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Abstract

In systems design the exact model matching problem with stability consists of compensating a given system, using a realizable
control law of a specified structure, in order to ensure the stability of the compensated system and achieve a target closed-loop
transfer function. In this paper we develop a novel numerical method to verify the solvability of the problem for left invertible
systems and further construct a desired solution. Our method has a complexity which is cubic in the state dimension of the
system and the desired model and can be implemented in a numerically reliable way. Copyright@2002 IFAC
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1 Introduction

In this paper we study the solution of the exact model
matching problem with stability for a system (A,B, C)
characterized by

ẋ = Ax + Bu, y = Cx, (1)

where A ∈ Rn×n, B ∈ Rn×q, C ∈ Rp×n, and where
x ∈ Rn is the state, u ∈ Rq is the input and y ∈ Rp

is the output of the system. We consider a linear state
feedback control law of the form

u = Fx + Gv, (2)

where F ∈ Rq×n, G ∈ Rq×q and v ∈ Rq is the new
input. Then the closed-loop system of (1)-(2) is

ẋ = (A + BF )x + BGv, y = Cx. (3)
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The transfer function matrix of the closed-loop system
(3) from the new input v to the output y is then given by

MF,G(s) := C(sIn −A−BF )−1BG. (4)

In this paper we state the exact model matching problem
with stability as follows :

Definition 1 Given system (1) and a strictly proper
transfer matrix M(s), the exact model matching problem
with stability consists of finding matrices F ∈ Rq×n and
G ∈ Rq×q with G nonsingular such that

MF,G(s) = M(s), (5)

and furthermore the matrix A+BF is stable (i.e. has all
its eigenvalues in the open left half plane).

The exact model matching problem is of both theoret-
ical and practical importance since a number of con-
trol problems can be linked to it [6]. Among those are
the decoupling problem, the model tracking problem,
and model reference adaptive control. The exact model
matching problem was originally presented without sta-
bility requirement in [20], where a solution was given for
the case of invertible systems, using feedback invariants,
a coordinate transformation and a set of polynomial ma-
trix equations. In [19,18] the restriction of invertibility
was eliminated and the problem was reduced to that
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of solving a system of linear algebraic equations. The
problem was treated in [14] by means of polynomial ma-
trix equations under the assumption that the open-loop
system is invertible. A time-domain solution was devel-
oped in [16], which led to a set of nonlinear matrix equa-
tions yielding the feedback law. In [13] a solution was
given in the frequency domain which reduced the prob-
lem to that of solving a large set of linear equations. In
[8,12], the problem was studied via a polynomial approx-
imation approach. Further related results were given in
[7,9,10,17,21,15].

The exact model matching problem has thus been stud-
ied extensively in the last three decades but several is-
sues have not been addressed appropriately :
(i) numerically verifiable necessary and sufficient solv-
ability conditions for the exact model matching problem
for a general linear time-invariant system and a given
general proper model are still not available in the litera-
ture : existing results transform the underlying problem
to another kind of problem such as nonlinear equations
or rational/polynomial matrix equations;
(ii) solutions based on rational/polynomial matrix equa-
tions [8,11,12,14,15,20] or nonlinear matrix equations
[16] with constant unknowns, do not lead to numerically
reliable methods for solving the exact model matching;
(iii) results in [13,19,18] are delicate from a numerical
point of view because the resulting linear systems of
equations are much larger than the state dimension of
the models M0(s) := C(sIm − A)−1B and M(s) and
the computations of the involved coefficient matrices are
poorly conditioned.
(iv) although the model matching problem in H∞ con-
trol can be solved using algebraic Riccati equations, this
does not appear to be the case – as far as we know – for
the exact model matching problem.
Therefore, we believe there is still a lack of numerically
reliable methods for solving it. In this paper we thus re-
visit the exact model matching problem with stability
from a numerical point of view.

