=| : E E : (57)
| 0 Tji Tii O0f-i+N
0 0 0 1
1 1

-~

j+N
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R;; modifies the ith column of L, (possibly transformed already) and the jth column
of U; T (same remark), so that the element (i, j) of the current U; T is annihilated.
Those annihilations will be performed as follows. A first “wave” W] of transformations
set the diagonal elements of U, T to zero: W, = R, R;,*** Ryy. Then the first
subdiagonal of U, T, already modified by W,, is affected by a second wave
W, = R;;R3, "+ Ry y-;. Other waves succeed one another until the last element,
in position (N, 1), is annihilated by the last wave Wy = Ry,. The waves W, have to
be applied in order, for increasing i (more generally, the element (i, j) is to be -
annihilated prior to any other with larger index i and same index j). But in a given
wave the R;’s can be ordered arbitrarily; in particular, they may be applied in
parallel. :

Before detailing the parallel implementation of that process, let us consider more
precisely the form of the R;;’s as well as the question of their existence. It is useful
to write the N/2 x N/2 blocks in the triangularization:

<(Lk)11 0 (M 0 >_,<(Lk+1)11 0 ) (58)
(Lo2r Lidzz (UM (Ui s (Lis)2r (Lisi)aa/)

labels: -1 +1 -1 +1
“Labels” are added here to mark the columns of L, and U; T according to the

0
diagonal elements of <O 2). There are two types of Ry;’s. First, if R; modifies

. , A
columns with the same label, then | * ) is unitary, and we can choose
NI O
Jt JJ

<r,.,. r,--) <cos ; —sin 9,.j>
i Ty sin QU cos 0;
where 8; is determined such that

(L UEHW--- Wi 16, )+ N)
[(Lk Uk—T)Wl VVi-—j] (i, i)

tan 9,_, =

Such transformations always exist and are numerically stable [W]. The second

type occurs when the labels are different, i.e., when zeroing the block (2, 1) of U, 7;

i i), (1 0 . .
therefore (r,, " ) is ( 0 1) -unitary, which leads to
r, ——

i Tjj
<ri,- r,,-) ( sec §;  —tan 0,,-)
i Ty —tan 6; sec 6

Ly U W, W_1G,j + N)
[(Lk Uk—T) W1 e VVi—j] (i, i)

where 6;; is such that

Sin OU =

This expression can be greater than 1, in general. We now show that this is never
the case here, and thus that the associated R;’s always exist. Let us consider
for a moment the situation where the diagonal blocks of U;"T would have been
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eliminated by “first type” R;’s, denoting it as
(Lll O O 0)_’<(Lk+1)11 0 >
LZI L22 X O (Lk+1)21 (Lk+l)22
The blocks L, and L,, will no longer be modified. Annihilation of X results from
transformations which involve only L,,. Because of (24), we can write

1 _L11L{1 —L11Lg1
\=Ly, LT, ~Ly LY + L,LY, — X7X
— (_(Lk+1)11(Lk+1){1 _(Lk+1)11(Lk+1)gl )
—(Lk+1)21(Lk+1){1 . _(Lk+1)21(Lk+1)§1 + (Lk+1)22(Lk+1)§2

It then follows that $L,,L, = (L )21 (Les1)5,, from which we deduce that
L,,LY, — XTX is positive definite. With x; the ith row of X, L,,L], — xTx, is
positive definite for any value of i. This implies that the R;’s of the “second type”
exist, as has been shown in the study of algorithms for downdating the Cholesky
factorization of a positive definite matrix [GS], [LH]. Moreover, those trans-
formations are stable provided that care is taken with computational ordering
(see [BBVH]).

A systolic realization of the triangularization (54) is suggested in Fig. 3. At the
starting time (¢ = 0), the elements (i, j) of L, = (I;) and U; T = (x;) are assumed
to be in the processor p;. For convenience, I; and x; represent initial as well
as modified values. At the end of the process, p; contains the element (i, j) of
Ly+; = (). No more than one item of data is exchanged per branch per time
step. The waves W, = [ [\.; R; i+, are successively initiated in the main diagonal
processors at odd time steps, and then propagated down the columns of processors.
For instance, at time 1, W, starts in the processors p; (i = 1,..., N), each determining
the angle 6;;, annihilating x;;, and passing it to the south processor (see Fig. 3(a)).
At time 2, the 6;’s are used to compute modified values of the x;,, ;’s and of
the I, ;’s, and are passed further on; also, these new x;,, ; are shifted one processor
to the east. This is repeated at time 3 in the next diagonal of processors, while
W, is started in the main diagonal. And so it continues. The I;’s are stationary.
The shifting to the right of the elements x;; follows the rhythm of annihilation of
the diagonals of U_7, leaving [ in p; from the northwest corner of the array.
The times of obtaining the I;}’s are summarized in Fig. 3(b).

