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Summary. In this paper we compare several implementations of Kogbet-
liantz’s algorithm for computing the SVD on sequential as well as on parallel
machines. Comparisons are based on timings and on operation counts. The
numerical accuracy of the different methods is also analvzed.
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1. Introduction

In this paper we analyze Kogbetliantz’s algorithm [10. 11] for computing the
singular value decomposition (SVD) of a real or complex m x n matrix A (where
we assume m=>nj:

2
A=U- SV 1
o) o

Here U and Vare unitary (resp. orthogonal) and * denotes the conjugate trans-
posed (resp. transposed) in the complex (resp. real) case and Y is diagonal and
real. This algorithm has received a great deal of attention recently because
of its efficiency as a parallel algorithm [1, 2] and also because of its possible
extensions to various other decompositions [9. 18], In this paper we take a
closer look at the implementation details of the method (whosc basics are given
in Sect. 2) and present a few variants which may compare favourably with the
“standard” form in terms of speed on a parallel or sequential machine.

For a Hermitian (symmetric) matrix one can derive (1 1 from the eigenvalue
decomposition obtained by Jacobi’s cyclic method (sce c.g. | 2]). A major advan-
tage herc is that onc has to process only half of the matrix throughout the
iterations. On a sequential machine or pipeline machine this then reduces the
amount of computing time roughly by a factor 2, whilc on an array of processors
it reduces the number of processors approximately by a factor 2. For a general
matrix similar savings are obtained when using a variant [13, 18] where a
preliminary QR decomposition with column pivoting 1s performed:
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A_Q-(R>~li (1.2)

(where thus Q is a unitary matrix and E a permutation matrix), in order to
reduce the m x n matrix A to a triangular matrix R ol dimension a. We assume
here that the diagonal clements of R are recal (and positive if requested) in
the above decomposition, which can always be obtained by an appropriate
choice of Q. On a regular array of processors (¢.g.. systolic array) column pivoting
should be left out becausc it can not be implemented efficiently on such an
architecture. A QR decomposition without pivoting, on the other hand, can
be implemented efficiently in O(m+n) steps using n° processors [7, 13]. Here
also the diagonal elements of R can be chosen real It turns out that Kogbet-
liantz’s cyclic method (which is in fact very similar to Jacobi’s cyclic method
for symmetric matrices and indeed reduces to it when 4 is symmetric) can
be reorganized such that at cach stage of the recursion one needs only to store
and process a triangular matrix. In Sect. 3 we recall the reorganization of the
classical “row by row” scheme that achicves this [13].

On this triangular matrix R one can now still define dilferent ways of imple-
menting the “rcordered” Kogbetliantz’s algorithm. Indeed one can use different
schemes to implement the elementary 2 x 2 SVD's which are the basic building
blocks of the algorithm. In Sect. 4 we present some possible variants of comput-
ing the SVD of a 2x2 matrix exactly or approximately, and in Scet. 5 we
have a closer look at their stability propertics. Each of these can now be ™ plugged
in” to obtain a new variant of Kogbetliantz's algorithm. The speed of these
different methods on scquential and parallcl machines 15 then compared in the
last Section before the concluding remarks.

As a result of this we finally recommend a “triangular approximated™ Kog-
betliantz algorithm as the algorithm which nicely combines the advantages of
being faster, more flexible and easier to implement.

2. Kogbetliantz’s Algorithm

Kogbetliantz’s method consists of generating a scquence of matrices A% as
follows

U(O)::I V(O)::I 404
m " ‘ ,)
U(kJrl)::Uk.Lﬂk) V'H”::V,(~V““ PILENTD l‘}\'A(k)'Vk* (2.1)
such that the “off-norm™ of the matrix 4%*:
off(A)=1{) |a, ;"1 (2.2)

i*j

decrcases and eventually bccomes negligible. 1.e. of the order of d, the relative
precision of the machine one is working with. In (2 [} the updating transforma-
tions U, and V; are chosen as real or complex clementary rotations acting only
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on the pair of rows and columns (i, j). in order to vicld 7cros in the positions
(i, Ju) and (. ig):

X AN \ \

X ... x ..U A
AN AR =] 5 ;! (23)

X 0 \ \

X ... X ... X A

Let us denote such an elementary rotation acting on the rows (or columns)
iand j (where we always assume i <j) by G, j(fl. ¢)'. i.c.

r ... 0 0 U
0 ... cos () L.oeesinth 0
G; ;(0,e)=| - : : . Jel=1 (2.4)
0 ... —é-sinl ... cost o0
0o .. 0 0 RV

where ¢ denotes the complex conjugate of ¢. Notice here lh‘dl a general 2x2
unitary matrix has a more general form than G, (. ¢) (see c.g. [6]) but it can
be reduccd to it by merely a diagonal unitary smlmg C.g of the rows. Such
a scaling of course does not affect the off-norm (2.2} of the matrix nor its zero
pattern in (2.3), but meanwhile simplifies formulas (2.5) and (2.6) given below.
Thus for (2.3) one takes U= (fr. ¢ and V=G i, d) with ¢, ¥,
¢, and d, satisfying [6]:

lk /k LENRN

(k)

[P

|A|

—d,.- oS Py -SIn Y -alt); +cos ¢y cosy, uf

—¢p-dy-sin g esin - a® L Fopsin g cos iy dlE =0 (2.5)

"! ik

— (- 8in -cos - al — e dy-sin s alt

+cos ¢, -cos i, -alt +d,-cos P, sinyydlt =0 (2.6)
in order to “annihilate™ the elements %" and o' ' in (2.3). Noticc here
that when n is strictly smaller than m, a‘lf’,k and u""m will be non-existent for

Ji>n. In this case V, is in fact not computed and ¢, taken to be 0 in (2.5)
and (2.6) [1]. A method to solve these equations in the general complex case
is e.g. given in [6]. Here we will only be intcrested in special forms of these
equations, This, however, still allows us to treat the gencral complex case as
will be shown later on.