We first point out that if the original system (1) is unsta-
bilizable then the problem has no solution. On the other
hand, if its uncontrollable modes are stable, then they
play no role in the problem. We can therefore assume
without loss of generality that the system (1) is control-
lable (but not necessarily observable). We will denote
its transfer function by M0(s) = C(sIn −A)−1B. If the
given realization of the desired transfer matrix M(s) is
not minimal, we can always obtain one via a numerically
stable procedure [4]. We can therefore assume without
loss of generality that we are given a minimal realization
of the desired model M(s) : M(s) = C(sIm − A)−1B,
with A ∈ Rm×m, B ∈ Rm×q, and C ∈ Rp×m. Notice
that if M(s) is left invertible then M0(s) must also be
left invertible since this property is not affected by the
matrices F and G in (5), and that m ≤ n is required
since M(s) is also given by (4).

The main purpose of this paper is to develop a new
method to verify the solvability and compute a desired
solution for the exact model matching problem with sta-
bility for left invertible systems. In contrast to [15], we do
not require the computation of the zero structure of the
systems M0(s), M(s) and

[
M0(s) M(s)

]
. Furthermore,

our method has a computational complexity which is cu-
bic in the state dimensions of M0(s) and M(s) and can
be implemented using orthogonal transformations only.

We will denote the complex plane by C, the closed right
half plane by Cunst, the spectrum of a square matrix A
by σ(A), and the spectrum of a regular pencil sE − A
by σ(E,A). We will call ∩K∈Rn×pσ(A + KC) the unob-
servable spectrum of the pair (A,C) and

rankg(R(s)) := rank(R(s)) for almost all s ∈ C
the generic rank of a rational matrix R(s).

Lemma 2 Let {A,B,C} be a realization of dimen-
sion n for which the pair (A,B) is controllable. Let
{A22, B2, C2} be a minimal realization of dimension n2

of C(sIn −A)−1B. Then

(i) σ(A) is the union of σ(A22) and the unobservable spec-
trum of the pair (A,C),

(ii) the invariant zeros of the system {A,B,C} are
the union of the invariant zeros of the system
{A22, B2, C2} and the unobservable spectrum of the
pair (A,C).

Proof. The proof is easy and thus omitted it here.

2 Reduction to invertible sub-blocks

The exact model matching problem with stability is bet-
ter understood for square invertible systems than for left
invertible ones (see e.g. [15]). This observation motivates
us to reduce the underlying problem to one for an invert-
ible system. For this purpose, we show in this section
that there always exists an orthogonal transformation
W such that the top q× q block of WM(s) is invertible.
Rephrasing the original problem in this coordinate sys-
tem will eventually lead to a closed form solution which
will be given in the next section.

Theorem 3 Given left invertible matrices M(s) =
C(sIm − A)−1B and M0(s) = C(sIn − A)−1B there
always exists an orthogonal transformation W such
that WM(s) and WM0(s) have the following general-
ized state space realizations, obtained under orthogonal
coordinate transformations U ,V?

b,g(KerC), U and V :

(i) WM(s) = Cnew(sEnew −Anew)−1Bnew
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where

Anew − sEnew = U(A− sIm)V?
b,g(KerC)

=

[ m1 m2 q

m1 A11 − sE11 A12 − sE12 A13 − sE13

m2 0 A22 − sE22 A23 − sE23

q A31 − sE31 A32 − sE32 A33 − sE33

]
,

Bnew = UB =

[
m1 0
m2 0
q B3

]
,

Cnew = WCV?
b,g(KerC) =

[ m1 m2 q

q 0 0 C13

p− q 0 C22 C23

]
,

(6)

rank(B3) = rank(C13) = q, rankg(A11 − sE11) = m1, (7)

rank

[
A22 − sE22

C22

]
= rank(E22) = m2, ∀s ∈ C. (8)

(ii) WM0(s) = Cnew(sEnew −Anew)−1Bnew

where

Anew − sEnew = U(A− sIn)V

=

[ n1 n2 q

n1 A11 − sE11 A12 − sE12 A13 − sE13

n2 0 A22 − sE22 A23 − sE23

q A31 − sE31 A32 − sE32 A33 − sE33

]
,

Bnew = UB =

[
n1 0
n2 0
q B3

]
,

Cnew = WCV =
[ n1 n2 q

q 0 0 C13

p− q 0 C22 C23

] }q
}p− q

,

(9)

rank(B3) = q, rankg(A11 − sE11) = n1, (10)

rank


A22 − sE22 A23 − sE23

0 C13

C22 C23

 = rank


E22 E23

0 C13

C22 C23


= n2 + q, ∀s ∈ C. (11)

Proof. The forms (6) and (9) are direct consequences of
the well-established generalized upper triangular form of
an arbitrary matrix pencil [4]. We omit the derivation of
the forms (6-8) and (9-11) since they can be constructed
using techniques similar to those of [2].

