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Abstract
We study how small perturbations of general matrix polynomials may change their
elementary divisors and minimal indices by constructing the closure hierarchy (strat-
ification) graphs of matrix polynomials’ orbits and bundles. To solve this problem,
we construct the stratification graphs for the first companion Fiedler linearization of
matrix polynomials. Recall that the first companion Fiedler linearization as well as all
the Fiedler linearizations is matrix pencils with particular block structures. Moreover,
we show that the stratification graphs do not depend on the choice of Fiedler lineariza-
tion which means that all the spaces of the matrix polynomial Fiedler linearizations
have the same geometry (topology). This geometry coincides with the geometry of
the space of matrix polynomials. The novel results are illustrated by examples using
the software tool StratiGraph extended with associated new functionality.
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1 Introduction

For a long-time matrix polynomials

P(λ) = λd Ad + · · · + λA1 + A0, Ai ∈ C
m×n, i = 0, . . . , d, and Ad �= 0, (1)

have been important objects to investigate. Due to challenging applications [27,28,37,
41,42], matrix polynomials have received much attention in the last decade, resulting
in rapid developments of corresponding theories [5–7,19,32,37] and computational
techniques [3,27,34,36,39] (see also the recent survey [38]). In a number of cases,
the canonical structure information, i.e. elementary divisors and minimal indices of
the matrix polynomials, are the actual objects of interest. This information is usually
computed via linearizations [3], in particular, Fiedler linearizations [1], i.e. matrix
polynomials of degree d = 1 which are matrix pencils with a particular block struc-
ture. However, the canonical structure information is sensitive to perturbations in
the coefficient matrices of the polynomial. How small perturbations may change the
canonical structure information can be studied through constructing the orbit and
bundle closure hierarchy (or stratification) graphs. Each node of such a graph repre-
sents a set of matrix polynomials with a certain canonical structure information, and
there is an edge from one node to another if we can perturb any matrix polynomial
associated with the first node such that its canonical structure information becomes
equal to one of the matrix polynomials associated with the second node. The theory
to compute and construct the stratification graphs is already known for several matrix
problems: matrices under similarity (i.e. Jordan canonical form) [4,21,35,40], matrix
pencils (i.e. Kronecker canonical form) [21], skew-symmetric matrix pencils [16],
controllability and observability pairs [22], state-space system pencils [15], as well as
full (normal)-rank matrix polynomials [32]. Many of these results are already imple-
mented in StratiGraph [29,31,33], which is a java-based tool developed to construct
and visualize such closure hierarchy graphs. The Matrix Canonical Structure (MCS)
Toolbox for MATLAB [14,29,31] was also developed for simplifying the work with
the matrices in canonical forms and connecting MATLABwith StratiGraph. For more
details on each of these cases, we recommend to check the corresponding papers and
their references; some control applications are discussed in [33].

In this paper, we study how small perturbations of general matrix polynomials,
with rectangular matrix coefficients, may change their elementary divisors and min-
imal indices by constructing the closure hierarchy graphs of the orbits and bundles
of matrix polynomial and their Fiedler linearizations. Our new results generalize and
extend results from [32], where the study concerned full-rank matrix polynomials.
Other recent results that are crucial for this study include necessary and sufficient
conditions for a matrix polynomial with certain degree and canonical structure infor-
mation to exist [7]; the strong linearization templates and how the minimal indices of
such linearizations are related to the minimal indices of the polynomials [6]; the cor-
respondence between perturbations of the linearizations and perturbations of matrix
polynomials [32]; as well as the algorithm for the stratification of general matrix pen-
cils [21]. In particular, the results in [6] and [7] allow us to consider polynomials with
both left and right minimal indices, in contrast to [32] (recall that full-rank matrix
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polynomials may have either left or right minimal indices, not both types); as well
as to use any Fiedler linearization in contrast to the fixed choice of either the first or
second companion forms (depending on which type of the minimal indices is present).