! The letter G is uscd to denote these rotalions because they were popularized by the work of
Givens
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First, when 4 is real, all computations can be made real by choosing ¢, =d,
=1 for all k. Onc could also choose ¢,=—1 and or d, = —1 but this does
not affect any of the properties of the obtamned algorithm. which is why we
do not consider these possibilities anymore in the sequel. Equations (2.5) and
(2.6) then become:

(k)

T e
Jie-lk

. s ©
+cos y-cosy,ar!
+sin ¢, -cosydt =0 (2.7

LN

—COS ¢y SIN Y-
—Sin ¢y -Sin Y, - d

thy

o

W —sin ¢y siny,

(k)
Skt

—sin ¢, -cos - d

+cos ¢y cos P all, +cos @ siny, G =0. (2.8)

'

When A is Hermitian onc usually chooses ¢, =, and ¢, =, for all k sincc
then U, =V, and hence all A® are also Hermitian. The diagonal elements that
are then eventually obtained in A"’ are the eigenvalues of A instead of its
singular values. For Hermitian matrices thesc arc cqual up to a sign and one
then often prefers to compute the eigenvalue decomposition since symmetry
allows one to process only half of the matrix 4 (sce next section for more
details on this) and involves only one transformation matrix U. Equations (2.5)
and (2.6) thus become identical and morcover boil down to the real equation:

(k).
b dge

—a¥ )y —(cos? P, s P-1att =0 (2.9)

COS ¢ -sin ¢y -(u e ires i

when choosing ¢, =al), /|a, |, since af¥, and !’ arc alrcady real. Notice
that when A is rcal and Hermitian (i.e. symmetric) then one can drop the modulus
signs in the above equation. This algorithm then also becomes identical to
Jacobi’s method for diagonalizing a real symmetric matrix A [2].

Finally in the upper triangular case with real diagonal clements, one again
reduces (2.5) and (2.6) easily to real cquations by choosing again ¢,=d;
=a, /|, |. Indeed the Eq. (2.5) resp. (2.6) then become (up to the nonzero
scalar ¢, resp. ¢):

—cos ¢ -sinr-al®; +cos @y cos - |a, 4 s cos i -al =0 (2.10)
—sin ¢, -cos iy -att —sin ¢y -sin - [al |+ cos P sin-alt =00 (2.11)

Here also one can drop the modulus signs in (2.10) and (2.11) for the real
triangular case. Unlike for the previous two cases the structure of the matrices
A" (i.e. here their triangularity) is not necessarily preserved in subscquent steps.
In the next section we recall how this can be ensured via an appropriate choiee
of the index sets (i, /) [13, 18].

It is now easily shown that because of (2.1 4) onc¢ has for the three above
schemes:

)

[t |2 (2.12)

i)

Off(A“‘* 1»)2 :Off(A“‘))z o |a(ki )

o

and that linear convergence of this algorithm 1s guaranteed [5, 6, 157 at least
when the angles ¢, and , remain strictly inside the interval (—n/2, +7/2)
and the (2m—n—1)-n/2 possible pairs of indices (1,./,) are scanned in a cyclic
ordering, by rows or by columns. E.g., in the cyclic "row by row™ mecthod.
all possible pairs have a turn in what is called o “sweep™, in the following
order:
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fori,=1,n
forj,=i,+1,m
Akt 1)::Gik,jk(¢kv ) AR Gik,jk(wkv di)*
k=k+1
endj, ;
end i, ; (2.13)

In practice one observes that with Kogbethiantz's algorithm the off-norm of
A® in fact decreases guadratically from one sweep 10 another (this is also proved
in [19] for the case that 4 has no repeated singular values). One thus only
needs a moderate number of sweeps in order to obtain a é-small off-norm
and hence have a d-close estimate of the singular values of 4.

3. A Parallel Scheme

In this section we recall some of the features of Jacobi’s and Kogbetliantz’s
methods which made them such popular algorithms for implementation on a
machinc with some sort of parallel architecture.

Using the different schemes (2.7-11) one proceeds as follows for the computation
of the SVD of a general complcx or real matrix 4. When 4 is Hermitian (resp.
symmctric) we compute the Hermitian (resp. symmectric) eigenvalue decomposi-

tion:
A=U-A1-U* (3.1)

(where A is always real) with Jacobi’s method. The singular value decomposition
(1.1) is then derived from (3.1) by merely extracting the signs of the eigenvalucs
into a diagonal sign matrix which is c.g., absorbed into the right factor U*
thus constituting V*. When 4 has not such a structurc. we first compute the
triangular decomposition (1.2) and then proceed with the triangular version
of Kogbetliantz’s algorithm in order to obtain:

R=U-Z-V* (3.2)

which together with (1.2) then finally yields the requested SVD of 4. Notice
that in both cases only a triangle with real diagonals must be processed since
for the Hermitian (symmetric) casc A% is completcly determined by its upper
triangular part. A second advantage is that in both cases m=n which avoids
the need of “one-sided” transformations and thus rcduces the amount of work
needed for one sweep to (n—1)-n/2 rotations on rows and columns of length
n/2 on the average (provided one works only on a triangle). This then turns
out to be advantageous as well on sequential machines as on parallel machines.
As now shown below, the possibility to work only on a triangle depends on
an appropriate ordering of the index pairs (i, j,) within once swecp.

