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SPEECH MODELLING AND THE TRIGONOMETRIC
MOMENT PROBLEM

by PH. DELSARTE, Y. GENIN, Y. KAMP and P. VAN DOOREN

Abstract

It is shown that the partial trigonometric moment problem provides an
appropriate unifying framework for some speech modelling techniques like
the line spectral pairs and composite sinusoidal wave model recently
proposed by Itakura et al., the eigenmodel of Pisarenko used for formant
extraction and the classical autoregressive model on which LPC is based.
This moment problem is equivalent to an extension problem in the class of
impedance functions and hence has a simple circuit theoretical interpreta-
tion. The connection with the classical power moment problem is also
established.

1. Introduction

Among the many techniques existing today for the modelling of discrete
time signals by rational functions, the linear prediction or autoregressive (AR)
model is undoubtedly one of the most powerful, especially in the field of
speech processing!). By its very nature, this model provides a simple speech
synthesis technique as well as an analysis tool for the estimation of the
formants or resonant frequencies of the vocal tract. The popularity of the AR
method can be justified by many arguments but among these certainly emerges
the fact that eflicient computational procedures for the derivation of the
model are available as well as robust structures for its implementation. In par-
ticular, the reflection or partial correlation (PARCOR) coeflicients have be-
come a classical characterization of the AR model?). A few years ago, Itakura
and Sugamura?®) showed however that an AR model could equivalently be
described in terms of the so-called line spectral pairs leading to a characteriza-
tion which in some respects is more efficient than the classical PARCOR
method. At about the same time, Sagayama and ltakura?*) also proposed a
new technique for speech synthesis, called the composite sinusoidal wave
model, in which the time signal is represented as a sum of several sinusoidal
waves. The amplitudes and frequencies of these sinusoids are adjusted so as to
match a limited number of the signal autocorrelation lags. Gueguen ®) for his
part introduced still another speech model based on the eigenvector associated
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with the smallest eigenvalue of the autocorrelation matrix. This eigenmodel,
as it is called, is mainly used for formant extraction in speech analysis and for
the investigation of the singular case in linear prediction which may occur for
example when insufficient pre-emphasis is applied ¢). The location of the zeros
of the corresponding eigenfilter was further examined by Makhoul”). It was
soon recognized ©#) that the eigenmodel was in fact closely related to an ear-
lier method developed by Pisarenko®) in the field of geophysics for the
retrieval of harmonics from a discrete time signal corrupted by additive back-
ground noise. A modification of Pisarenko’s method was proposed by Kung #)
to cope with some of the limitations inherent in its original formulation.

Facing such a variety of methods for the modelling of discrete time signals
one is naturally led to ask whether there exists a unifving approach in which
these different methods would naturally fit as particular cases of a general
solution to some basic modelling problem. The purpose of this paper is pre-
cisely to answer this question and to show that a unifying framework is
provided by the classical trigonometric moment problem in which the work of
Caratheodory, Schur and Szegd play an important role.

In sec. 2, one reviews the most important properties of the AR model and
emphasizes the fact that the first autocorrelation lags of the model output
signal coincide with those of the original signal. This reconstruction of the
power density function by the model is in fact a trigonometric moment
problem and is reformulated in sec. 3 as Caratheodory's extension problem in
the class of impedance functions. The solution to this problem is generally not
unique but can be parametrized in terms of an arbitrarv reflectance or Schur
function. In sec. 4, one shows that the AR model, Sagayama’s model and
Pisarenko’s model can be derived from this general solution as particular
cases corresponding to some special choice for the arbitrary reflectance. The
connection with Itakura’s line spectral pairs for the estimation of the for-
mants and as a representation of the AR model is also mentioned. In sec. 5 it
is shown that the general solution to Caratheodory’s extension problem can be
represented as a cascade of lossless two-ports closelv related to the Richards
section and terminated on an arbitrary passive impedance. Finally, one shows
in sec. 6 that Sagayama’s composite sinusoidal wave model can be refor-
mulated as a Gauss quadrature formula and the exact connection with the
classical power moment problem is established.

