Philips J. Res. 43, 268-290, 1988 R 1186

SYSTOLIC ALGORITHMS FOR DIGITAL
SIGNAL PROCESSING

by J.-P. CHARLIER, M. VANBEGIN and P. VAN DOOREN
Philips Research Laboratory Brussels, Av. Van Becelaere 2, B-1170 Brussels, Belgium

Abstract

In this paper we give an introduction to new developments in the inter-
disciplinary area of parallel algorithms for digital signal processing. Our
purpose is not to be exhaustive but to introduce the reader to the current
developments in the area, and to guide him through the existing litera-
ture.

Keywords: Digital signal processing, linear algebra, systolic algorithms.

1. Introduction

Parallel Algorithms (PA’s) constitute presently a tentacular trend which
extends its arms over a variety of mathematical fields. Parallelism seems to
provide an adequate alternative means to speed up computation or data
treatment, in consideration of the following facts:

(i) the rate of growth of computing power available from a single proces-
sor has been slowing down more and more for one or two decades;
(ii) at the same time, the hardware cost of executing an elementary oper-
ation has decreased dramatically;
(iii) also, problems have grown in difficulty and complexity.
Therefore, design of new algorithms, parallelization of existing ones, and
study of their properties are in rapid development.

Digital Signal Processing (DSP) is an application area where early specific
types of parallel implementation (namely systolic arrays) were proposed,
partly because of the inherent resemblance between representations of dig-
ital filters and systolic arrays, but also because there is a strong demand for
highly performant parallel algorithms in this area. The main reason for this
is that several applications now imply real time implementations with very

268 Philips Journal of Research Vol. 43 Nos 3/4 1988

Systolic algorithms for digital signal processing

high throughput rate of data and computational load. Typical examples of

this are:

— speech processing where the sample rate can go up to 20.000/sec. and the
number of operations may reach 1.500.000/sec. such as in speech recog-
nition,

- adaptive filtering for devices incorporated in commercial products (such
as a TV set or a compact disc) which have to operate in real time,

— medical scanners which process up to 350.000 samples/sec. and perform
up to 50.000.000 operations/sec,

— radar processing which seems to have the most ambitious processing re-
quirements with 10.000.000 samples/sec. and 5.000.000.000 opera-
tions/sec.

Especially for the last two examples, the desired throughput rate and com-

putational load can hardly be handled by conventional machines anymore.

Even supercomputers — with a moderate level of parallelism but with very

high speed processors — can hardly tackle these tasks. Moreover they would

not exploit the special features of these problems which are:

— repetitive nature of the computations both on the level of the processing
(e.g. every 10 msec. a portion of a scanner signal is transformed to the
frequency domain via an FFT) and on the level of the algorithmic details
(an FFT is intrinsically repetitive in its fine details),

— use of elementary operations such as fixed point arithmetic, small word-
length (6 to 16 bits for speech), cordic transformations, etc. is typical in
this area,

— dedicated hardware allows to translate the special features of a sbeciﬁc
application in (VLSI) hardware implementation.

In the next section we first give a brief outline of the specific parallel ar-
chitectures we are considering here. In sec. 3 we then discuss the interaction
of parallel algorithms with DSP, while in sec. 4 we emphasize the relevance
of numerical linear algebra for future developments. Finally, we present some
concluding remarks in the last section.

2. Distributed architectures and parallel processing

VLSI technology offers very fast and inexpensive computational elements
which can be combined in highly parallel special-purpose structures for a wide
range of potential applications. The concept of systolic architecture has been
developed at Carnegie-Mellon University as a general methodology for
mapping high-level computations into hardware structures. In this section we
first describe features of systolic arrays and we justify them as our choice of

Philips Journal of Research Vol. 43 Nos 3/4 1988 269

J.-P. Charlier, M. Vanbegin and P. Van Dooren

PE|PE|PE|PE|PE|PE

Y

The systolic array
Fig. 1. Basic principle of a systolic system (taken from ref. 1).

architectural model in the sequel of this paper. Then we briefly describe how
the performance of PA’s can be measured.

In a systolic system, ‘data flow from the computer memory in a rythmic
fashion, passing through many processing elements before it returns to the
memory, much as blood circulates to and from the heart’ (see fig. 1)*%). More
precisely a systolic system is a computing network constituted by an array of
processing elements or nodes (ideally implemented in a single chip), and
possessing the following features):

— Synchrony. The data are rhytmically computed (timed by a global clock)
and passed through the array.
- Regularity, i.e. modularity and local interconnection. The array consists

|
\ 4
N // . -

e

EE

Fig. 2. Systolic array configurations using a same building block chip (taken from ref. 1).

- ———

270 Philips Journal of Research Vol. 43 Nos 3/4 1988

Systolic algorithms for digital signal processing

of modular processing units with regular and local interconnections.

Moreover the computing network may be extended indefinitely.

— Temporal locality. There will be at least one unit-time delay allotted so
that signal transactions from one node to the next can be completed.

— Effective pipelinability. Ideally, successive computations are to be pipe-
lined, such that all processing elements are working at any time, which
leads to a linear ‘speed-up’ (see below).

Regularity involves simplicity of design and control, thus allowing to cope
with the large hardware resources offered by VLSI. Systolic arrays are suit-
able for implementing a diversity of parallel algorithms and can assume many
different configurations for different algorithms. Moreover it is often pos-
sible to use the same (programmable) processor or chip as building block for
these arrays (see fig. 2).