For sequential machines one of the most popular orderings of rotations
used to be the “row-by-row” scheme mentioned above in (2.13). Unfortunately,
this scheme is not that appropriate for e.g. systolic arrays. For such architectures
it 1s important to perform transformations on adjacent rows and columns only,
i.e. on index pairs of the type (i, i, + 1). While apparently this is not compatible
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with the requirement that all index pairs (i,. /). 1, <7, should have a turn, it
1s shown ¢.g. in [13, 20] that the following scheme (from now on we assume
m=n):

fori=1,n—1
fori,=1,n—i
A(k+ll:ZBk'GikJ‘k+1((/)1(,(’,()./4“\’),(;1_:{.”\ i l(l,/,\.(l,\'* H:k
k=k+1
end i, ;
endi; (3.3)

(where P 1s the permutation matrix that swaps columns (or rows) i and i+ 1)
is in fact a relabelling of the row-by-row schemie (2.13). Indeed, the permutations
in (3.3) “shuffle” the rows and columns of 4™ in such a way that each index
pair (i,.j,) in (2.13) becomes a pair of the type t4,.1, + 1) in (3.3) when it is
its turn to be processed (see e.g. [20] for more details). A side effect of this
relabelling is that after onc sweep the order of rows and columns in (3.3) is
the reverse of that in (2.13). If one now performs the following “reversed ™ sweep:

fori=1,n—1
fori,=n—1,istep—1
A%T V=R G iv 1 (Prs (.k)'A(k)'Gf,\.\f,‘ Gl dyt e RY
k=k+1
endi,
endi; (3.4)

subsequently to (3.3) then the final matrix A* obtained after two sweeps of
(2.13) is identical to that obtained after one sweep (3.3) followed by onc sweep
(3.4). Since the above method is essentially “cquivalent™ [ 14] to the cyclic by
rows method, convergence of the latter also implics convergence of the former
[15].

Notice that the relabelled schemes (3.3) and (3.4) now contain only transfor-
mation between adjacent rows and columns. They also have the same complexity
as the previous scheme (2.13) because the permutations involved are performed
simultaneously with the rotations, this at no extra computational cost. A direct
consequence of this is that for a sequential machine the application of the elemen-

tary rotations and permutations P, -G, _; . (¢ o) and G, (W, d)*- BF can
easily be performed by two “BLAS-like”? calls (onc for the n—i, — 1 rotations
¢, in rows i, and i, +1 and one for the iy— 1 rotations ¥, in columns i, and

i, + 1) resulting in a total of 4n— 8 “flops™. On a triangular matrix A® processed
row-by-row this would require more BLAS calls since nonzero clements do
not remain adjacent there [18] while on a full matrix A*' this would require
twice as many flops. Moreover, while performing these rotations one scans here
adjacent elements in the matrix A% which reduces the number of “page faults™
[12] in comparison to the row-by-row scheme. Roughly the same comments
also hold for array processors or computers with pipeline architecture [4]. For
systolic arrays, the reordering performed in (3.3 4 becomes essential in order

2 This refers to the Basic Linear Algebra Subroutines package described i [12]
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to avoid transmission delays between elements that have to be present in one
processor at a given time [2]. It is shown e.g. in [20] that the above reordered
scheme can be implemented on a square grid of processors (sce Fig. 4.3 in [20]).
There each processor of the grid contains four adjacent ¢lements of the matrix.
After a processor has finished generating or applying a pair of clementary rota-
tions, it passes its transformed clements to neighboring processors. For more
details we refer to [17, 20] and to [2] where an alternative reordering is pro-
posed. The use of triangular matrices morcover aillows one to reduce the amount
of proccssors nceded in the array by approximatelv n® 2 [13] since only the
processors above the diagonal are processing nonzero clements. Finally, there
are also numerical advantages to the use of the “triangular™ version of Kogbet-
liantz’s algorithm. One of them is the possibility to develop good approximate
2 x2 SVD’s as discussed in the next section.

4. Elementary 2x2 SVD’s

For an array of processors, the computational cost of the parallel Kogbetliantz
algorithm is essentially determined by the 2 x 2 SVID's performed by the proces-
sors on the diagonal. Indeed, cach of these requires n gencral three square
roots for the construction of two elementary rotations. A modified Jacobi algo-
rithm is proposed in [16] using approximate dccompositions where one only
needs to compute two square roots. This section deals with the extension of
those results to Kogbetliantz’s algorithm (approximation 1 and 2 below). More-
over a new formula is introduced (approximation 3) because of its better proper-
ties of accuracy and, at least in the triangular casc. of convergence.

A priori the decrease of computing time for elementarv rotations is worth-
while as far as the possible associated increase in number of sweeps does not
compensate it. A compromise has to be reached between the accuracy of a
given approximation and its computational complexity. On a sequential machinc
the cost of the 2x 2 SVD’s is not as crucial. However an approximate scheme
can be of interest there as well. These points will be illustrated in Sect. 6.

For convenience, one 2 x 2 SVD will be written 1in the abbreviated form:;

<a’,, (1’12)'<(-~5inq‘> cos ¢ )((1“ ays ( d sy cosy ) @1
dyy  dys) cos ¢ c-sin @) \ay, uz:)‘ Cos d-siny '
which includes the column and row exchanges of (3.3) and (3.4)*. The exact
decomposition gives aj,=0 and a5, =0 by a proper choice of ¢ and . The
convergence of Kogbetliantz’s algorithm does not require 1t in gencral. As shown
in [6], the following condition:

\(‘/12|2+|a/21\2§1(|“12|2+m:l ) (4.2)

with 0<r< 1, is sufficient for linear convergence. In the sequel we use this to
discuss the convergence of the approximate schemes.