A similar process can be used for the triangularization (55). In this case, elemen-
tary transformations are propagated from the main diagonal along the rows of
processors. At t = 0, p; contains the elements (i, j) of U/l and L;*; the element (i, )
of U/, stays in p;. Ul is produced in the array from the southeast corner in
a timing similar to that of Fig. 3(b).

As a consequence, the triangularizations (54) and (55) are carried out in 2N — 1
time steps.

6.3. Merging

The previous systolic inversions and triangularizations are now linked together to
form one iteration step of the matrix sign algorithm. The implementation of such
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{b}

Fig.3. Triangularization (54) with L, ., = (/] )and Uy T = (x,;) (initia] or modified values), on the array
of Fig. 1 for N = 6.

a step is illustrated in Fig. 4. Here we only show the times at which we obtain
the elements of the inverses (continuous lines) and of the triangular factors (large-
dashed lines for the triangularization (54), small-dashed lines for (55)), in the same
manner as in Fig. 2(b) and 3(b). It is observed that the elements of L, and U/,
present in the processors at ¢ = 0, are replaced by the corresponding ¢lements of
L., and U}%,, at t = 3N — 2, which is thus the time needed to complete one step
of iteration on the triangular array.
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Fig. 4. One iteration of the matrix sign algorithm.

The scheme of Fig. 4 involves local memory, as stressed above in the examination
of the inversion phase. In this respect, it is worthwhile to mention an alternative
scheme which consists of representing one iteration step as triangularizations (Fig. 3)
followed by inversions (this is not illustrated here, for conciseness). We find that
the total time is unchanged and that the data propagation is such that the two
operands of the products in (56) reach the corresponding processor simultaneously;
only the intermediate result is thus to be stored in that processor until the arrival of
the next operands. However, the implementation is less “natural” and implies, for
instance, that the first inversion would be merged with the initial decompositions.

6.4. Initial Decompositions

Before executing the iteration, it is first necessary to determine the LDL” (resp.
UDUT) decomposition of Z, (resp. (Y "*Z, Y 1)). Here again, due to the similarities
of both computations, the description is restricted to one of them, say Z, = LoZ L.
Let Z, = (x;) and L, = (I;). The equations to be inverted are

J
Xij = — Y liln if j<Nj2
- j (59)
N2 j
xp= =% lali+ Y laly if j>N/2
k=1 k=N/2+1

Systolic algorithms have been proposed for closely related factorizations. For
instance, Brent and Luk [BL] dealt with the Cholesky decomposition of a positive
definite matrix on a hex-connected array of processors where data enter and leave
in a similar rhythmic fashion. Here, instead, we want to solve (59) on the array
of Fig. 1, in such a way that [; stays in p; at the outcome. A possible algorithm,
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Fig.5. L,ZL{ decomposition of Z,, with Z, = (x,;) and L, = (i), on the array of Fig. 1 (N = 6).

directly related to the study of O’Leary and Stewart [OS], is shown in Fig. 5, where
at most one item of data is exchanged per branch per time step.

Given the lower (or upper) part of Z,, the factor L, is obtained as follows
(Fig. 5(a)). The diagonals of Z, are fed into the array at its western boundary,
the main diagonal first (i.e., p;; receives x;; at time ¢t = 1). Then they are transmitted
along the rows of processors. The element ;is computed in p;;, propagated in the ith
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row up to the diagonal processor, then down the ith column of processors. Product
operands reach appropriate processors simultaneously; thus only intermediate
results need to be stored. Times at which the [;’s are obtained are summarized
in Fig, 5(b).

The other decomposition can progress jointly. The diagonals of the lower (or upper)
part of (Y™1Z, Y1) enter the array along the bottom boundary, main diagonal
first (i.e., py; receives the element (i, i) at ¢ = 1), so that the element (i, j) of U stays
in p;; at the outcome. Therefore, both decompositions are achieved, or equivalently
the initial state of the iteration phase is attained, in 3(N — 1) time steps.

6.5. Solution

We now assume that the iteration process has converged; the question of a stopping
criterion is briefly considered at the end of this section. Only the extraction of the
solution P is still to be made systolic. A simple and neat implementation is not
apparent, due to the form of P (10). It is not our aim to suggest a definitive scheme,
nor even to recommend a convenient one, but we outline here a possible scheme
in order to estimate the number of time steps required.