The major limitation of systolic arrays, and of VLSI structures in general,
is their restricted use to compute-bound algorithms. In a compute-bound al-
gorithm, the number of computing operations is larger than the total num-
ber of input and output elements; otherwise the problem is I/O-bound. The
1/0O-bound problems are not appropriate for VLSI because VLSI packaging
must be constrained with limited I/O pins. This limits the size of systolic ar-
rays in practice. However, an alternative has been suggested to overcome
that difficulty, by partitioning the initial problem into smaller parts and im-
plementing them in a pipelined network °). Our choice of systolic arrays as
an architectural reference is founded on the following facts:

— they are in close relation with actual and probably future technology, and
receive a great deal of attention from universities and industry,

— by the inherently high and systematic degree of concurrency of their or-
ganization, and due to their formal definition, they constitute an abstract
context in which existing algorithms can be efficiently parallelized and
hopefully new algorithms could be designed,

— important applications of systolic arrays have been proposed in signal and
image processing, matrix arithmetic, pattern recognition, ... ,

— procedures exist to express parallel algorithms in a form that can be easily
implemented into systolic arrays (see for example refs 4, 6-8).

A slight variation of systolic arrays is obtained by removing the constraint
of synchrony. The processing elements (PE’s) then perform each their com-
putations as soon as all the required data are available (the PE’s are thus
not synchronized by a global clock). As illustrated later this propagation re-
sembles the propagation of waves through a medium, explaining the name
of wavefront array often associated with these architectures®). In the rest of
this paper, we put emphasis on algorithms for systolic-like arrays, by which

Philips Journal of Research Vol. 43 Nos 3/4 1988 271

J.-P. Charlier, M. Vanbegin and P. Van Dooren

we mean algorithms that have already been implemented or are likely to be
implementable on systolic arrays, wavefront arrays, or closely related ar-
chitectures.

In studying PA’s, we need some measure of their performance. Two re-
lated quantities are usually considered: speed-up measures the improvement
in solution time using parallelism, while efficiency measures how well the
processing power is being used. Issues of complexity, consistency and sta-
bility are also relevant.

The performance of a parallel algorithm strongly depends on the archi-
tectural features of the computer on which it is implemented. For instance,
memory interference, interprocessor communication, and synchronization,
lead to overhead and may affect seriously program execution times. In order
to estimate precisely the importance of such factors, detailed computer
models are necessary (see ref. 5 for an introduction). In this text, those as-
pects will not really be taken into acount in a quantitative way. Therefore
performances will have to be interpreted as valid for an ideal implementa-
tion of corresponding algorithms.

Let us examine measures of performance on array processors or multi-
processor systems. Speed-up () is defined by the ratio of the execution time
T, on a serial computer or uniprocessor to the execution time 7}, on the par-
allel computer:

s=1 (1)
T,

In practice, T, incorporates any overhead of architectural nature. In the def-
inition (1), T, and T, often refer to the same algorithm. For a computer that
can support P simultaneous processes, the ideal value of S is then P. In fact,
to achieve a fair comparison, T would be the execution time of the fastest
algorithm for the same problem on one processor (as done e.g. in refs 9 and
10). S is then often much lower than P. Related to S, efficiency E is defined
by

E= @)

~ |

for a system of P processors. E indicates the utilization rate of the available
resources (the processors) and is given by the ratio of the actual speed-up §
to the ideal speed-up P. Note that the maximum value 1 of E is always
reached for P = 1, so the number of processors is not necessarily chosen in
order to maximize E. Rather, the goal is to construct algorithms exhibiting

272 Philips Journal of Research Vol. 43 Nos 3/4 1988

Systolic algorithms for digital signal processing

linear speed-up in P and hence utilizing the processors efficiently. Speed-up
of kP/log, P is also acceptable: the speed increase is almost two when the
number of processors is doubled. More rapidly decreasing speed-up func-
tions characterize algorithms that are poorly suited for parallelism.

As a rule, the evaluation of algorithms on serial computers is based upon
computational complexity analysis, that is, arithmetic operation counts. In
this context Lambiotte and Voigt'!) have introduced the notion of consist-
ency: a parallel algorithm is said to be (asymptotically) consistent if its arith-
metic complexity is of the same order of magnitude as that of the best serial
algorithm. Clearly linear speed-up can only be obtained for consistent al-
gorithms. Yet, on array processors or multiprocessor systems, consistency is
not always that crucial. If one step is counted for each set of operations per-
formed simultaneously, the most important consideration is the number of
steps (7}, in (1)), not the total number of operations performed by all the
processors. Indeed, non-consistent algorithms are sometimes advantageous
when the extra amount of computation does not lead to additional steps while
communication needs between processors are reduced. E.g. with Csanky’s
method '?), the inversion of an n X n matrix can be obtained in O(log® n)
time-units (the time required for 1 flop) but using O(n*) PE’s. This algo-
rithm is thus not consistent with the standard O(n?) algorithms for sequen-
tial machines, but the computing time of O(log” n) is nevertheless very ap-
pealing.

The stability of parallel algorithms has not received much attention until
now, but a growth of specific developments in this area will presumably take
place in the near future. A recent study dealing with the evaluation of arith-
metic expressions on a pipeline computer is given in ref. 13. Clearly, the be-
haviour of new algorithms is to be analysed. Also the use of a non-consist-
ent algorithm may lead to a loss of accuracy, due to the greater number of
operations that are required per result. Moreover, in the situation where the
operations of a serial algorithm are purely rearranged in a new parallel or-
der, stability properties may be affected. The fact that parallel processing of
an algorithm may yield more accurate results than its serial version, is e.g.
illustrated by the fan-in algorithm for sums and inner products'*), and by
recursive least-squares updating and downdating algorithms - 16), but this
property is not true in general.