3 In case of a real matrix, this scction is to be read with a,» instead of ta,» and a;,
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4.1. Upper Triangular Case with Real Diagonal Elements

The analog of (2.10) is the equation:

a o . ;
a5, ::i”T~(—cos G-sin-a;, +cosp-cosy-|a,|+sinp-cosy-ay,)=0 (4.3)
aya
to be satisfied exactly, such that the upper triangular structure is preserved,
while (2.11) corresponds to:

a . . . .
| 2|~(;sm¢)-cosd/-a“—smqb-sml//-|a,2|+cos(/)-sml//-an):O (4.4)
a2

’
alz.A_

to be satisfied exactly or approximately (if only (4.2) is requested). From (4.3)
tan i (resp. tan ¢) can be expressed as a function of tan ¢ (resp. tan ). Then
(4.4) leads to an exact or approximate expression for tan ¢ (resp. tan ¥). Finally:

1
1+ tan®

cos Y = . sinyr=cosy tany (4.5)

and
1
Cos p=—-

% m sin ¢ =cos ¢ -tan ¢ (4.6)

allow to compute a}, by (4.4), and the new diagonal clements by:

ay,=sing¢-siny-a,; —sin ¢-cosy-|a,,|+cos d-cosy-d,,, 4.7

a5, =COS P-COSY-a;,+Cos ¢ -siny-|a,,|+sin¢-siny-a,,. (4.8)

The latter reduces to:

cos Y , Cos ¢

,
Ay =d; — Uy =dyy

cos ¢’ (49)

Cos

by use of (4.3) only (i.e. no matter if (4.4) is satisfied exactly or approximately).

Remark. Tt follows from (4.5-8) that the diagonal elements remain real, and
positive if taken so initially since then all quantitics in (4.9) are positive. This
is an elegant property of this scheme and ensures convergence to positive diago-
nal values, which was not certified for earlier schemes [6].

Let us detail the situation where an expression for tany is obtained from
(4.3):

azz't?lﬁnﬁbﬁ“fhﬂ

tany = (4.10)
a1
Then tan ¢ is solution of:
—o-tan? ¢ —tan ¢ +o=0, (4.11)
where ¢ is defined as:
go— nldnl (412)

a%l_a%2+|a1z|z.
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The exact formula is chosen to be the smaller root of (4.11):
20'

1+ [/ 1 + 4(’

tan ¢p= (4.13)

If an approximation of that solution is considered, the ratio of successive off-
diagonal elements is casily derived from (4.4) and (4.10):
! —o-tan? ¢ —tan
Gha Gz - RANTGLANGHT oy, (4.14)
a2 dyy o

This expression is now used to compare three different approximations of (4.13).
We first assume |a,,| Zla,,| the reason of which will become clear in the sequel.
Approximation 1 corresponds to: tan ¢ =¢. From (4.10) onc has then:

a,| 1 .
|cos | = Bius{n W| Isin . (4.15)
|azz”+|a1z|| Unl‘("‘
Together with (4.14) this gives:
ays Arz| » a% la
- == o cos prcos P < jsin | (4.16)
as ag ary, l [ +¢°
which is smaller than 1 if |a,,|<|a,,|- The ratio of successive off-diagonal ele-

ments may approach 1 only if |a,,| — |a ;| and || — v . in a somewhat particular
way, as discussed briefly now. Let |a,,|=la,,|—& (0< e¢<]u,|). Then from (4.12)
we have:

GE (|a11| |017‘ @.17)
2'“11‘5“’,“12‘

Since |o|Z|ay,l/ld,,], || = oo implies |a,,| = 0. Morcover. by (4.17), |a,,| must
go to O slower than (2|a,,|e+]a,,|?), thus slower than ¢ for the ratio (4.16)
to tend to 1. From that and (4.2), it can be concluded that convergence is
assured when |a,,|<|a,,|: the ratio of successive off-diagonal elements may
possibly be equal to 1 only if they are both zero.

Finally, we note that a’,/a,,=0(c?) upon convergence i.e. when ¢ and
¥ have become very small, as indicated by (4.16).

Approximation 2 corresponds to the choice: tan ¢ =a/(1+|o|). Equation
(4.14) then becomes:

G _dan ol COS ¢ -cos 1. (4.18)

ay, ay (1+lalf
Taking into account (4.6), the following bound is obtained:

&P la]

(4.19)

“lanl (14 10)) [ (I +]o)?+a*
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Here also, the ratio is smaller than 1 if |a,,| <|u,I. The function of o appearing
in (4.19) is maximum at 0 = +0.8295. Then:

s, s,

<0.2257 (4.20)

ay,

apy

We remark that the use of approximation 2 leads to an error of ¢ ,/d, , = O(6)
upon convergence, which is greater than for approximation 1.

The first two approximations were proposed earlicr | 16] for symmetric matri-
ces. Now a new formula (approximation 3) is presented. Equation (4.13) is
approximated in the form: tan ¢ =0 /1 +0?2), and the usc of (4.14) gives:

’ 4
Q2 _ 422 —sz COS -Cos (4.21)
g, ap (1407)
which is bounded by:
dis| _|ass ot (4.22)
ayz| " ldyy (l+az)]//"(l+ﬂllz+(r:

According to the same argument as for approximation [, convergence is assured
if |5, <|ay,|. The error due to approximation 3 is ' >.d, - = O(*) upon conver-
gence, which is smaller than for approximations | and 2.