The form (6) provides not only the invariant zero struc-
ture of M(s) but also links two sub-blocks of WM(s),
as shown in the following corollary.

Corollary 4 With the notation of Theorem 3, the fol-
lowing properties hold :

(a) the invariant zeros of M(s) are given by the finite
generalized eigenvalues of sE11 −A11,
(b)

[
Iq 0q×(p−q)

]
WM(s) is invertible,

(c)
[

0 Ip−q

]
WM(s) = Z(s)

[
Iq 0

]
WM(s),

where Z(s) = [C23−C22(sE22−A22)−1(sE23−A23)]C−1
13 .

Proof. Parts (a) and (b) follow from conditions (7) and
(8), respectively. For part (c) we have by a simple calcu-
lation that

Z(s)
[

Iq 0
]
WM(s)

=



A22 − sE22 0 0 A23 − sE23 0

0 A11 − sE11 A12 − sE12 A13 − sE13 0

0 0 A22 − sE22 A23 − sE23 0

0 A31 − sE31 A32 − sE32 A33 − sE33 B3

C22 0 0 C23 0



=



A22 − sE22 0 0 0 0

0 A11 − sE11 A12 − sE12 A13 − sE13 0

0 0 A22 − sE22 A23 − sE23 0

0 A31 − sE31 A32 − sE32 A33 − sE33 B3

C22 0 C22 C23 0


=

[
0 Ip−q

]
WM(s).

The transfer function
WMF,G(s) = Cnew(sEnew−Anew−BnewFV )−1BnewG
is supposed to be equal to WM(s), so we are looking
for an analogous result to Corollary 4 for this transfer
function which depends on F and G.

Corollary 5 With the notation of Theorem 3 and with
G invertible, the following properties hold :

(a) the invariant zeros of MF,G(s) are given by the finite
generalized eigenvalues of sE11 −A11,
(b)

[
Iq 0

]
WMF,G(s) is invertible for some F,G iff

rank(C13) = q, rankg(A22 − sE22) = n2, (12)

(c) if rank conditions (12) hold, then[
0 Ip−q

]
WMF,G(s) = Z(s)

[
Iq 0

]
WMF,G(s),

where
Z(s) = [C23 − C22(sE22 −A22)−1(sE23 −A23)]C−1

13 .
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Proof. We first point out that the realization of WMF,G

has the same form as that of WM(s) and that proper-
ties (10) and (11) of Theorem 3 are not affected by the
feedback matrices F and G. Part (a) then follows from
conditions (10) and (11). We need now in addition that
(12) holds in order to prove part (b). Finally, if (12)
holds, the proof of part (c) is similar to that of part (c)
in Corollary 4.

In order to have MF,G(s) = M(s) one needs to satisfy
simultaneously[

Iq 0
]
WMF,G(s) =

[
Iq 0

]
WM(s), (13)[

0 Ip−q

]
WMF,G(s) =

[
0 Ip−q

]
WM(s). (14)

(13) implies that
[

Iq 0
]
WMF,G(s) must be invertible

since
[

Iq 0
]
WM(s) is invertible. By Corollary 5, con-

ditions (12) are then satisfied. (14) is then satisfied if and
only if Z(s) = Z(s) since

[
Iq 0

]
WM(s) is invertible.

This then finally leads to the following theorem.