The rest of the paper is organized as follows. Sections 2–5 present necessary back-
ground to matrix polynomials, their linearizations and perturbations, and to matrix
pencils. Codimension computation is presented in Sect. 6. Section 7 is devoted to
stratifications of Fiedler linearizations ofmatrix polynomials. Section 7.1 recalls cover
relations for complete eigenstructures, a concept frequently used in the results that fol-
low on neighbours in the stratifications. Sections 7.2 and 7.3 provide the results for
neighbouring orbits and bundles, respectively. All results are illustratedwith examples.
Finally, in Sect. 8 stratification results from Sect. 7 are expressed in terms of matrix
polynomial invariants. Altogether, we complete the stratification theory for general
matrix polynomials and the associated Fiedler linearizations.

All matrices that we consider have complex entries.

2 Matrix Polynomials with Prescribed Invariants

In this section, we consider matrix polynomials (1) and recall the definitions of the
canonical structure information for matrix polynomials, i.e. the elementary divisors
andminimal indices, and state Theorem 2 (proven in [7]) that explainswhich canonical
structure information a matrix polynomial may have.

Definition 1 Let P(λ) and Q(λ) be two m × n matrix polynomials. Then, P(λ) and
Q(λ) are unimodulary equivalent if there exist two unimodular matrix polynomials
U (λ) and V (λ) (i.e. detU (λ), det V (λ) ∈ C\{0}) such that

U (λ)P(λ)V (λ) = Q(λ).

The transformation P(λ) �→ U (λ)P(λ)V (λ) is called a unimodular equivalence
transformation, and the canonical form with respect to such transformations is the
Smith form [24], recalled in the following theorem.

Theorem 1 [24] Let P(λ) be an m × n matrix polynomial over C. Then, there exists
an r ∈ N, r � min{m, n} and unimodular matrix polynomials U (λ) and V (λ) over
C such that

U (λ)P(λ)V (λ) =

⎡
⎢⎢⎢⎣

g1(λ) 0
. . . 0r×(n−r)

0 gr (λ)

0(m−r)×r 0(m−r)×(n−r)

⎤
⎥⎥⎥⎦ , (2)

where g j (λ) is monic for j = 1, . . . , r and g j (λ) divides g j+1(λ) for j = 1, . . . , r−1.
Moreover, the canonical form (2) is unique.

The integer r is the (normal) rank of the matrix polynomial P(λ), and P(λ) is called
full rank if r = min{m, n}.
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Each g j (λ) is called an invariant polynomial of P(λ) and can be uniquely factored
as

g j (λ) = (λ − α1)
δ j1 · (λ − α2)

δ j2 · . . . · (λ − αl j )
δ jl j ,

where l j � 0, δ j1, . . . , δ jl j > 0 are integers. If l j = 0, then g j (λ) = 1. The numbers
α1, . . . , αl j ∈ C are finite eigenvalues (zeros) of P(λ). The elementary divisors of
P(λ) associated with the finite eigenvalue αk is the collection of factors (λ − αk)

δ jk ,
including repetitions.

We say that λ = ∞ is an eigenvalue of the matrix polynomial P(λ) if zero is an
eigenvalue of rev P(λ) := λd P(1/λ). The elementary divisors λγk , γk > 0 for the
zero eigenvalue of rev P(λ) are the elementary divisors associated with ∞ of P(λ).

Define the left and right null-spaces, over the field of rational functions C(λ), for
an m × n matrix polynomial P(λ) as follows, e.g. see [7]:

Nleft(P) := {y(λ)T ∈ C(λ)1×m : y(λ)T P(λ) = 01×m},
Nright(P) := {x(λ) ∈ C(λ)n×1 : P(λ)x(λ) = 0n×1}.

Every subspace V of the vector space C(λ)n has bases consisting entirely of vector
polynomials. Recall that a minimal basis of V is a basis of V consisting of vector
polynomials whose sum of degrees is minimal among all bases of V consisting of
vector polynomials. The ordered list of degrees of the vector polynomials in any
minimal basis of V is always the same. These degrees are called the minimal indices
ofV .We use the concepts above in the context ofmatrix polynomials as follows: let the
sets {y1(λ)T , . . . , ym−r (λ)T } and {x1(λ), . . . , xn−r (λ)} be minimal bases ofNleft(P)

and Nright(P), respectively, ordered so that 0 � deg(y1) � . . . � deg(ym−r ) and
0 � deg(x1) � . . . � deg(xn−r ). Let ηk = deg(yk) for i = 1, . . . ,m − r and
εk = deg(xk) for i = 1, . . . , n − r . Then, the scalars 0 � η1 � η2 � . . . � ηm−r

and 0 � ε1 � ε2 � . . . � εn−r are, respectively, the left and right minimal indices
of P(λ).