If |a,{|£l]d,,|, a development similar to the above one can be done when
inverting the role of ¢ and . Here an expression for tan ¢ (in place of tan )

1s derived from (4.3):
dy;-tan Y —iuy,|

tan ¢ = 4.23)
as>
Then tan y is solution of:
—¢g-tan? y+tan ¢ + 5 =0 (4.24)
o being given now by:
g dular (4.25)

”%2*‘1121 +la st

The smaller root of (4.24) is identical to (4.13), except lor the sign. It is easy
to see that approximation 1 (tan ¢y = —a), approximation 2 (tan = — /(1 +|a|)).
and approximation 3 (tan = — /(1 +¢7)) are convergent since |a, | <|da, |-

Thus we conclude that the thrce approximations lead to convergent Kogbet-
liantz processes, seemingly at the additional expense of inital tests on the order
of |ay ;| and |u,,]. In reality the same expensc is required for the exact mcthod.
in order to guarantee the stable computation of o (Scct. S). In the sequel, it
will be stressed and illustrated that approximation 3 is the most adequate to
compute the singular value decomposition of a triangular matrix.

4.2. Hermitian Cuse

In (4.1), we now take ¢=1, a,,=d,,, and d\,=a5,. The diagonal elements
a;, and a,, are real, and ¢ =d=u,,/|d,,|, according to Sect. 2. For a real, thus
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symmetric, matrix, approximations | and 2 have been investigated in [16]. The
material below for complex matrices is completely analogous.
The transformed off-diagonal element has to satisfv:

!

alzz-:%[sin(/>~cos(/>~(¢122—a11)+(c053r/) s gh-lag,[]=0  (4.26)
dqs

exactly or approximately. Then the new diagonal clements are:

ay,=sin® ¢ ay, —28in¢-cos P-la, +cos” Gds, (4.27)

Uy, =cos? Ga, +28in ¢ -cosdla,Hl+sin" @a,y, (4.28)
which are still real. From (4.26), tan ¢ is solution of (4.11). of which we choose
again the smaller root (4.13), with:

gt (4.29)

dyy—dy

In practice. the valucs of o given by (4.29) will presumablyv be greater in many
situations than those given by (4.12) for corresponding upper triangular matrices,
thus leading to a slower convergence. If tan ¢ is not approximated, then (4.27-28)
have the simpler form:

(a/] 1>:(a1 1)+1¢llz(‘ l)z(azz + lay ) tan (/)( . 1). (4.30)
s d,,) tan¢\ 1 a, L

The ratio of successive off-diagonal elements is:

Cj;‘% __’ tan® ¢ — tf“} ¢+a (4.31)
i, a(l+tan” @)
For approximation 1 (tan ¢ =¢), this ratio becomes:
‘ 52
Q2 _ - ‘LZ (4.32)
a, l+o

whose absolute value is bounded by 1. If ¢, =u,,. then ¢ =r.2 and the trans-
formed matrix differs from the initial one only by «\,= - d,,. If a;, is close
to d,,, thus ¢ close to /2, only a slight modification of the matrix is produced.
In these situations, convergence may be absent or slow. In [ 16] it 1s suggested
to start the computation with the cxact method and to apply the approximation
when ¢ is small enough. In case of repeated or very close eigenvalues, such
a procedure may require the use of the exact method until the final result is
reached since some of the diagonal elements will tend (o the same value. Then
the possible advantage in computation time of the approximate scheme would
be lost. That difficulty does not occur with a triangular matrix, as mentioned
in the previous subsection: the ratio is strictly smaller than 1, unless the off-
diagonal element is zero.
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Introduction of approximation 2 (tan ¢ =a/(1 +|a])) in (4.31) gives:

ay, (gl

Gz 10 433
TR P (439

As proved in [16], the maximum occurs at =17 2. where d',/d,, =(]/2— 1)/2.
By this, convergence is assured. However the asymptotic error is greater than
with the othcr approximations.

Finally approximation 3 (tan ¢ =¢/(1 + ¢?)) leads to the smallest asymptotic

error, since:
4

o

G2 9 (4.34)
., (1+a?*+o’
If a;,=a,,, =0 and the transformcd matrix is simply a permutation of the
initial matrix. There is no decrease of thec off-diagonal ¢lements. Convergence
can be questioned in the same way as for approximation 1 for large values
of a.
We conclude that the thrce approximations are much less attractive for
Hermitian matrices than for triangular matrices. This also appears from our
test results (Sect. 6).

4.3. Arbitrary Matrix

For an arbitrary complex matrix, the determination of clementary rotations
is a much more intricate process as follows from [6. Theorem 5. Arguments
and moduli of the elements g;; (i, j=1, 2) are first to be isolated, then combined
to obtain the coefficients ¢ and d in (4.1). Finally those quantities allow to
compute the rotation angles ¢ and ¥. In order to avoid that additional computa-
tional cost, it is recommended to perform a QR factorization of the whole matrix
before the SVD such that the simpler arithmetic of Subscection 4.1 can be used.

Moreover the preliminary QR factorization has further advantages. The di-
rect application of approximate schemes to arbitrary mairices leads to the same
difficulties as for Hermitian matrices. Also it can be shown [ 3] that the off-norm
of a triangular matrix is bounded by the spread of its singular values (up to
a constant), while this is not true for full matrices.