Theorem 6 With the notation of Theorem 3 and with
G nonsingular, let the RQ factorization of

[
C13 C13

]
be[

C13 C13

]
Z =

[
R 0

]
, Z =

[
Z11 Z12

Z21 Z22

]
,

where R is nonsingular, Z11 ∈ Rq×q and Z is orthogo-
nal. Then MF,G(s) = M(s) iff the condition (12) holds,

rankg


A22 − sE22 0 A23 − sE23 0

0 A22 − sE22 0 A23 − sE23

0 0 C13 C13

C22 C22 C23 C23


= m2 + n2 + q, (15)

and

rankg(


A11 − sE11 A12 − sE12 0 0 (A13 − sE13)Z12

0 A22 − sE22 0 0 (A23 − sE23)Z12

0 0 A11 − sE11 A12 − sE12 (A13 − sE13)Z22

0 0 0 A22 − sE22 (A23 − sE23)Z22

F̂1 + A31 − sE31 F̂2 + A32 − sE32 Ĝ(A31 − sE31) Ĝ(A32 − sE32) F̂3Z12 + D(s)


= (n− q) + (m− q), (16)

where [ n1 n2 q

F̂1 F̂2 F̂3

]
:= F̂ := B3FV, ĜB3 := B3G,

D(s) := (A33 − sE33)Z12 + Ĝ(A33 − sE33)Z22.

(17)

Proof. Obviously, MF,G(s) = M(s) and hence (13) and
(14) hold with G invertible iff[

Iq 0
]
Cnew(sEnew −Anew −BnewFV )−1BnewG

=
[

Iq 0
]
Cnew(sEnew −Anew)−1Bnew, (18)

[
0 Ip−q

]
Cnew(sEnew −Anew −BnewFV )−1BnewG

=
[

0 Ip−q

]
Cnew(sEnew −Anew)−1Bnew.

As pointed out above, this is equivalent to conditions
(12) and condition (13), and Z(s) = Z(s). Since

rankg(

[
In+m 0 0

0 Iq 0

]

×


Anew − sEnew + BnewFV 0 BnewG

0 Anew − sEnew −Bnew

Cnew Cnew 0

)

= n + m+
rankg{

[
Iq 0

]
[Cnew(sEnew−Anew−BnewFV )−1BnewG

−Cnew(sEnew −Anew)−1Bnew]},
so, a simple calculation yields that (18), (16) and
(13) are equivalent. It thus only remains to show that
Z(s) = Z(s) is equivalent to (15) when (16) holds.
It is easy to see from rankg(A22 − sE22) = n2 and
rankg(A22 − sE22) = m2 that

rankg


A22 − sE22 0 A23 − sE23 0

0 A22 − sE22 0 A23 − sE23

0 0 C13 C13

C22 C22 C23 C23


= m2 + n2 + q + rankg(Z(s)−Z(s)),

which completes the proof.

We have thus reduced the exact
model matching problem (with-
out stability) to a set of rank con-
ditions. Conditions (12) and (15)
can be verified easily [4]. Finally,
condition (16) depends on F and
G and we discus in the next sec-
tion how to check it.

3 Conditions for F and G

In this section we derive solvability conditions for F and
G related to rank condition (16), under the assumption
that condition (12) already holds.

Lemma 7 With notation of Theorem 6 and assuming
that (12) holds, denote by Φ− sΘ the pencil
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
A11 − sE11 A12 − sE12 0 0 (A13 − sE13)Z12

0 A22 − sE22 0 0 (A23 − sE23)Z12

0 0 A11 − sE11 A12 − sE12 (A13 − sE13)Z22

0 0 0 A22 − sE22 (A23 − sE23)Z22

 .

Then there exist orthogonal matrices P and Q such that

P (Φ− sΘ)Q =

[
Φ11 − sΘ11 Φ12 Φ13 − sΘ13

0 0 Φ23 − sΘ23

]
, (19)

where Φ11 ∈ Rτ1×τ1 , Φ12 ∈ Rτ1×q,

rank
[

Φ11 − sΘ11 Φ12

]
= rank(Θ11) = τ1, ∀s ∈ C, (20)

rankg(Φ23 − sΘ23) = n + m− 2q − τ1. (21)

Proof. It follows from Theorem 3 that E22, A11−sE11 and
A11−sE11 are invertible, and from (12) that A22−sE22 is
also invertible. This implies that Φ−sΘ is of full column
normal rank. Therefore, the orthogonal matrices P and
Q and the form (19) with properties (20) and (21) can be
obtained by computing the generalized upper triangular
form of the pencil Φ− sΘ [4].