2. Spectral estimation
P
The AR model in fig. 1 consists of an all-pole filter A,(z) = 1 + Z Ap .z
1

excited by a periodic pulse train in the case of voiced specech and by white noise
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for unvoiced speech!>'®). The importance of this approach lies in the well-

known fact that the output signal of the AR model provides in both situations

a power density function which reproduces that of the original signal in

the following sense. Given a sequence {s,} of windowed speech samples, its
+ 00

power density function P(®) has a Fourier expansion P(®) = Z c1e'® where

— 0

pulse train
N ! .
p———
e Ap /Z} {s” }
4
[ S —
white noise
Fig. 1.

the autocorrelation lags ¢; are given by
+ 00
Cl=C= ) SuSu-i. (1)
H=—0C

Note that both summations have in fact finite range, due to the windowing
effect. The output of the AR model is a sequence }s,} and the envelope of its
power density function is

P'(O) = a;/| Ap('))|?, (2)
where o2 is the energy of the input signal. It was shown by Whittle **) that the

fe o]
Fourier expansion P'(®) = Z cf e satisfies

¢ =q for lel-p,pl 3)
Thus, the number of identical autocorrelation lags for the model output and

for the actual signal is determined by the degree of the all-pole filter. Before
discussing this point in more detail, let us briefly recall some of the important

properties of the AR model. The coefficient vector A, = [1,4p1, ..., Ap )7
is obtained by solving the linear system
CP AIJ = [th 0! LEEIEY) OJT’ (4)

where C, is the symmetric Toeplitz matrix built on the first p + | autocorrela-
tion lags

Co C1 N &
C1 Co e Cpo

c=| 1 “ 1 (5)
Cp Cp-1 PR Co
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The stability of the model, i.e. the fact that A,(z) has all its zeros in the open
unit disk |z| <1, is a direct consequence of the fact that C, is positive de-
finite '2). (The case of singular non-negative definite autocorrelation matrices
which occurs in particular for purely harmonic signals will be touched upon in
sec. 4.) The zeros of Ap(z) close to the unit circle provide an estimation for the
formants. The linear system (4) can efficiently be solved via the Levinson re-
cursion

Ao2) = 1, Ai(2) = Aa(2) + kiz A2, jell, pl, (6)

where A;(z) stands for the reciprocal polynomial =z~ A4,(z"") and where &;,
known as the j-th reflection coefficient or partial correlation coefficient, is
given by

ki= =+ Aiag + ...+ 1A allab. )
The stability of A4,(z) is equivalent to the property
k| <1 Jjell,pl. (8

Polynomial A,(z) of the autoregressive model can also be interpreted as the
p-step linear predictor which estimates a sample s, ot the speech signal as a
linear combination of the p preceding samples,

r

Sn=— ) ApiSuci. )
=1

+
Minimisation of the prediction error Z (s» — s,)? with respect to the coeffi-

-

cients Ap,1, Apz, ..., App leads to the same linear system (4) where o5 must
now be interpreted as the energy of the residual prediction error, for which the
following recursion formula holds

ab=co, ai =(—kDhali, jell,pl (10)

Let us now go back to the power density spectra of the original signal and of
the AR model. In view of (2) and (3) the all-pole filter A ,(z) can be considered
as a particular solution to a more general problem, known in the mathematical
literature as the partial trigonometric moment problen'?), which consists in
finding all non—negative functions P(®) such that

1

5 [ P'(©®)e"9do = ¢, lel p,pl (11)
-7

Since functions of the distribution type may also be included in the solu-
tion, the problem is more accurately stated as that of finding all non-de-
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creasing measures u (@) for which the first p ~ 1 moments have the prescribed
values co, €1, - - ., Cp,
1 s

5 €Cdu@) =c, el p.pl. (12)

3. Caratheodory’s extension problem

In loose terms, a non-negative function like P'(®) can be thought of as
being the real part of a passive impedance f(z) evaluated on the unit circle
z = ¢!, Consequently, it is not surprising that an equivalent formulation for
the trigonometric moment problem (12) consists in finding all impedance
functions f(z) (i.e. analytic and with non-negative real part in the domain
1 < | z| < =) having a Maclaurin expansion of the form

P ]
f@=co+2) az!+2) ¢z (13)
1=1 I=p+1
Indeed, with any non-decreasing measure u4(®) one can associate an impe-
dance function f(z) via the Riesz-Herglotz representation *?)