Nevertheless the QR factorization may be unnccessarily costly when for
instance the whole matrix is almost diagonal already. An alternative solution
would be to use a complex analog of the method described in [1, 8] for arbitrary
real matrices where one first symmetrizes the 2 x 2 matrix prior to its exact
diagonalization.

5. Error Analysis of the Different Schemes

This section® is devoted to the error analysis of some ¢lementary schemes of
the previous section. Namely error bounds will be derived for the exact method

*In case of a real matrix, this section is to be read with a,, instead of |« ] and a,,
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and approximate formulae in the upper triangular case. The analysis is close
to Wilkinson’s [21] to whom we refer for the Hermitian casc.

All along, d; will denote quantities smaller in absolute value than o, the
relative precision of the machine used. Quantities stored in the computer will
be denoted by a hat (*). Moreover, tan ¢, cos ¢. sin ¢ arc abbreviated to 1,
C4- S, respectively, and similar abbreviations hold for functions of .

5.1. Upper Triangular Case; Exact Method

Our main purposes are to establish that:

(i) 4, and 4}, are o-small. Indeed they are not cvaluated but replaced
by zero in practice.

(i) transformation matrices are d-close to unitary.

We assume that |a,,|=]|a,,[, for convenience. First. ¢ 1s not computed in
the form (4.12), which would be unstable, but as:

6= B ‘{22‘“12‘(1 _!—(S()")W 3 e (1464)
[ag +ar)(1+0,)a —a)(T+0)(1+03)+ay, “ (1 +0,)](1+55) v
(5.1)

where each of the (1 + 9,) stands for a rounding error of onc¢ clementary operation
[21]. From this, one easily derives:

d=a(l+4,), (5.2)
with |A,]£70. Then use of (4.13) gives:
N 26

lp=" y SR . (140 0=1,00+4,4). (53)
LL+)/[1+462 (14 6)1(1+35)(1+0,0)](1 +0, )

with |4,,/ £ 114. From (4.6) and due to |1,/ < 1. it follows:

1

e (T +0,0)= ¢l +A.) (5.4)
VI + 3140, )](1+3,,0(1+0,5)

$p=CoTol140,7)=5,(14 Ay4) (5.5)

where |A.,|<8.256 and |4,/ <20.256. As a conscquence:
|6 +383—1]1<28.50. (5.6)
On the other hand, evaluation of (4.10) yiclds:

f— L4z, f¢(1+(513)+|a12IJ(1+5,177)
[

(1 +(51|)) = [W(l + 11“/,)4-8“/, (5.7)
diq

with [4,,|=26 and [e,,|<126. From (4.5) one obtains:
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1 .
b= — (140, =c,(1+4,,) (5.8)
VI3 (140,010 +6,)(140,5)
§1// :él// f1// (1 + 625) = Sn//(1 + A.\‘://) + (]1/, 8[,,// (59)
where [4,,[|< 1106 and |4,[<140. Thus:
lé7+3$,—11<520. (5.10)

Together (5.6) and (5.10) ensure (i1) to hold.

Then the transformed matrix is computed by mecans of (4.9) unregarded
which one of laq;| or |a,,| is the smallest. Since transformation matrices are
not only d-close to unitary but, according to (5.4 5) and (5.8 9), also J-close
to the true 2 x 2 transformation, tight bounds arc obtained for the transformed
matrix. In particular one easily proves the result claimed in (3).

5.2. Upper Triangular Case; Approximation Schemes

The error analyses of the three approximate schemes are similar. For brevity
and due to its better properties, we only examine approximation 3.

In contrast to purpose (i) of the previous subscction here we only want
to prove a5, to be d-small. Again |a,,|<|a,,] 15 assumed and bound (5.2) for
¢ remains valid. For the computation of 7. we now have

A

~ g
t — 1+0,)= |+ 1 5.11)
T+ 6 (1 +0,)]0 + 6, )( 0= ot ) (-1

where |4,,] < 104. Since |1, <1/2 it comes:

col4Ay), A1 S 460,

o v (5.12)
Sp=35 (]+A5¢,), (4,6 S 1560
We have thus:
[65+ 85— 1]<13.60. (5.13)
Evaluations (5.7-9) are now:
=t 0+ A +e,, 1A, 1200 1, =550, (5.14)
and
¢,=c,(1+4.,) 1, 17750,
s . ) . (5.15)
Sy=s,(1+A)+c, e, [14,]210750
which yields:
&5 +85;—1]<32.50. (5.16)

Then a7, and d5, are computed by (4.9), and 7, by (44} Again it is justified
to replace a5, by zero. Notice that error bounds arc smaller for approximation 3
than for the exact method.
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6. Timing and Operation Count

Here results of numerical experiments are given in order to illustrate the material
of the previous sections. For simplicity all examples were taken real. First, it
is inferred that (i) the cost of the SVD is greater for a full matrix than for
a triangular one, and (ii) approximate schemes, specially approximation 3 intro-
duccd above, may be of interest for triangular matnces. Secondly, operation
counts and timings are discussed for the SVD of a 2 x 2 triangular matrix by
exact and approximate schemes, and potential advantages of the latter arc

emphasized.

6.1. Number of Sweeps

Again three classes of matrices arc distinguished: arbutrarv full, symmetric, and
triangular. Arbitrary matrices have already been discussed in Subsection 4.3.
Due e.g. to the number of rotations per sweep and to the complexity of the
rotations, a preliminary QR factorization was recommended. So they are not
considered further.