3. Parallel algorithms in digital signal processing

In this section we first point out the similarities between ‘flow graphs’ often
used in DSP and ‘computational networks’ used for systolic arrays. Then we

Philips Journal of Research Vol. 43 Nos 3/4 1988 273

W

J.-P. Charlier, M. Vanbegin and P. Van Dooren

w1 w2 W3

- Y3%y Y

Fig. 3." A simple example: FIR convolution for n = 3; D represents a delay.

list various constraints that are relevant in the choice between different pos-
sible computational networks for a same DSP algorithm.

3.1. A simple example: linear convolution

In order to illustrate how PA’s can efficiently be applied to DSP problems
we take one of the simplest possible examples. Consider the linear convo-
lution of a signal {x;; i = 0,...,%} with a finite impulse response (FIR) filter
w(z) = w, -z ' +...+ w, - z7", (where z ! stands for the delay operator)
yielding the output signal {y; i = ,...,>} defined by:

Yi = 21 Wi Xi_j. 3)
i=

A typical DSP representation of (3) is the ‘computational flow graph’ shown
in fig. 3, where we have chosen n = 3 for illustrative simplicity. Several dif-
ferent systolic implementations of this formula are possible 1) and we men-
tion here only a few. In each of them one clearly recognizes the classical ‘flow
graph’ representation of fig. 3.

X, X1, X
h, %
{a)

Xin

Yin YOu YQuf - Yin +W, xiﬂ
{(b)

Fig. 4. Linear processor arrays for convolution (modified from ref. 3).

274 Philips Journal of Research Vol. 43 Nos 3/4 1988

Systolic algorithms for digital signal processing

In a first design (fig. 4 left), the x;’s are ‘broadcasted’ simultaneously to
all processors, each containing one value w;, and the y,’s move systolically
through the array of processors. In the second design (fig. 4 right), the x,’s
move in systolically and the y,’s are obtained by an addition of all current
values of the processors. Both these designs need a global connection (a bus
for broadcasting or a global adder for reconstrucing y;) which is a drawback
for these two approaches.

Global connections could be avoided by letting the w;’s move systolically
instead of the y,’s. Since then the y; stay in the array, a systolic output path
is needed to extract these values at the end of the convolution process, which
is another drawback.

In fig. 5 we consider two designs that overcome these drawbacks Here
the w; are each stored in one cell and both the x; and y; signals move sys-
tolically: in the first design in a direction opposite to each other and in the
second design in the same direction but at different speeds. Since the y; al-
ready move out systolically, no secondary path is needed to extract them.

This example is also representative of the fact that parallel algorithms in
DSP are not ‘really’ (one should perhaps say here ‘often’) new algorithms
but are rather clever implementations of existing DSP algorithms. In the next
subsection we try to explain what exactly is meant by ‘clever’.

3.2. Criteria for systolization

With criteria for systolization we mean those issues that have to be taken
into consideration when trying to derive a ‘systolic’ implementation which is
acceptable, good or even optimal for a hardware realization. We just list
some main issues here and comment upon them.

— Minimal delay. Here one wants to minimize the amount of time elapsing
between the input of (all) the data into the computational network and

(;) g . . 13.) BYZ) 1 -I-

(a)
Xin Xout:
. ——){ F——>» -—Y. +W.X;
YOut Yin YOUT ym in

[x]
Yout == Yin+W.Xj, Yin ,&Ycuf X <X

(b)xiﬂ Xout XOUf%xin (b) Xout - X

Fig. 5. Two ‘optimal’ designs for convolution (modified from ref. 3).

Philips Journal of Research Vol. 43 Nos 3/4 1988 ' 275

J.-P. Charlier, M. Vanbegin and P. Van Dooren

the output of (all) the results. The optimal speed is a function of the in-
herent degree of parallellism of the given algorithm — or the depth of the
associated computational graph — since it is the longest computational path
in that graph that determines the minimal delay between the input and
the output of the scheme. The number of PE’s to achieve this optimal
speed (if it is known!) can be very large. In the above example the longest
path is easily shown to require three binary operations which could be
performed in one PE (each y; is the result of three independent multipli-
cations which can then be summed in two consecutive binary additions).
Each PE then in fact computes one y; and hence as many PE’s are re-
quired as output data!

— Speed-up in steady state. Here one pursues roughly the same goal, but
respecting the constraints of the input data flow. An example illustrates
better this point. While the above ‘minimal delay’ solution requires each
x; to be entered at the same time and at n PE’s concurrently, this usually
does not coincide with the availability of the {x;}. Indeed, these are often
the samples of some real-time process and thus arrive typically in a piece-
meal fashion. If in (1), the times correspond to the execution of an ‘infin-
ity’ of identical computations either on one processor {7) or pipelined on
a parallel computer (7,), then S is the ‘speed-up in steady state’. Since in
this case one neglects the amount of time spent in loading the data and
unloading the results, S is also given by the ratio of the throughput rates
in sequential and parallel implementations. For the above problem a speed-
up of 3 is then obtained in steady state by using the schedules of figs 4 and
5.

— Efficiency in steady state. This is the ratio of the speed-up in steady state
and the number of processors. We note that optimal efficiency (in steady
state) often implies to completely reorder or even rewrite the computa-
tion (see e.g. the FFT reformulation of a DFT), which makes it difficult
to prove a certain scheme is optimal. Techniques for deriving such schemes
are borrowed from complexity theory or sometimes use graphical consid-
erations. Results in this area, though, are far from complete.

— Lay-out. Here one wants to find a systolization that makes the inple-
mentation in hardware as simple as possible. Wire crossing {present in
FFT, perfect shuffle, ...) or global connections (see second scheme of fig.
4) should typically be avoided. One usually prefers regular 1-dimensional
or 2-dimensional arrangements of the PE’s with only few connections be-
tween them (nearest neighbours only) in order to yield compact hardware

* implementations. Typical examples are the linear and square arrays of fig.
2.