T

1 el® 4z
J@) =~— wo o1 duo), (14)

which will satisfy (13) in view of (12). Conversely, given an impedance func-
tion f(z) one can derive a unique non-decreasing measure satisfying (14) by a
limiting process on the real part, namely

2]
u(©) = lim [ Ref(re?)dy (15)
r=1%

and one can verify then that (13) is equivalent to (12) in view of (14) and (15).
Due to this equivalence, the partial trigonometric moment problem can be
converted into Caratheodory’s extension problem in the class of positive func-
tions namely to find the set of all analytic functions with non-negative real
part in |z| > 1 and whose first p + 1 Maclaurin coefficients coincide with
Co, 2¢C1, . - -, 2¢p. On the other hand, a positive function is characterized by the
fact that the Toeplitz matrices of increasing order built on the Maclaurin
coefficients are all non-negative definite ?). Consequently, Caratheodory’s
extension problem can be equivalently formulated as finding, for the given
positive definite matrix C,, all non-negative definite Toeplitz extensions
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— ; ,
co  C cer Cp o Cprl e Cpa
Ci Co PR Cp-1 Cp Cpts-1
Cois=| Cp Cp-1 ... Co el G , sell, o). (16)
! '
Cpt1 Cp C1 Co F AT
! ./ ‘! ‘! .
L Cp+s  Cpis-1 Cs Cs-1 ... Co .

The solution to this problem can be expressed in terms of polynomial A,(z) of
the AR model and a second polynomial R,(z) generated by the same recursion
formula (6) but with a change of signs of the reflection coefficients,

Ro(z) = co, Ri(z) = Ri_i(z) — kjz ' Ryoi(2), Jell, pl. (17)

These polynomials are in fact closely related to Szegd's orthogonal poly-
nomials of the first and second kind !?). In view ot the similarity between (17)
and (6), A,(z) and R,(z) are obviously not independent. It turns out that they
are linked by the relation

Ry(z) = Ap(z) (co + 2c1z7t + ... + 2¢,277) + O(zP 7). (18)

Another useful identity, which can be derived from (6) and (17), is the fol-
lowing
Ap(2) Rp(2) + Ap(z) Rp(2) = 20,27, (19)

with o2 defined as in (4). Finally, let us recall that a function ¢(z) analytic and
satisfying |@(z)| <1 in |z| > 1 is called a Schur function and corresponds
thus to the well-known reflectance function of a passive one-port used in cir-
cuit theory. The general solution to Caratheodory’s extension problem can be
parametrized as a well defined transformation of an arbitrary Schur function
®p+1(2) '2). This has a remarkable expression in terms of the polynomials A,(z)
and R,(z), namely

Ry(z) — 27" @pa1(2) Iép(l)
Ap(2) + 271 @pei(z) Ap(2)

f2) = (20)
Note, incidentally, that transformations of this type are called homographic
transformations. The background of the important result (20) and its circuit
theoretical interpretation will be given in sec. 5. For each particular choice of
@p+1, formula (20) yields an impedance function f and hence by (15) a measure
satisfying (12). Note that for most applications, @, 1s restricted to the class
of rational Schur functions. In case f(z) is continuous on the unit circle, one
has simply P'(@) = Re f(e'®) and the spectral factorization of P'(®) yields
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then the transfer function of the model '*). As for the formants, they can be
estimated by the poles of (20) close to the unit circle. Formula (20) is of central
importance for our purpose because Whittle’s AR model, Itakura’s line spec-
tral pairs and Sagayama’s composite sinusoidal wave synthesis as well as
Pisarenko’s model will be shown to be reducible to special cases of this
formula.

4. The models of Whittle, Itakura, Sagayama and Pisarenko

An obviously simple choice in (20) is ¢,+1(z) = 0 giving f(z) = Rp(2)/Ap(2),
a result consistent with (18). Hence, one has by (19)

P(©) = Re f(®) = a;/| A

1)

which is exactly the power density spectrum (2) of the AR model shown in
fig. 1. A classical structure for this model is the feedback lattice filter 1°) where
the multipliers are precisely the reflection coeflicients k;(/ = 1,2, ..., p) which
can conveniently be computed via formula (7) of Levinson’s algorithm.