Let us now apply the transformation Q also to the fol-
lowing submatrices derived from (16)


A31 − sE31 A32 − sE32 0 0 (A33 − sE33)Z12

In1 0 0 0 0

0 In2 0 0 0

0 0 0 0 Z12

0 0 A31 − sE31 A32 − sE32 (A33 − sE33)Z22

Q =


τ1 q n + m− 2q − τ1

Φ31 − sΘ31 Φ32 − sΘ32 Φ33 − sΘ33

J11 J12 J13

J21 J22 J23

J31 J32 J33

Π31 − sΞ31 Π32 − sΞ32 Π33 − sΞ33

. (22)

Eliminating the block column corresponding to the in-
vertible pencil Φ23−sΘ23 we finally obtain that the rank
condition (16) is equivalent to:

τ1 = rankg

[
Φ11 − sΘ11 Φ12

X − s(Φ31 + ĜΞ31) Y − s(Θ32 + ĜΞ32)

]

where


τ1 = rank(Θ11),
X = Φ31 + ĜΠ31 +

∑3
i=1 F̂iJi1,

Y = Φ32 + ĜΠ32 +
∑3

i=1 F̂iJi2.

Using [3], we obtain rank conditions for F̂ and Ĝ:

Θ32 + ĜΞ32 = 0, rank

[
Θ11 Φ11 Φ12

Θ31 + ĜΞ31 X Y

]
= τ1.

Consider the RQ factorization[
Θ11 Φ11 Φ12

]
W =

[
∆ 0

]
,

where ∆ ∈ Rτ1×τ1 and W is orthogonal.
Denote

Ξ31 Π31 Π32

Θ31 Φ31 Φ32

0 J11 J12

0 J21 J22

0 J31 J32


W =

[ τ1 τ1 + q

q × M
q × L
n1 + n2 + q × N

]
. (23)

we obtain the set of linear equations

ĜM + F̂N + L = 0, ĜΞ32 + Θ32 = 0. (24)

The above analysis leads to the following theorem.

Theorem 8 With the notation above, condition (16)
holds with G nonsingular iff equations (24) are satisfied
by matrices F̂ , Ĝ with Ĝ nonsingular. In such a case, a
desired feedback matrix pair (F,G) to (16) with G non-
singular, is obtained from (17).

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 Stability Condition of A + BF

Up to now, we have not included the condition of stabil-
ity of A + BF , which we will discuss in this section. In
the following theorem we show that only the anti-stable
eigenspaces of the pencils sE11−A11 and sE11−A11 play
a role in the stability requirement of the exact model
matching problem for the system (1) and the desired
model M(s). Our proof is new and different from that in
[15]. It clarifies the role played by the anti-stable invari-
ant zeros in the exact model matching with stability.

Theorem 9 With the notation of Theorem 3, let F and
G with G nonsingular satisfy MF,G(s) = M(s). Then
A+BF is stable iffA is stable and σ(E11, A11)∩Cunst =
σ(E11,A11) ∩Cunst.
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Proof. The equality MF,G(s) = M(s) implies that
C(sIn − A − BF )−1BG = C(sIm − A)−1B, where
{A,B, C} is a minimal realization and hence n ≥ m.
Let us define σA+BF,C as the unobservable spectrum
of the pair (A + BF, C). The controllability of the
pair (A + BF, BG) is preserved and Corollaries 4 and
5 imply that the invariant zeros of {A + BF, BG,C}
and of {A,B, C} are given by the finite eigenvalues of
(sE11 − A11) and (sE11 −A11), respectively. According
to Lemma 2 we thus have both identities{

σ(A + BF ) = σ(A) ∪ σA+BF,C ,
σ(A11, E11) = σ(A11, E11) ∪ σA+BF,C .

(25)

We now prove necessity and sufficiency of the theorem.
Necessity: Let A+BF be stable then the first identity in
(25) implies that both A and the unobservable eigenval-
ues of (A+BF, C) are stable. The latter and the second
identity in (25) then also imply that σ(A11, E11) and
σ(A11, E11) have the same unstable eigenvalues.
Sufficiency: Let A be stable and let σ(A11, E11) and
σ(A11, E11) have the same unstable eigenvalues. Then
the second identity in (25) implies that σA+BF,C is sta-
ble. Using this and the first identity in (25) it then also
follows that A + BF is stable.

The following main theorem summarizes all results in
which we used the notation introduced earlier.