276) " Philips Journal of Research Vol. 43 Nos 3/4 1988

Systolic algorithms for digital signal processing

— Robustness. Robustness means that the implemented algorithm should
indeed yield the desired answers or at least answers that are ‘reasonably
close’ to them. Therefore the design of the scheme should be such that
overflows and underflows should not occur and that numerical errors
should not propagate unboundedly (i.e. the scheme should be numerically
stable in some sense). ‘Simple’ correction schemes for recovering from (or
at least detecting) possible loss of accuracy are needed when numerical
stability can not be ensured. This is still a trouble spot of some of the pop-
ular systolic algorithms.

We illustrate these different issues by two short examples. The first one is

the discrete Fourier transform, defined by

n

L 2ikw |
X,= 2 wkoxe =2 exp(——-)) - % (4)
k=0 k=0 n+1

where j = \/ —1. The DFT of a signal {x;; kK = 0,...,n} is easily performed
with a linear array of processors, as shown in the figure below:

X, E Xout c<1(at time 0)
X‘_X +Xin.f

Xout C—C.w'

Xout *Xin :
Xout ==X {at time n} ~

Fig. 6. A linear array for DFT with n = 7 (modified from ref. 6).

where in’ each processor a time-varying weight factor ¢ = w'* is updated, with
k (the time step) starting from 0 as x, enters it. The Fourier transform {X;;
i = 0,...,n} stays in the node and is eventually pumped out from each pro-
cessor when the last x,, has passed it.

Just as for sequential machines the FFT formulation allows for a faster
" implementation of formula (4) on a parallel machine. This is shown in fig.
7, where ¢; and d; are appropriate powers of w stored in each processor and
depending on the location of the processor in the graph. The drawback here,
though, is that connections are not as regular anymore but require a global
(Perfect Shuffle) communication network.

Philips Journal of Research Vol. 43 Nos 3/4 1988 277

v

J.-P. Charlier, M. Vanbegin and P. Van Dooren

Yep Yup ==y, + i Yio

Y(u ~ Yy * d; ylo
Fig. 7. A perfect shuffle array for FFT with n = 7 (taken from ref. 6).

The processing time is in favour of the FFT, with a ratio of log,(n + 1)
against (n + 1) (assuming ideally that this is a power of 2). The data have
indeed to pass log,(n + 1) levels (3 here) of the above array before the sig-
nal {X;; i = 0,...,n} is available at the output.

The speed-up of the DFT scheme in fig. 6 is O(n + 1) using (n + 1) PE’s
which is optimal and consistent with the formulation (4) of the Fourier
transform. If the speed-up is measured against the best available sequential
algorithm, then it is not optimal anymore for the systolic scheme in fig. 6
since the FFT formulation only requires (n + 1) - logy(n + 1) flops for the
same computation. The scheme given in fig. 7, on the other hand, is con-
sistent with the sequential FFT algorithm and yields (probably) minimal de-
lay — namely log,(n + 1) = 3 transmissions and twice as many flops (in each
PE) - corresponding to the longest computing path. Notice that for the ex-
ecution of just one FFT this scheme is not efficient (£ = O(1/logy(n + 1))),
while its efficiency in steady state is optimal. The lay-out of fig. 7, though,
is less appealing (interleaved connections) and the components {x,} of one
data vector must be all available simultaneously, which is not the case in
general.

If only a few FFT’s have to be performed, a disadvantage of the scheme

e XXy Xg _—_’T—)?_ >0
1 by

34 3 --- an

D D D

Fig. 8. A computational flow graph of the transversal filter for a(z).

278 Philips Journal of Research Vol. 43 Nos 3/4 1988

Systolic algorithms for digital signal processing

... X9X¢ Xp

Fig. 9. A computational flow graph of the ladder filter for a(z).

of fig. 7 is its high number of processors, namely log,(n + 1) layers of (n +
1)/2 processors. This can easily be replaced by one layer of (n + 1)/2 pro-
cessors through which the data circulate logy,(n + 1) times. This of course
reduces the number of processors by a factor log,(n + 1) but also reduces
its throughput rate by the same factor (each new data vector has to wait
log,(n + 1) steps after the previous data vector before entering the array).
The efficiency is now optimal both for one FFT and in steady state. On the
other hand, the processors are slightly more complicated since they must keep
track of what layer they are processing at each time step (the coefficients c,
and d; vary with time, while before they were fixed for each PE).

The second example is the linear systolic array for implementing FIR dig-
ital filters. Consider a convolution with a(z) =1+ 4, - z7' +...+ a, - z "
applied to an input sequence {x;; i = 0,...,0}. A possible computational
scheme for the output sequence {y;; i = 0,...,%} is schematically represented
by the signal flow graph of fig. 8, which is often called a transversal filter
representation of a(z).

...XZ X1 XO I > > —> > ... y2y1 yO

PE1 >PE2—-—> T —)PE“—>
Xyp—> oF ——>yup yup < Xyp+3.m yup<— xup"‘k.m
Xio—>L__ >V, Yo M Yo <M+ K. xyp
M - Xlo m <—xlo
(TF) (LF)

Fig. 10. Systolic implementation for transversal filter (TF) and ladder filter (LF).

Philips Journal of Research Vol. 43 Nos 344 1988 279

J.-P. Charlier, M. Vanbegin and P. Van Dooren

If a(z) is a stable polynomial in z71, then it can also be represented by its
reflection coefficients {k;; i = 1,...,n}, linked with a(z) via the following re-
cursion:

alz): =1,
fori=1ton, a(z):=a_,(2) +k;-z7" - a;_(z7),)
a(z) : = a,(z2)

It turns out that these coefficients k; are all bounded by 1 if and only if
a(z) is stable '®). Moreover a computational graph for the output of the fil-
ter can be based on these coefficients as well. This is shown in fig. 9 (see also
refs 1 and 18).