The next simplest choice is ¢,41(z) = 1 or —1 giving

Ry(z) F z7' Ry(2)

: . 22
Ap(z) £ z7' Ap(2) 22)

f2) =

Since f(z) is now a reactance of degree p + 1 (see sec. 5) its poles are simple
and located on the unit circle. Consequently, f(z) admits a partial fraction
expansion which, by combining the contributions of complex conjugate poles,
can be put under the form

ptl 1()1 4z -1
f@) = Z QS (23)
where @, O, ..., O, are distinct points on the interval [0,2n) and
01, 02, - - -, Op+1 are positive real numbers. The corresponding power density

p+l

function obtained via (15) is P'(®) = 2=n Z 0:0(0 - ©,) and consists thus of

=1
p + 1 spectral lines located at @,(/ = 1,2, ...,p + 1). In view of (11), the first
p + 1 lags of the autocorrelation function are modelled by

p+1

=Y oxe®,  lel-p,p] (24)

and the signal itself can be represented within arbitrary phases by

P+l

=) Vore "o (25)
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For p odd and ¢p+1(z) = 1, all zeros of the denominator in (22) occur in com-
plex conjugate pairs and (24), (25) then become

(p+1)/2

=2 Z Ok cOs [ Oy, lel p.p] (26)

k=1
(p+1)/2
s) =2 Z Joxcos n O, (27)

k=1
which is precisely Sagayama’s composite sinusoidal wave model*). In practice,
the derivation of this model consists of Levinson's recursion followed by a
factorization and partial fraction expansion to find successively A,(z), Rp(z), the
zeros €719 of the denominator in (22) and the coeflicients g«. Observe that this
algorithm for computing Sagayama’s model is simpler than the one proposed in
the original presentation *) and which involves the solution of Hankel and Van-
dermonde matrix equations. According to the approach presented here, the
formants are closely related to the zeros of either P,(2) = Ay(z) — z7 ' A,(2)
or Qp(z) = Apy(z) + z7' A,(2), depending on the choice made for ¢,.1(z). It is
interesting to note that the zeros of these polynomials are precisely Itakura’s
line spectral pairs for the estimation of the formants®). On the other hand, it
is clear that the all-pole filter of the classical AR model can completely be
characterized by P,(z) and Q,(z) since

Apz) = §[Pp(2) + Qp(2)] (28)

and this relation is the basis for Itakura’s line spectral pairs synthesis filter.

As a preparation to Pisarenko’s method, recall that the particular choice
@¥p+1(z) = +11in (20) generates a reactance function /. It is known in that case
that the Toeplitz matrices C,.s defined in (16) are all singular fors = 1,2,...12).
From this point of view, Sagayama’s composite sinusoidal wave model can be
considered as the singular extension of the original positive definite matrix C,.
In addition, this minimal degree singular extension has only two solutions cor-
responding to the arbitrary choice @p1(z) = =+ 1 (see sec. 5).

Let oo be the smallest eigenvalue of C, and let v be its multiplicity. In Pisa-
renko’s approach one considers the set of Toeplitz matrices C/* = C; — 0o /l}41.
Let us denote by A](z), R (2), k" and o;? the polvnomials, reflection coeffi-
cients and residual energy associated with this set of matrices. Since C.L, is
now positive definite and C/.,+1, . . ., C5 are non-negative definite but singular
by construction, the latter matrices can thus be considered as singular exten-
sions of CJ,. In other words, Pisarenko’s problem for C, has been reduced
to Sagayama’s problem for CJ, whose solution is uniquely given by the
reactance
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R;—v(z) - Z_l /":—v+l R’\/’:(—v(z)
A;—v(z) + Z-l /":‘v+l /i;:(—v(z) ’

S = (29)

with kp,1 equal to +1 or —1. Going back to the original problem and de-
noting by e % the zeros of the denominator in (29), one has by applying (23)

to the data (co — o, C1, . . ., Cp—y) instead of (co,C1, ..., Cp)
p-v+l 1(*); - -1
e 4+ z
f(@) =00+ Y of ———. (30)
= e - 27!
In view of (15), the power spectral density is given by
p-v+1
P©) =00+ ) 0Fd@ O 31