As a first experiment, thc number of sweeps required by the SVD of a
real (nx n) matrix, either symmctric or triangular. was cvaluated for several
methods. For each of a set of n valucs, rangmg from 3 to 50, the average
numbecr of sweeps was computed over a varicty (10 or 20) of matrices. Each
matrix was constructed randomly, its clements being smaller than I in absolute
value. Computations were done in double precision arithmetic (3=1.4-10"17),
The final number of sweeps was notcd when the (Frobenius) off-norm, as estimat-
ed after each sweep, was smaller than 10”'". Figurc 6.1 shows the results
obtained for symmetric matrices. Sweeps (3.3) and (3.4) were applied alternately,
and elementary rotations were performed by onc of the [our following methods:
TRUE corresponds to the exact determination of the angle of rotation, leading
to (4.30), while APPR1, APPR2, and APPR3 ure the approximate schemes
termed approximations 1, 2, and 3 in Subsection 4.2. In Fig. 6.2, similar results
are given for (upper) triangular matrices, which were obtained by QR factoriza-
tion (without pivoting) of arbitrary random matrices. Agam cxact (TRUE) and
approximate (APPR1, APPR2, APPR3) schemes arc considered, referring now
to Subsection 4.1. It is to be noted that in casc of QR lactorization with pivoting
(results not shown here), the average number of sweeps is smaller only by a
fraction of a sweep (0.1 to 0.3 typically) than that mdicated in Fig. 6.2. For
regular arrays of processors (e.g. systolic arrays) where pivoting is not possible,
this is only a marginal disadvantage.

From these two figures, it appears that approximate rotations in general,
and the approximation 3 in particular, arc a priori of greater interest for triangu-
lar than for symmetric matrices. As a consequence, only approximate schemes
for triangular matrices are considered in the scquel.

On a sequcntial machine, the incrcase in number of sweeps incurred by
the approximate schemes is acceptable only il it s {over)ycompensated by a
smaller complexity of the elementary rotations with respect to the exact method.
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Fig. 6.1. SVD of (n x n) symmetric matrices. Number of sweeps (S) versus »
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Fig. 6.2. SVD of (n x n) triangular matrices. Number of sweeps (S} versus n
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On an array of processors, a slightly different type of compensation may have
to be verified. If the communication between processors is hmited, as in systolic-
like implementations, it can be impossible to define an incxpensive termination
criterion, interacting with the computational process. Ruther one would stop
after a predetermined number of sweeps [1] (possibly dependent on the dimen-
sion of the matrix). Such a criterion would probably be the same for both
the exact method and the approximation 3 {see Fig. 6.2). The potential advantage
of this approximation would thus be augmented. since 1t would be sufficient
to compare its complexity with that of the cxact scheme.

6.2. Complexity and Timing of Triangular 2 x2 SV'D's

We now turn to the comparison of the arithmetical complexity and the timing

of various (exact and approximate) elementary SVD's of o triangular real 2 x 2

matrix. Five methods are considered, the source code of which is given in appen-

dix under thc same label as here:

® TRUE is the cxact diagonalization schemc which 1s described in Subsec-
tion 4.1.

e APPRI, APPR2, and APPR3 correspond to the approximation I, 2, and
3 discussed in subsection 4.1.

® SYM is another exact scheme used by Brent ct al. (| 1], algorithm USVD)
in the general case, and adapted hcre for triangular matrices. It consists
in two steps: a first rotation symmetrizes the matrix, then a second one
performs the diagonalization (according to (4.30)).

It is expected that the approximate methods arc less cxpensive than the exact

ones, since the latter involve three square roots and the former only two. We

try to evaluate more preciscly the influence of this on the computational cost.
Arithmetical complexity of the above schemes i1s compared in Tables 6.1

and 6.2, where only the balance of operation counts 1s presented, i.e. the difference

of the number of arithmetical opcrations from one mcthod to the other(s). SYM

and TRUE exhibit approximately the same complexity (Table6.2). Comparison

of TRUE and the approximate schemes (Table 6.1) depends on the cost of SQRT

and / with respect to + and x. In general. the former operations arc (much)

Table 6.1. Relative complexity of TRUE and the approximate schemes. Only differences in operation
counts are mentioned

Method TRUEL APPR1 APPR2 APPR3

Balance 1/ 1SQRT 3Ix 3x.1 .1~ 1 ABS dx, 11+

Table 6.2. Relative complexity of SYM and TRUE

Mecthod SYM TRUE

Balance 4x,3+ 2/011F
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Table 6.3. Execution time of 2 x 2 SVD’s, in percentage (TRUF  base 100)

Method SYM TRUE APPR! APPR2 APPR3
OPT 102.3 100 868 90 1 89.3
NOOPT 103.3 100 88.% 90 4 90.8

more expensive than the latter ones. But an exact comparison strongly depends
on the particular computer and on the particular implementation. By way of
illustration, an example of timing results is shown 1 Table 6.3. The five schemcs
were applied to the same data, and the corresponding execution times were
measurcd. Programs were written in FORTRAN (sce appendix) and ran on
a VAX 11/780. Each program was enclosed in a subroutine. such that the mca-
sure included time for a CALL. Results in Table 6.3 are given in percentage
(TRUE: base 100), for single precision arithmetic. and for two compilation
modes: optimized (OPT) or not optimized (NOOPT). In these situations, a saving
of time of more or less 10% is observed for the approximate schemes.
In summary, we have for triangular matrices that:
® As far as the performance of the various methods can be reflected by the
product of the time of an clementary SVD by the number of sweeps for
obtaining a given accuracy, approximate schemes (specially approximation 3)
may be advantageous at least on some computer architectures. This would
be specially true for machines that allow broadcasting.
® If the number of sweeps is fixed, as it might be the case on arrays of proces-
sors, and if the square root operation is costly. then approximation 3 seems
to be the best candidate. As noted above this fixed number would be the
same overestimate for both methods since approximation 3 and the true
scheme in Fig. 6.2 differ by only a fraction of a sweep