Both flow graphs represent the same filter a(z) but using a different para-
metrization. Yet there are clear similarities between both representations and
even more so when one looks at their parallel implementation on a linear
array of n processors. This is shown in fig. 10, where the only difference be-
tween both schemes lies in the little programs stored in each processor.

Notice that the throughput rate of both filters is the same although seem-
ingly twice as much work (multiplications) has to be performed in the ladder
filter. The fact is that the assignments in each of the processors could be per-
formed in parallel as well (within each processor) and the execution time in
each processor is then really determined by its slowest operation (one mul-
tiplication and one addition). In practice, preference is given to the ladder
filter for reasons of sensitivity (e.g. in speech synthesizers '¥). Remark that
the TF is in fact a convolution (see the similarity with fig. 5 right) and thus
that the convolution can be implemented as a LF if the corresponding po-
lynomial is stable.

s

4. Linear algebra and digital signal processing

Some of the techniques that are typical to the interdisciplinary area of sig-
nal processing and parallel algorithms are also slowly getting more attention
in numerical linear algebra. A classical example is the problem of updating
and downdating Choleski and QR decompositions. It typically occurs e.g. in
the recursive solution of least squares problems for filtering with sliding win-
dows). We do not aim here to give a complete derivation of these prob-
lems since they have already been treated extensively by several au-
thors 16:2021)

In updating a Q R decomposition one starts from an n X n system of
equations

280 Philips Journal of Research Vol. 43 Nos 3/4 1988

»

Systolic algorithms for digital signal processing

R-x=b (6)

with R upper triangular, resulting from a previous Q R decomposition. Add-
ing a new equation

al - x=c @)

with aT of dimension 1 X n, one then wants to determine the least squares
solution of the updated system ??)

HESHE. ®

i.e. to find the QR factorization of the ‘nearly triangular’ matrix

al az e a"
al LAVRAVIEEEN & T
=)
= r .
R 2z
r

It is shown in 2%) that this only involves a sequence of n Givens rotations
G+, each operating on adjacent rows 7/ and i + 1:

1. 00.0
_ 0.. C’ Sl --0 2 2_ .
Gijw1 = 0. —s¢..0| g tsi=1 . (10)
0..00..1
L _.
a’l R*
G"’n+1 ."‘.Gl,z . l:R:| = l: 0 :|: (11)

where R* is the updated triangular factor of the Q R decomposition.

In refs 20 and 21, it is shown that these operations can nicely be imple-
mented in parallel on a triangular array of processors, each initially contain-
ing just one element r;; of the matrix R as drawn in fig. 11. Each round cell
is a PE that generates an elementary orthogonal (Givens) rotation and each
square cell is a PE that propagates these as row transformations. The trans-

Philips Journal of Research Vol. 43 Nos 3/4 1988 281

-

J.-P. Charlier, M. Vanbegin and P. Van Dooren

formation G , between the first row of R and a” is entirely performed in the
first row of the triangular array of processors displayed in the figure. The
diagonal processor constructs G| , as soon as the element a; enters it, and it
then propagates the rotation via the parameters {c;, s,} to the processors on
the right. The new row a’ is fed into the array in a skewed fashion in order
that the parameters {c;, s;} reach the PE’s simultaneously with a;. All data
required for performing the elementary rotation

r; c S a;
“z(l) -8 €y i

are therefore present in each processor at the right time. As a result of this
a transformed (and shortened) row a” is passed on to the second row of pros

dg 3ip
| v
a, o {Cout Sout)
a, ° ° Cout < T + a,
a, { { { Sout < Qin / Vrz + aj,
! l
i ° { ° r —\r+ad

e e e AR a

n .

£

(cin ' Sin) _>(c0Ufl SOUT)

|
| .
| [
I |
l 1
| [L
| y v | ‘
| r Fac] | ~ . Aoyt
') EL 35 E Aout < Sin * ¥ + Cin * Gip
|
| L
l (
I |
| |
l _

r —Cyp T+ Sy apy

Cout < Cin

Sout < Sin

Fig. 11. A triangular systolic array for updating a Q) R-factorization (taken from ref. 6).

282 Philips Journal of Research Vol. 43 Nos 3/4 1988

)

Systolic algorithms for digital signal processing

“cessors, where similarly G, 3 is constructed and applied. This process is re-
peated in the whole array so that the new factor R" is gradually constructed
as the row a’ ‘passes’ through it (see refs 20 and 21 for details).

An important advantage of the above architecture is that it can be applied
as well for downdating as for updating a triangular factor. With downdating
one wants to reverse the above process and derive the ‘old’ triangular factor
R from the new triangular factor R* and the row a’. This corresponds to
removing or deleting an equation from a least squares problem. In refs 16
and 23 it is shown how this involves the further reduction of the ‘nearly tri-
angular’ matrix

a, a, ... a,
+ Lt +
al ryriz - Tn
— +
M (13)
+
rnn

to a triangular form using a sequence of n skew-Givens rotations S, ,,, op-
erating on adjacent rows i and i + 1:

r -

1.. 0 0 ..0

0.. v —0;..0

Siir1 0. —0 5 0| vi = Ve, oy =s/ci,ci +si =1 (14)
0. 0 0 ..1
) a’ R .
Sn,n+1 Teet S1,2 ' |:R+:| = [O:I (15)

Here R is the desired triangular matrix of the downdated Q R decomposi-
tion. There is an apparent analogy between the updating equations (9 to 11)
and the above downdating equations (13 to 15). Therefore these can clearly
be implemented on the architecture of fig. 11 by a minor modification of the
programs in the two types of PE’s. Moreover, a careful implementation of
the skew rotations S;;,, yields comparable stability properties with the ro-
tations G;,,, used for the updating problem '¢).