=1

and formula (11) gives then Pisarenko’s model for the autocorrelation lags

p-v+1

¢ = 0000, + Z oF e'”@’:, for /e [-p,p]. (32)
k=1
Applying the recurrence formulas (7) and (10) to the matrices C¢ one finds
2.1 = 0 which shows, in view of (6), that the polynomial denominator in
(29) is built on the unique eigenvector of the matrix C,-,+1 associated with the
smallest eigenvalue g¢. This remark leads us to Pisarenko’s own presentation
of his method?®) as an application of one of Caratheodory’s theorems where
the representation of a set of complex numbers by a sum of imaginary ex-
ponentials is considered. Finally, since (31) is a particular solution to the
trigonometric moment problem, we know there exists some @p+1(z) such that
formula (20) generates the impedance function shown in (30). However there
seems to eXist no easy way in which to select this particular Schur function
from the outset.
Let us close this section with a general remark on system modelling. Any
measure (@) can be decomposed as

w(O) = uo(O) + ui(O), (33)

where uo(@) is the absolutely continuous part and u (©) the singular part. For
the applications considered here, the singular component is a finite discrete

K

measure (1(®) = Z oxu(®@ — @), where u(x) is the unit step-function and
k=1

for the absolutely continuous part one has duo(©®) = | h(e'®)|?d© where h(z)

is a stable rational function with a stable inverse. A general model based on
the decomposition (33) is shown in fig. 2, where s,(7) and so(f) are called the
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white noise s,(t) (nondeterministic)
—_—

h(z) \

@——> s'(t)
K
z Veo.e''%=s;(t) [deterministic) /

Fig. 2.

deterministic and non-deterministic components of the signal. Whittle’s AR
model has only a non-deterministic part with #(z) = A,'(z), while Sagayama’s
composite sinusoidal wave model exhibits only a deterministic part with
K =p+1. Pisarenko’s approach gives a mixed model where K=p—v + 1in
the deterministic path and where the non-deterministic part reduces to white
noise of energy go, hence with A(z) = 1.

5. Circuit theoretical interpretation

Let us go back to Caratheodory’s extension and its general solution (20).
With any impedance f(z) one can associate a reflectance or Schur function
(for the definition see sec. 3),

1 — f()

9(z) = T/ (34
Conversely, if ¢(z) is a Schur function then f(z) = [1 - @(2)]/[1 + ¢(2)] is an
impedance function. Since the first / coefficients in the Maclaurin expansion of
@(z) are uniquely determined by those of f(z), the Caratheodory extension
problem can be reformulated as a Schur extension problem, namely to find all
Schur functions whose first p + 1 Maclaurin coeflicients have prescribed
values. On the other hand, a Schur function is best characterized in terms of
its Schur parameters which are generated through the Schur algorithm as fol-
lows. The recurrence formula

o(z) — @)

T pie) o)’ oolz) = @(z) (39)

(ﬂl+l(z) =z
defines for / = 0,1, 2, ... a sequence of Schur functions ¢e(z) = ¢(2), ¢1(2),
@2(z), ... and a sequence of Schur parameters @o() = (1 — co)/(1 + co),
@1(), @2(x), ... whose moduli are all bounded by unity. A remarkable
property of Schur’s algorithm is that the Schur parameters @1(®), @2(®), ...
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of (34) are precisely the reflection coefficients &, ko, ... oCcurring in Levin-
son’s algorithm !2). The connection between Levinson’s algorithm and a par-
ticular type of Darlington synthesis was put forth bv Dewilde, Vieira and Kai-
lath '®). One easily verifies that the first / Schur parameters of ¢(z) are uni-
quely determined by the first / Maclaurin coeflicients of ¢(z) and hence by the
first / Maclaurin coeflicients of f(z). Consequently, the extension problem is
that of finding the set of all Schur functions whose first p + 1 Schur para-
meters have some prescribed values, given by the reflection coefficients &;.

o—{ — ..
wlz) ploo) ,fc0) ¥ (o) 9.2
. ;—’ . _D

w,(z) w,(z) plz)

Fig. 3.