A priori, the inverse of P is easier to compute than P itself. Upon convergence,
the recursions become

JH, = 3L LI + U;TXU') = L XLL,
—H,J =3(U,ZUS + LTELY) = U ZUT,

from which L, = U7 follows. Denoting the triangular matrices L, and UT by

Ly; O ur,
< 1 ) and < o OT>, (60)
L21 L22 U12 U22

we thus have L, = U{T and L,, = U;,. Expressions for P are obtained from
(10):

=(—Ly, L3 + D7'Ly; LT, = (U,, U], + D70, U3,
Therefore, the inverse of P is given by

Pt = Lzz(Usz + ng) = (U12 + Lzz)ng = U11(U1T1 - Lgl) = (Uu - LZI)UITI’
(61)

where the second and the fourth equalities are due to the symmetry of P. With
the additional notation Pr,,, Pr,,, Pr,,, for the blocks of processors corresponding
to the partitions (60), the following operations determine P~ (or, more precisely,
the (lower) Cholesky factor of P™') and, if necessary, P (i.e., the (upper) Cholesky
factor of P), from the first expression for P~ in (61);

1. With UF, distributed over Pr,; and L,, over Pr,,, the sum (U], + L7,) is
easily realized by simultaneously sliding the contents of each column i of Pr,,
(row i of L},) in row i of Pr,;, up to the diagonal processor. This requires
N/2 time steps.

2. Starting with (U], + L1,) and L%, superposed in Pr,,, the upper part of the
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symmetric product L,,(UT, + LI,)can be obtained by shifting L7, to the right
and propagating down the products of its elements by those of (U], + L1,).
This is accomplished in N/2 time steps provided that the ith row of L7, shifts
one time step ahead of the (i + 1)st row, and that partial sums in scalar
products are accumulated in each processor before being passed to the next
one in the same column. Then the upper part of Pr,, contains the upper part
of P71, To some extent, this process can be seen as a generalization of the
algorithm proposed in [KL] for matrix—vector multiplication.

3. The lower Cholesky triangle of P! is derived in a manner similar to the one
adopted for the initial decompositions (see Subsection 6.4 above and Fig. 5).
Here computations are performed in Pr,, (rather than in the whole array)
and hence require 3[(N/2) — 1] time steps (for N > 2); in addition, N/2 time
steps are necessary for moving each column i (with diagonal element first) of
the upper part of P™! up to the left end of the ith row of Pr,,.

4. The inversion of the last result on Pr,,, by analogy with the process of Fig. 2,
requires 2[(N/2) — 1] time steps (for N > 2), leaving in Pr,, the transposed
upper Cholesky factor of P.

To sum up:

() P7! can be computed in N time steps,
(i) its lower Cholesky factor in 3(N — 1) time steps,
(iii) and the upper Cholesky factor of P in 4N -- 5 time steps.

The whole algorithm then takes (7N — 8) + x (3N — 2) time steps if x iterations
are needed for convergence. (x is typically less than 10 for matrices of reasonable
size.) The execution time on a parallel machine with O(N?) processors is thus
essentially linear in N, which corresponds to an optimal speedup.

A simple stopping criterion would be to execute a predetermined number of
iterations (depending on empirical knowledge). A more sophisticated and satisfactory
criterion consists of checking the following property. Upon convergence, it was
indicated above (Subsection 6.5) that L, = U_7. In terms of waves (as introduced
in Subsection 6.2), each triangularization is then equivalent to a first wave

W, = RS <1~ ~1~>
NV

followed by waves W, = I, . Therefore, since the elementary transformations which
compose these waves are computed in the diagonal processors, it is sufficient to
check there if the angles are close to n/4 for W, and to O for the other Ws.
The largest difference from these ideal angles can thus be used as a valid stopping
criterion, and it can easily be propagated through the diagonal processors during
the determination of the next iterates. The implementation of this criterion on our
array of processors (Fig. 1) could be facilitated by the addition of direct links
between successive diagonal processors. At the same time, the evaluation and
propagation of the coefficients ¢, as required in an efficient implementation of
the algorithm, could be performed without prohibitive costs.
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7. Numerical Aspects

In this section we briefly investigate two numerical properties of the algorithm:

(i) the stability of the factorizations, and
(ii) the stability of the relationship between the factors L, and U,.

(i) At each iteration step, two triangular factorizations are to be computed. With
the notation and the hypotheses of Theorem 2 and Corollary 1, these are

Zy=LoZLY and Y 'Z,Y ' = U,ZUJ (62)

at the first step, and their existence at subsequent steps is then also guaranteed.
Without pivoting, numerical instabilities possibly occur due to rounding errors
[BP], as illustrated in the following simple example. The matrix

z,=( ¢ 1 >0
o=\-1 1) 7T

gl? 0
Ly= :
° <a-1/2 1+ 1/8)1/2>

In finite precision, if ¢ is so small that (1 + 1/¢) is rounded to 1/e, then the computed

factor L, is such that
. s —& —1
LY =2,= :
LoXLy 0 (_ 1 0)

Such instabilities reflect the bad conditioning of L,. Theorem 2 ensures that the
condition number of the L,’s remains finite if it is so initially; also we have observed
empirically that this condition number usually improves with k. Essentially, we
thus have to guarantee a well-conditioned solution L, and U, to (62). In theory
this is possible by first applying a well-conditioned (ideally unitary) congruence
simultaneously to Z, and Y™'Z,Y ~!in order to improve the (positive or negative)
definiteness of their diagonal blocks. If only one matrix had to be handled, a prac-
tical approach would be to use techniques developed in [BP]. However, here as for
the preprocessing of a pencil congruent to a Hamiltonian one (see Theorem 3 and
thereafter), two symmetric matrices are involved, and a practical and effective
construction of the congruences is an open question.