A drawback of the parallel updating/downdating schemes, though, is their
low efficiency. Indeed, as a” passes through the triangular array — compare
this to a wave travelling in a medium - only the processors on the wavefront

Philips Journal of Research Vol. 43 Nos 3/4 1988 283

J.-P. Charlier, M. Vanbegin and P. Van Dooren

are active simultaneously. It is therefore rather inefficient to use 2n time steps
on n(n + 1)/2 processors for something which requires only 2n* operations
on 1 processor (E = O(1/n)). But the nice feature of this architecture be-
comes apparent when performing several updates and/or downdates consec-
utively. These can indeed be pipelined in the triangular array one after the
other as shown in fig. 12. Each row to be updated/downdated is fed into the
array in a skewed fashion as indicated by the consecutive data wavefronts
on the right, leading to a O(1) steady-state efficiency. Applying an update
or a downdate on a single architecture can e.g. be realized by adjoining a
flag to each data row a’ indicating which type of rotation is to be performed
on it. The (steady state) speed-up in now roughly n(n+1)/2 (i.e. the number
of processors) since all processors are always active at each time step.

The parallel architecture of figs 11 and 12 thus combines nicely several de-
sired properties: consistency, high performance, numerical stability, flexi~
bility, appealing lay-out, etc. The algorithm is certainly one of the successful
examples of the advantages of systolic implementations.

From these updating and downdating procedures one can also rederive
other algorithms that are relevant to the area of signal processing. An ex-

Fig. 12. Wavefronts for consecutive updatings and downdatings (taken from ref. 6).

284 Philips Journal of Research Vol. 43 Nos 3/4 1988

]

Systolic algorithms for digital signal processing

ample is the Schur algorithm) which is an O(#?) algorithm for constructing
the (upper triangular) Choleski factor U of a symmetric positive definite n
X n Toeplitz matrix T:

h b1
oL
T,=| ! .. L =U-u (16)
R
lhoy oo It 0y

Without loss of generality we assume #, = 1 in order to simplify the formulas
in the sequel. It is easily seen that 7, can also be written as:

T, =Vl -V,— WI-W, (17)
with ,
1 [ap - 0t t,_,
Vo=1| ;1 Wo=| = ::: ;1 - (18)
1 0

Therefore the upper triangular factor U may be obtained by downdating the
rows of W, from the upper triangular matrix V, with a skew unitary trans-
formation Qy:

Fl-eli]a 5 5) e[t 0] o

How this finally leads to the Schur algorithm is e.g. explained in ref. 25 and
we follow their derivation here. First, since the diagonal elements of W, are
zero, the first row of U is merely the first row of V;,. Moreover, the rest of
the matrix U, say U, is determined from the following downdating prob-

lem:
U v I, 0 1, 0 |
I: Oljl = Q{ I:Wlljl 5 Ql : I: O ! _ n_ljl .QI - I: 0 ! _In—ljl, (20)

involving the (n — 1) X (n — 1) triangular matrices:

Philips Journal of Research Vol. 43 Nos 3/4 1988 285

J.-P. Charlier, M. Vanbegin and P. Van Dooren

1t .t thoty ot
V — . : . - . .'. :
1 . tl ’Wl . tz . (21)

rd

Downdating the first row of W, from V, then consists of first applying the 2
X 2 skew rotation (see earlier):

l/Cl —Sl/Cl] [1 tl R 4 _2] l:l/l B o... I)l]
. n = " 22
[—Sl/cl l/Cl tl t2 tn—l 0 W2 Wn_l ’ ()
where s; = 1) ¢ = \/1 — 57 are chosen in order to annihilate the (2,1) entry
in this matrix. Due to the Toeplitz structure of V; and W,, the same 2 X 2

skew rotation applied to all the pairs of corresponding rows of V; and W,,
yields:

F"l N N

I %)

Ve, _51/011,:-1] [Vl] — | 1
[—sl/cll,,~1 led,—4 Wil | 0ws.ow,_, |’ (23)

, = oW

- 0

so that all the diagonal elements of W, are annihilated. As before we obtain
that [v; ... v,_,] is the first row of U; (and thus the second row of U). One
is then left with the downdating of the (n — 2) X (n — 2) matrices:

U B . o WoWy LW,
£ Y W2 LWy (24)
5] W,

The algorithm continues recursively (see ref. 25 for details) in the same
manner as in the first two steps: at each step i, one additional row i of U is
constructed and Toepliz matrices V; and W, of decreasing size are generated
until they finally vanish. Clearly all the computations needed at each step i
require only the processing of two rows (of decreasing length n — 1).

A linear array of n processors can be used for a parallel implementation
of the algorithm (see fig. 13). Indeed let each processor P;_; contain initially
the two elements of the j-th column of the matrix:

286 Philips Journal of Research Vol. 43 Nos 3/4 1988

Systolic algorithms for digital signal processing

v v L9 14 ...t
= (25)
w® w® . w®, 0t ... t,_4

(where {® and w? are the elements of V,, and W,, respectively). Then the
processing is as sketched below 19):

! i |

PO P1 Pz —» - - - - ——)‘Pn_T
Uoyt Uoyt
T Cout Cin Cout
PO'_)Sou'r Sin _’Pi—)souf
Vout Vin Vout
Sout 'CU/'U Sout ¢ Sin
Cout 1-— Sgut Cout ¢ Cip
Vout — V- C Vout ('U — Sin 'UJ)/C.',,
Uout — Yout Uour ¢ Vput
w — 0 w — Cip "W — Sin ~ Vout
v — 0 v — Uin

Fig. 13. A linear array for the Schur algorithm.