From a circuit theory point of view, the recurrence formula (35) corres-
ponds to the cascade synthesis (fig. 3) of the reflectance ¢(z) by repeated ex-
traction of lossless sections with chain scattering matrices
-t i)

[1 — pi(eo)]? (36)
z7 py(0) 1

The reflection coefficient of the remaining impedance after / such steps is
©:1+1(z). The general solution to Schur’s extension problem is thus given by the
cascade of length p+ 1 where ¢ (), @i(), @2(=), ... @y(=) have the pre-
scribed values and terminated in an arbitrary reflectance @,41(2). In view of
the remarkable correspondance

o) =k (I =1,2,..), (37

between Schur’s and Levinson’s algorithm it is not surprising that the input
impedance of this cascade can be expressed as given by (20) in terms of the
polynomials A,(z) and R,(z) generated by the Levinson recurrences (6), (17).
For the AR model, one has ¢,.1(z) = 0 which means that the cascade is ter-
minated in a unit resistor. On the other hand, a reactance of degree p + 1 is
generated when the cascade is either short-circuited (¢,41(z) = 1) or open-cir-
cuited (pp+1(z) = —1) at the far end and this situation corresponds to Sagaya-
ma’s composite sinusoidal wave model.
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6. Connection with Gauss’s quadrature formula

It is apparent from the preceding sections that the orthogonal polynomials
on the unit circle are basic for the solution of the trigonometric moment
problem. A similar role is played by the orthogonal polynomials on the real
axis in the power moment problem and the Gauss quadrature formula. This
section shows how the trigonometric moment problem can be converted into a
power moment problem, an approach which, interestingly, is close to Sagaya-
ma’s own presentation *) of the composite sinusoidal wave model (24). It turns
out that there exists a solution with an arbitrary fixed value of @,,1, which is
not surprising in view of the available number of parameters. For simplicity
we shall take ©,,; = 0 which corresponds exactly to Sagayama’s formulation
of the problem.

The purpose of this section is to show that Sagavama’s solution (24) to the
partial trigonometric moment problem can be reduced to a classical solution
of the partial power moment problem !?). Normalizing the angles @, in (24) by
putting &,.; = 0, we get by subtraction the representation

)
co—cr= ) ou(l — e (38)
k=1

for le[—p, p]. Let u(®) denote some non-decreasing measure satisfying the
trigonometric moment problem (12), for instance the solution provided by the
AR model. Then (38) is equivalent to the condition

1

T P
5 [ x(e©) du(®) = Y. oi (&) (39)

k=1
for all trigonometric polynomials x(z) of support [ 1p,p] and satisfying
x(1) = 0. Condition (39) is now easily reducible to a power moment problem
via the classical change of variable

o =1

€ = T 40

ir+1 (40)

which transforms the unit circle into the imaginary axis. Indeed, with the
measure ¢(®), the numbers g4, @, and the trigonometric polynomial x(z), lét
us associate a set of corresponding quantities defined bv

du(2 arc cotg ) - ot op
e R

du*(1) = (41)

5 Ok x(fy — 2y i/l)
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where the constraint x(1) = 0 implies degx*(s) - 2p - 1. With these defini-
tions condition (39) requires that numbers o, # (A = 1,2, ..., p) should be
found which satisfy the Gauss-Jacobi quadrature formula !2)

+ »
[ xx@0 du*(t) = ). ok x*() (43)
—® k=1

for all polynomials x*(¢) of degree smaller than or ¢qual to 2p — 1. The solu-
tion to this problem is unique and can be expressed in terms of orthogonal
polynomials q/*(t) of degree /1 =0,1,2,...,p relative to the measure (*(z).
The 1 are the zeros of the orthogonal polynomial ¢, (1) {which are known to
be real and distinct) and the o¢ are the Christoffel numbers given by

1

[ @] (44)
=0

The solution to Sagayama’s representation problem follows then from (41),
(42) as
“@ = 2arccotg ty, Ok = on(l - 1Q)P (45)