7. Conclusion

In this paper various possible implementations of Kogbethantz’s algorithm were
analyzed and compared for their efficiency and accuracy. The following conclu-
sions can be drawn from it.

e For an Hermitian matrix it is more appropriate for reasons of efficiency
to preserve symmetry throughout the computation and hence to compute
the eigenvalue decomposition A=UAU* (the SVD can easily be derived
from 1it). Approximate schemes may improve the speed of the algorithm
on arrays of processors [16] but their cfficiency 1s not always guaranteed
and they may have to be mixed with the exact scheme (sce Scet. 4.2 and
[16])

@ Foran arbitrary matrix it is recommended to use a preliminary QR decompo-
sition for several reasons:

1. First it can severely reduce the computation burden (at least by a factor 2
but even more when m3> n): the number of operations of a sequential
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machine (see also [13]), and the number of processors on a systolic-like
array of processors and hence also the travel time of cach “wave” of
transformations through thesc processors.

2. Approximate schemes for triangular matrices can be constructed which
may improve the speed of the computation as well on a sequential
machine as on parallel machinces (Sect. 6).

3. Convergence to positive values on diagonal is easily ensured by merely
imposing a choice of positive diagonal elements in the QR decomposition.

4. The off-norm may severely drop by the mere application of the QR
decomposition and convergence propertics scem to be better in the pres-
ence of clusters [3].

5. The code for the triangular 2 x 2 SVD’s (exact or approximate) is com-
pact, numerically stable, and trivially adapts to cope with SVD’s of sub-
matrices (where certain rows or columns should not intermingle with
each other [ 1]).

As a conscquence we recommend the usc of the cigenvalue decomposition
for Hermitian matrices (with a preference for the cxact scheme) and the use
of the triangular SVD algorithm for arbitrary matrices (with a preference for
the approximate scheme APPR3).

Acknowledgment. We thank C. Semaille for the carelul drawing of the figures.

Appendix
Source Codes of Elementary SVD's

For definiteness, we gather here the source codes of SVIYs applied to the 2 x 2
real triangular matrix

app 4y

0 a,,

including permutation of columns and rows, as in (4.1). Language is FORTRAN.
Complex versions are trivial extensions of these ones. Tests for division by
zero are not included.

True
A=All
C=A12
B=A22

IF(ABS(A) .LT. ABS(B)) GO TO S

SIGMA =2#B*C/(A—B)*x(A+B)+C=()
TPHI=SIGMA/(1 + SQRT (1 + SIGMA «SIGMA})
TPSI=(C+ TPHI=B)/A

GO TO 10
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10

SIGMA=2+AxC/(B—A)x(B+A)+C=x()
TPSI= —SIGMA/(1+SQRT(1 +SIGMA *SIGMA))
TPHI=(TPSIxA~C)/B

CPHI=1/SQRT(1 +TPHI«TPHI)
SPHI=TPHI* CPHI
CPSI=1/SQRT(TPSI*TPSI)
SPSI=TPSI*CPSI

X =CPSI/CPHI

All=Bx*X

Al12=0

A22=A/X

APPRI1, APPR2, APPR3
For APPR1:

10

A=A11

C=A12

B=A22

IF(ABS(A) .LT. ABS(B)) GO TO 5
SIGMA=Bx*C/(A—B)*x(A+B)+CxC)
TPHI=SIGMA
TPSI=(C+TPHI%B)/A

GO TO 10
SIGMA=A+«C/((B—A)«x(B+A)+CxC)
TPSI= —SIGMA
TPHI=(TPSIxA—C)/B
CPHI=1/SQRT(1+TPHI«TPHI)
SPHI=TPHI * CPHI
CPSI=1/SQRT(TPSI+TPSI)
SPSI=TPSI+«CPSI

X =CPSI/CPHI

All=Bx*X

A12= —-SPHI+(CPSI*A +SPSI*C)+SPSI*CPHI*B
A22=A/X

two instructions:

1

and

6

]

and

6

TPHI=SIGMA/(1 + ABS(SIGMA))

TPSI = —SIGMA/(1 + ABS(SIGMA))

TPHI=SIGMA/(1+SIGMA *SIGMA)

TPSI=—SIGMA/(1+SIGMA «SIGMA)

J.P. Charlier et al.

For APPR2, the code is the same as for APPRI. apart from the following

For APPR3, the code is the same as for APPR1 and APPR2, apart from:
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SYM
A=ATll
C=A12
B=A22

First step: symmetrization (to the left).

TSYM = —C/(A + B)

CSYM = 1/SQRT(1+TSYM = TSYM)
SSYM=TSYM xCSYM
AS=A*CSYM

CS= - A*SSYM

BS=—C*SSYM +B+CSYM

Second step: diagonalization.

SIGMA =2%CS/(AS - BS)
TPSI=SIGMA/(1+SQRT(1+SIGMA *«SIGMA))
CPSI=1/SQRT(1+TPSI«TPSI)
SPSI=TPSI+CPSI

CPHI=CPSI*CSYM —SPSI+*SSYM
SPHI=CPSI*SSYM +SPSI«*CSYM

X=CS=*TPSI
All=BS—-X
Al2=0
A22=AS+X
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