Notice that after step 0 the first processor becomes inactive (v and w are
then 0) and that the role of the ‘leading’ processor P, is taken over by Pj,
etc. (see refs 24 and 25 for more details). Hence, after n steps all the pro-
cessors have become inactive and all the rows of U have been generated.
The speed-up is easily seen to be O(n) since O(n?) operations are performed
in O(n) time steps.

A second example of the use of updating and downdating is the Q R-de-
composition of an arbitrary rectangular Toeplitz matrix 7,,, (with m > n):

~ —_
P T
t—l N :
.. tl
Tmn = Lomn fy = Q "R (26)
. t,
Lt-m-kl tfm+n

Philips Journal of Research Vol. 43 Nos 3/4 1988 287

J.-P. Charlier, M. Vanbegin and P. Van Dooren

In refs 26 and 27 it is shown that the factors Q and R can be generated in
O(mn) + O(n?) operations using one updating and two downdating oper-
ations of easily constructed matrices. Moreover the method can efficiently
be implemented on a linear array of processors in a very similar fashion to
the Schur algorithm. Both algorithms are in fact closely related, as recently
shown in ref. 28, and constitute key algorithms in several problems of signal
processing. Their new derivation from updating and downdating techniques
also suggests that the stability results known for updating and downdat-
ing 1922) could be applied to these signal processing decompositions as well.
This could eventually yield new and/or improved bounds for the error prop-
agation in these algorithms.

We are convinced that it is exactly this kind of interplay between parallel
algorithms in linear algebra and signal processing that can lead to new and
fruitful results in the future.

5. Concluding remarks

Digital signal processing is one of the application areas where the first sys-
tolic implementations were proposed, partly because the inherent resem-
blance between representations of digital circuits and systolic arrays (see e.g.
ref. 4). Topics covered here are, among others, convolution!”), FFT %), lat-
tice or ladder filters**), etc. For more specialized fields such as speech proc-
essing systolic designs are also found at other levels, especially when a large
amount of data has to be processed in a regular fashion. Examples are code-
book processing in vector quantization, dynamic programming and time
warping in word recognition (refs. 30 to 33, ...). Also in image processing
there are typical techniques of a regular nature ***): all pixels of an image
are often treated in a similar ‘local’ fashion, which only involves a few of the
neighbouring pixels. These techniques are therefore well suited for parallel
implementation on systolic arrays. Examples are 2D convolution!’), statis-
tical analysis of images>®), or real time processing®’*#)). From all this it is
clear that Parallel Algorithms and DSP have a serious impact on each other.

Moreover some new problems have emerged from the interference of PA’s
and DSP. One is e.g. working on proofs of correctness of parallel algo-
rithms *), complexity theory of parallel algorithms, languages for systolic
arrays, simulators of systolic arrays, automatic parallelization of algorithms,
automatic systolization of parallel algorithms, hardware implementation of
systolic arrays, and so on. In some of these areas significant advances have
been made. In ref. 4 the systematic derivation of systolic arrays from DSP-
like signal flow graphs is proposed and some existence theorems in this con-
text are derived. More systematic treatments are given in refs 7 and 40.

288 ; Philips Journal of Research Vol. 43 Nos 3/4 1988

Systolic algorithms for digital signal processing

Geometric methods for deriving various systolic schemes from each other,
have been proposed. Theories in this context are slowly emerging and are
related to complexity theory and computational algebra®'). Automatic
translators are being considered as well.

Due to the inherent constraints of systolic-like arrays, a number of com-
pletely new methods have also appeared in DSP (although they are not
completely novel, they can certainly be called new to the DSP community).
One of the most typical examples is the Number Theoretic Transform (NTT)
which is rather popular in discrete mathematics. It seems to be a valuable
candidate for implementing in parallel a number of classical DSP prob-
lems“?). The derivation of new algorithms is also coming from areas such as
differential equations or linear algebra®’). The reason of this cross-fertiliz-
ation is that the consideration of PA’s in these fields helps to create common

interests.
Although PA’s in DSP can hardly be called a new ‘discipline’, one cannot

deny that it has induces novel techniques and ideas.

REFERENCES

) S.Y. Kung, H.J. Whitehouse and T. Kailath, VLSI and modern signal processing,
Prentice Hall, 1985.

2) H.T. Kungand C.E. Leiserson, Introduction to VLSI systems (C. Mead and L. Con-
way eds.), Addison-Wesley, 1980, p. 271.

%) H.T. Kung, Computer 15, 37 (1982).

%) S.Y. Kung, IEEE Proceedings, 72, 867 (1984).

%) K. Hwang and F.A. Briggs, Computer architecture and parallel processing, McGraw-
Hill, 1984.

%) S.Y. Kung, IEEE ASSP Magazine, 2, 4 (1985).

) D.I1. Moldovan, IEEE Proceedings, 71, 113 (1983).

8) V. van Dongen and P. Quinton, Int. Report M 235, Philips Res. Lab. Brussels.

°) H.S. Stone, Complexity of sequential and parallel numerical algorithms (J.F. Traub ed.),
Academic Press, New York, 1973, p. 1. L

10y D. Heller, SIAM Review, 20, 740 (1978).

11y J.L. Lambiotte and R.G. Voigt, ACM Trans. math. Software, 1, 308 (1975).

12) L. Csanky, SIAM J. Comput. 5, 618 (1976).