Similarly for the case of a Hamiltonian matrix H (see Section 2.1 and Remark 4),
we could perform an initial symplectic transformation in order to improve the
positivity of Q. In [PV] a class of unitary symplectic transformations is described
which could be used for this purpose, but here again a practical constructive
algorithm is still lacking. Hence, our algorithm in its present form is of real interest
only for matrices (pencils) with definite diagonal blocks which, moreover, are far
enough from singularity.

(i) When analyzing the stability of the relationship between L, and U,, stated via
(22) and (23) for a Hamiltonian matrix (extension of what follows to more general

gives
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situations is direct), some parallels can be drawn with the stability of the basic
sign recursion (7) for H, as implicitly contained in Higham [H2]. We recall this
briefly. Let the current computed iterate be A = H + A and its exact update be
A, = H, + A,. With ¢, = 1 for simplicity, we have, by (7),

H,+ A, =4H+A+H+AN*']J=4H+A+ H*'—H*'AH™'] + 0(A?Y),
which gives
A, ~i[A - HAH™1], (63)

up to the first order. Let T be the similarity transformation which diagonalizes H_:
T 'H T = X (see (9)). Then

TIA, T~ i[T'AT — (T H T (T AT)(T H™T)]

follows from (63), again up to the first order. Defining a norm by || X ||r = | T X T},
we finally have

14Ty = ZIAIA(1 + IH TR, (64)

which tends to ||A}|; as H converges to H,. Therefore, at least near convergence,
the error at a given step is propagated in a stable way.

We now turn to the relationship between the triangular factors L and U in our
coupled recursions algorithm. Let the computed values be L and U at some iterate;
the corresponding Hamiltonian matrices are denoted as

JH, =LEZLT and -HyJ=UZU",

according to (22) and (23). The deviation A of Hy, with respect to H;, (A = Hy, — H;)
is used to characterize how much L and U are unrelated at this iterate. The prop-
agation of A in exact arithmetic can be estimated via the following rewriting of (24)
and (25) (¢, = 1):

(Hy)s =3[H + Hy'] and (Hy). =3[Hy + H.').
With A, = (Hy), — (H.),, we have
A, =3[A+ H' —(H, + A7']=4[A + H{'AH;'] + O(A?).
Then, ,
1A =~ 31AIF(1 + 1HLIF)

is obtained in a way similar to that leading to (64). Therefore, at least near con-
vergence, the deviation occurring at a given step is not really amplified by the
following ones.

In addition to A,, the total (in finite precision arithmetic) deviation at the next
iterate also consists of the rounding error and of the interaction between this one and
A, . The rounding error comes from the computation of (26) and (27); each of those
involve an inversion of a triangular factor and a triangularization. The error due
to the inversion depends on the conditioning of the triangular factors (see (i) above),
while the error due to the triangularization behaves well (Subsection 6.2) and tends
ultimately to the round-off level of the machine, since the transformations involved
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tend to be unitary when the process approaches convergence. On the other hand,
the dominant term of the interaction part is of a higher order than that of the
rounding error and A, . Summing up, we conclude that the numerical evolution of
the relationship between L and U is satisfactory ultimately, provided that the initial
decompositions (62) are stable. However, nothing precise is known about its global
numerical behavior over the whole process, to the same extent that the global
numerical stability of the basic sign recursion for H is not clearly understood.

8. Conclusion

In this paper a new algorithm was presented for implementing the generalized sign
recursion of Gardiner and Laub in a factored form. This idea was inspired from
the so-called square root algorithms as, €.g., surveyed in [A]. Our implementation
differs from earlier work by propagating two coupled factorizations simultaneously.
This approach has the following advantages:

(i) The complexity (i.e., number of flops) is lowered for the generalized sign
recursion with dense Y (Section 5).

(i) It can be efficiently implemented on a triangular grid of O(N?) processors
leading to an optimal speedup (Section 6).

The method directly applies to the solution of standard AREs with a positive
definite weighting matrix Q. Its extension to a semidefinite Q (Section 7) or to the
more general case of pencils congruent a Hamiltonian one (Section 4), requires
the derivation of an appropriate congruence (Theorem 3 and Section 7) for starting
the factored sign recursion. This is yet an open problem.
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