»
fork=1,2,...,pand @p+1 results from ¢y = Z O+ + Op+1. The fact that 9,41
k=1

is positive can easily be proved.
It is known '2) that the orthogonal polynomial ¢, (1) = Z qnit' is obtained
=0
as the solution of a linear system constructed on the Hankel matrix

% * Jk
Co C1 .o Cp
* * *
C1 Co e Cpyl
H,=| . , (46)
* * ¥
Cp Cp+1 o Cop

where cf is the k~th power moment of the measure u*(¢)

+ 0
= t*dur. 47)
More precisely, the vector g = [0, @1, . ... g )" is the last column of H}'
and hence satisfies the equation
H,qf =10,0,...,0,1]". (48)

Let us now check how the solution to Sagayama’s problem obtained via (45)
and (48) is consistent with the result derived in sec. 4 in the framework of
Toeplitz systems. The elements of C, are the trigonometric moments defined
in (12) which, in view of (40) and (41), can be rewritten as
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+

a={(=D" [/ (0 +i?" (0 — i)y’ du*z) (49)

for /e [—p, p] thereby showing that the ¢, are some linear combinations of
the ¢/ . The precise form of this relation is based on the expansion

(12 + 27" =Y vczh, (50)
k=0

where
w,k:;(l)f<j’_><i’j). 51)

Let us define now the diagonal matrix A = diag(l1,1, -~ 1,...,1”) and the
matrix V = [v,«:0 < L,k < p] which often occurs in problems involving the
transformation (40); see e.g. Bauer¢). Using (47), (50) and (51), it appears
that (49) defines C, as a conjunctive transform of H,

Co = (A2 VA)YH(A V' A?). (52)

Let us associate with g5 a vector ¢, defined as
g = Q)PA*VTA g, (53)

which in view of (48) is the solution of the Toeplitz svstem

Coqo=11,1,...,11". (54)
Next, if we build on the elements of ¢, = [gp.0, ¢p.1» - - -+ Gp.p]” @ polynomial
qp(z) = i gp.1z~" one can show by (53) and (50) that, under the transforma-

tion ¢ :IE%tg ©/2, the following identity holds
ap(e79) = (i — 7 (). (55)

Consequently, in view of (45), the numbers e, e=%2, ..., ¢7'% in Sagaya-
ma’s solution are the zeros of the polynomial ¢,(z) built on the solution of
(54). Finally one can check that these numbers, augmented with €®+! = 1, are
the zeros of A,(z) — z=' A,(z). For this purpose, consider the following Toep-
litz system

qp,O 0 Ap,O 1 /{ Tp
_ A 1 1 0

A e A A Y R | (56)
Qoo do-1,p-1 Apyp 1 1 0
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where A =1 @p-1,0 + ... + CpGp-1,p-1. From (56) one immediately derives the

identity
4r(2) = 27" gp1(2) + 05 (A — 1) Aplz) = 0, (57)
p-1

where gp-1(z) = Z gp-1,1z"". Due to the centrosymmetry of C,, polynomials
=0

gp,(z) and g,-:1(z) are self-reciprocal and hence the reciprocal version of (57)
becomes

G(2) — Gp-1(2) + 057 (A — 1) Ap(z) = 0. (58)
Elimination of g,-1(z) between (57) and (58) yields
(I = 27 gp(2) = 0;,°(1 — A) [Ap(2) - 27 Ap(2)], (59)

which proves the assertion.

7. Conclusion

Due to the variety of rational models presently available for spectral estima-
tion and speech production, it is not always clear how seemingly disconnected
methods can lead to equivalent models in terms of power spectrum matching.
The paper has shown that many of these methods can be considered as par-
ticular solutions to a more general mathematical problem. In this framework,
the equivalence becomes obvious and it appears in addition that there exists in
fact an infinite number of models, each corresponding to a different choice for
the Schur function ¢,4:1(z) in (20). It remains an open question whether some
of the ““new’ models offer interesting properties for practical implemen-
tations.

The paper also emphasizes the connection existing between different areas
interest like circuit theory, geophysics, speech processing etc. and shows that
techniques available in one area can be used in an other. In this line, a more
compact and probably more robust computational scheme was derived for the
construction of Sagayama’s composite sinusoidal wave model.

Philips Research Laboratory Brussels, April 1982
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