13) W. Rénsch, Parallel Computing, 1, 75, (1984).

4y T.L. Jordan, Parallel computations (G. Rodrigue ed.), Academic Press, New York, 1982,
p- 1.

15y M. Gentleman, JIMA, 12, 329 (1973).

6) A. Bojanczyk, R. Brent, P. Van Dooren and F. de Hoog, SIAM Scisc, 8, 210 (1987).

7y H.T. Kung, Int. Report Dept. Comp. Sc., Canergie-Mellon, 1982.

18) J.D. Markel and A.H. Gray Jr., Linear Prediction of Speech, Springer Verlag, New

York 1976.
) M.L. Honig and D.G. Messerschmitt, Adaptive Filters, Kluwer Academic, Hingham,

1984.
20) W. Gentleman and H. Kung, Proc. SPIE Symp. 1981, 298, Real Time Signal Processing

1V, 1981, p. 19.
21y J. Mc Whirter, Proc. SPIE Symp. 1981, 298, Real Time Signal Processing IV, 1981, p.

105.

289

Philips Journal of Research Vol. 43 Nos 3/4 1988

5

J.-P. Charlier, M. Vanbegin and P. Van Dooren

) fGH Golub and C.F. Van Loan, Matrix computations, North Oxford Academic, Ox-
ord, 1983.

) G.H. Golub, Statistical Computation (R.C. Milton and J. A. Nelder, eds.), Academic
press, New York, 1969, p. 365.

24y T. Kailath, VLSI and modern signal processing (S.Y. Kung, H.J. Whitehouse and
T. Kailath, eds.), Prentice Hall, 1985, p. 5.

2} J.-M. Delosme and 1. Ipsen, Lincar Algebra & Applications, 77, 75, 1986.

%) A. Bojanczyk, R. Brentand F. de Hoog, Int. Report CMA-R06-85, Centre for Math-
emathical Analysis, Australian National University, 1985.

) A. Bojanczyk, R. Brent and F. de Hoog, Numerische Mathematik, 49, 81 (1986).

#) J. Chun, T. Kailath and H. Lev-Ari, SIAM Scisc., 8 899 (1987).

®) S.Y. Kung, K.S. Arun, R.J. Gal-Ezer and D.V. Bhaskar Rao, IEEE Trans. Comp.,
Vol. €S-31, 1054 (1982).

3) J..P. Banatre, P. Frison and P. Quinton, Int. Report No. 169, IRISA, Rennes, 1982
(also in Proc. ICASSP 82).

3y N. Weste, D. Burr and B. Ackland, IEEE Trans. Vomp., C-32, 731 (1983).

3) P. Frison and P. Quinton, Int. Report, IRISA, Rennes, 1984.

) Y. Robert and M. Tchuente, RAIRO Th. Inf. 19, 107 (1985).

3} Special Issue, IEEE Computer, Jan. 1983.

*) T. Bonnet, P. Martin, Y. Mathieu and O. Duthuit, Int. Report C-86-390, Labora-
toire d’Electronique et de Physique Appliquée, Paris, France, 1986.

%) A.L. Fisher, Int. Report CMU-CS-81-130, Carnegie Mellon University, 1981.

) M. Duff, Computing structures for image processing, Academic Press, new York, 1983.

*®) G. Gaillat, Traitement du Signal, 1, 19 (1984).

) M. Ossefort, ACM Trans. Progr. Lang and Syst. 1983 p. 620.

) H.V. Jagadish, S.K. Rao and T. Kailath, IEEE Proceedings, 75, 1304 (1987).

) R.M. Karp, R.E. Miller and S. Winograd, Journal ACM, 14, 563, (1967).

) A. Dennis and C. Marshall, Int. Report TN2472, Philips Research Laboratory Redhill,
England, 1987.

#) J.-P. Charlier, M. Vanbegin and P. Van Dooren, Int. Report R502, Philips Res. Lab.
Brussels, Belgium, 1986.

W

Authors

Jean-Paul Charlier; B.S. degree (Electronics), Catholic University of Louvain-la-Neuve,
Belgium, 1976; M.S. degree (Nuclear science and radioprotection), Catholic University of Lou-
vain-la-Neuve, Belgium, 1978; M.S. degree (Applied natural sciences), Catholic University of
Louvain-la-Neuve, Belgium, 1986; Philips Research Laboratory. Brussels, 1979- . His main
current interests lie in parallel algorithms for linear algebra problems, with possible digital sig-
nal processing and linear system applications.

Michel Vanbegin, Higher Technical School (Electronics), Brussels, Belgium, 1965; Philips
Research Laboratory, Brussels, 1969— . His work has been mainly concerned with compiler
writing (ALGOL 68), automatic processing of logical lay-out, speech recognition and systems
and control. His current interests lie in the area of digital signal processing and parallel algo-
rithms.

Paul Van Dooren; Ir. degree, Catholic University of Leuven, Belgium, 1974; Doctoral de-
gree, Catholic University of Leuven, Belgium, 1979; Assistant in the Department of Applied
Mathematics and Computer Science of the Catholic University of Leuven 1974-1977; Research
Associate at the University of Southern California 1978-1979; Postdoctoral Fellow at Stanford
University, 1979-1980, and visiting Fellow at the Australian National University in 1985; Phil-
ips Research Laboratory, Brussels, 1980- . His main interests lie in the areas of numerical lin-
ear algebra, linear system theory, digital signal processing and parallel algorithms. He is an As-
sociate Editor of Systems and Control Letters, the Journal of Computational and Applied
Mathematics, Numerische Mathematik and SIAM Journal on Matrix Analysis and Applica-
tions.

290 . Philips Journal of Research Vol. 43 Nos 3/4 1988