Theorem 10 Assume that system (1) and the desired
model M(s) are left invertible. Then there exist matrices
F ∈ Rq×n and G ∈ Rq×q with G nonsingular such that
MF,G(s) = M(s) and A + BF is stable iff

(a) A is stable, conditions (12) and (15) hold, and
σ(E11, A11) ∩Cunst = σ(E11,A11) ∩Cunst;
(b) Equations (24) have a solution F̂ , Ĝ with Ĝ nonsin-
gular.

In case (a) and (b) hold, a desired feedback matrix pair
(F,G) is obtained from (17).

5 Numerical method and example

As a consequence of Theorem 10 we have the following
algorithmic implementation.

Algorithm 5

Input: A ∈ Rn×n, B ∈ Rn×q, C ∈ Rp×n, A ∈
Rm×m,B ∈ Rm×q, C ∈ Rp×m such that the system (1)
and the model M(s) are left invertible.

Output: F ∈ Rq×n and G ∈ Rq×q such that (5) holds
and A + BF is stable, if such a solution exists.

Step 1: (a) Compute orthogonal matricesW,U ,V?
b,g(KerC),

U and V such that

Anew − sEnew := U(A− sIm)V?
b,g(KerC)

=

[ m1 m2 q

m1 A11 − sE11 A12 − sE12 A13 − sE13

m2 0 A22 − sE22 A23 − sE23

q A31 − sE31 A32 − sE32 A33 − sE33

]
,

Bnew = UB =

[
m1 0
m2 0
q B3

]
,

Cnew = WCV?
b,g(KerC) =

[m1 m2 q

q 0 0 C13

p− q 0 C22 C23

]
,

Anew − sEnew := U(A− sIn)V

=

[ n1 n2 q

n1 A11 − sE11 A12 − sE12 A13 − sE13

n2 0 A22 − sE22 A23 − sE23

q A31 − sE31 A32 − sE32 A33 − sE33

]
,

Bnew = UB =

[
n1 0
n2 0
q B3

]
,

Cnew = WCV =
[n1 n2 q

q 0 0 C13

p− q 0 C22 C23

]
,

where
rank(B3) = rank(C13) = q, rankg(A11 − sE11) = m1,

rank

[
A22 − sE22

C22

]
= rank(E22) = m2, ∀s ∈ C,

rank(B3) = q, rankg(A11 − sE11) = n1,

rank


A22 − sE22 A23 − sE23

0 C13

C22 C23

 = rank


E22 E23

0 C13

C22 C23


= n2 + q, ∀s ∈ C.

(b) Verify the stability ofA and the following conditions:
rank(C13) = q, rankg(A22 − sE22) = n2,
σ(E11, A11) ∩Cunst = σ(E11,A11) ∩Cunst,

rankg


A22 − sE22 0 A23 − sE23 0

0 A22 − sE22 0 A23 − sE23

0 0 C13 C13

C22 C22 C23 C23


= m2 + n2 + q
by using the algorithm in [4] for computing the gener-
alized upper triangular form of an arbitrary pencil. If
they hold, continue; else, the model matching problem
with stability is not solvable and so stop.

Step 2: (a) Compute and partition an orthogonal matrix

Z with Z =

[
Z11 Z12

Z21 Z22

]
and Z11 ∈ Rq×q such that
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[
C13 C13

]
Z =

[
R 0

]
, R ∈ Rq×q, rank(R) = q,

(b) Compute orthogonal matrices P and Q such that

P


A11 − sE11 A12 − sE12 0 0 (A13 − sE13)Z12

0 A22 − sE22 0 0 (A23 − sE23)Z12

0 0 A11 − sE11 A12 − sE12 (A13 − sE13)Z22

0 0 0 A22 − sE22 (A23 − sE23)Z22

Q

=

[
Φ11 − sΘ11 Φ12 Φ13 − sΘ13

0 0 Φ23 − sΘ23

]
,

where Φ11 ∈ Rτ1×τ1 , Φ12 ∈ Rτ1×q,
rank

[
Φ11 − sΘ11 Φ12

]
= rank(Θ11) = τ1, ∀s ∈ C,

rankg(Φ23 − sΘ23) = n + m− 2q − τ1.

(c) Compute

A31 − sE31 A32 − sE32 0 0 (A33 − sE33)Z12

In1 0 0 0 0

0 In2 0 0 0

0 0 0 0 Z12

0 0 A31 − sE31 A32 − sE32 (A33 − sE33)Z22


Q

=


τ1 q n + m− 2q − τ1

q Φ31 − sΘ31 Φ32 − sΘ32 Φ33 − sΘ33

n1 J11 J12 J13

n2 J21 J22 J23

q J31 J32 J33

q Π31 − sΞ31 Π32 − sΞ32 Π33 − sΞ33

.

(d) Compute orthogonal matrix W such that[
Θ11 Φ11 Φ12

]
W =

[
∆ 0

]
,

where ∆ ∈ Rτ1×τ1 is nonsingular.

(e) Compute

Ξ31 Π31 Π32

Θ31 Φ31 Φ32

0 J11 J12

0 J21 J22

0 J31 J32


W =

[ τ1 τ1 + q

q × M
q × L
n1 + n2 + q × N

]
.

Step 3: Solve the equations
ĜM + F̂N + L = 0, ĜΞ32 + Θ32 = 0,
using QR factorization. If a solution pair (F̂ , Ĝ) with Ĝ
nonsingular exists, continue; else, the model matching
problem with stability is not solvable and so stop.

Step 4: Compute (F,G) by solving equations
B3FV = F̂ , B3G = ĜB3. Output F and G.

The following comments can be given re-
garding the numerical properties of the
above algorithm :
(i) all steps require only orthogonal trans-
formations which can be carried out in a
numerically backward stable manner; the
overall numerical stability of the algorithm
does not automatically follow from this,
but it guarantees that the substeps are
solved in a numerically stable manner;

(ii) algorithms with cubic computational complexity in
the dimensions of the matrices that are involved are
given in [1] for the computation of the generalized up-
per triangular form and the staircase form of a matrix
pencil, for the Schur form of square matrix and for the
QR/RQ factorization of an arbitrary matrix [5];

(iii) since all steps involve matrices of di-
mensions of the same order as those of the
original systems, the overall complexity of
Algorithm 5 is thus at most cubic in the
system dimensions of the given systems.

Example 1 We apply Algorithm 5 to a random exam-
ple in which system (1) and the desired model M(s) are
not square. All computation were done on a computer
with relative accuracy 2.2204× 10−16. To guarantee that
there is a solution to the exact model matching prob-
lem with stability, we chose matrices (A,B,C) equal to

J (

[
Ã11 Ã12

0 A

]
+

[
B̃1

B

]
D)J−1, J

[
B̃1

B

]
K,

[
0 C

]
J−1.

where all matrices in the right hand side are random,
A is stable, Ã11 is unstable, J and K are nonsingular,
and cond(J , 2) < 10. The minimality of the triplets
(A,B, C) and (A,B,C) follows from the randndomness
of their elements. Note that A is unstable because of
Ã11. Using Algorithm 5 with a relative rank tolerance
of 10−12, we obtained a solution F , G. We verified
that A + BF is stable as requested, and furthermore,
C(sI − A − BF )−1BG ≈ M(s) in the sense that the
error E(s) := C(sI −A)−1B−C(sI −A−BF )−1BG
is small compared to M(s). Indeed, E(s) = 0 provided
its first 10 Markov parameters are zero:

Ei :=
[
C −C

] [
A 0

0 A + BF

]i [
B

BG

]
= 0, i = 0, · · · , 9

and the computed versions of these expressions satisfied:

‖Ei‖∞ ≤ 2.3× 10−14‖CAiB‖∞, i = 0, · · · , 9.
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6 Concluding remarks

In this paper we have studied the exact model matching
problem with stability for left invertible systems. Based
on matrix pencil theory, we have developed a new nu-
merical method to verify the solvability of the underlying
problem and further construct a desired solution. Our
new method can be implemented via a numerically reli-
able manner, and its computational complexity is cubic
in the sizes of the system (1) and the desired model M(s).
The results trivially extend to the discrete-time case as
well. The generalization to the case where the systems
(1) and M(s) are not left invertible is still a challenging
problem which is definitely worthy of further study.
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