To understand which combinations of the elementary divisors and minimal indices
a matrix polynomial of certain degree may have, we use the following theorem.

Theorem 2 [7] Let m, n, d, and r, such that r � min{m, n} be given positive integers.
Let g1(λ), g2(λ), . . . , gr (λ) be r arbitrarily monic polynomials with coefficients in C

and with respective degrees δ1, δ2, . . . , δr , such that g j (λ) divides g j+1(λ) for j =
1, . . . , r − 1. Let 0 � γ1 � γ2 � . . . � γr , 0 � ε1 � ε2 � . . . � εn−r and 0 � η1 �
η2 � . . . � ηm−r be given lists of integers. There exists an m × n matrix polynomial
P(λ) with rank r , degree d, invariant polynomials g1(λ), g2(λ), . . . , gr (λ), partial
multiplicities at ∞ equal to γ1, γ2, . . . , γr , and with right and left minimal indices
equal to ε1, ε2, . . . , εn−r and η1, η2, . . . , ηm−r , respectively, if and only if

r∑
j=1

δ j +
r∑
j=1

γ j +
n−r∑
j=1

ε j +
m−r∑
j=1

η j = dr (index sum identity) (3)

holds and γ1 = 0.

123



Foundations of Computational Mathematics (2020) 20:423–450 427

The condition γ1 = 0 guarantees that Ad in (1) is a nonzero m × n matrix.

3 Fiedler Linearizations of Matrix Polynomials

Let us first define Fiedler linearizations [1], with all the details, for the square matrix
polynomials (m = n). Let G(λ) = ∑d

k=0 λk Ak be an n×n matrix polynomial. Given
any bijection σ : {0, 1, . . . , d − 1} → {1, . . . , d} with inverse σ−1, the Fiedler pencil
F σ

G(λ) of G(λ) associated with σ is the dn × dn matrix pencil

F σ
G(λ) := λMd − Mσ−1(1)Mσ−1(2) . . . Mσ−1(d), (4)

where

Md :=
[
Ad

I(d−1)n

]
, M0 :=

[
I(d−1)n

−A0

]
,

and

Mk :=

⎡
⎢⎢⎣
I(d−k−1)n

−Ak In
In 0

I(k−1)n

⎤
⎥⎥⎦ , k = 1, . . . , d − 1.

Note that σ(k) describes the position of the factor Mk in the product defining the
zero-degree term in (4), i.e. σ(k) = j means that Mk is the j th factor in the product.
All the non-specified blocks of Mk matrices are conforming size submatrices with
zero entries.

By using bijections σ , we can construct Fiedler linearizations via a “multiplication
free” algorithm (i.e. by avoiding multiplying the matrices Mk) [6]. The advantage of
such an algorithm is that it can be adapted to rectangular matrix polynomials. Note
that the “shapes” of the linearizations (i.e. positions of the coefficient matrices in
the linearization pencils) for the rectangular matrix polynomials are the same as for
the square matrix polynomials [6]. Moreover, different linearizations of rectangular
matrix polynomials have different sizes, see Example 3.

Likely, the best known Fiedler linearizations are the first and second (a.k.a. Frobe-
nius) companion forms. For an m × n matrix polynomial P(λ) of degree d, they can
be expressed as the matrix pencils

C 1
P(λ) = λ

⎡
⎢⎢⎢⎣

Ad

In
. . .

In

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

Ad−1 Ad−2 . . . A0
−In 0 . . . 0

. . .
. . .

...

0 −In 0

⎤
⎥⎥⎥⎦ (5)
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and

C 2
P(λ) = λ

⎡
⎢⎢⎢⎣

Ad

Im
. . .

Im

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

Ad−1 −Im 0

Ad−2 0
. . .

...
...

. . . −Im
A0 0 . . . 0

⎤
⎥⎥⎥⎥⎦

(6)

of size (m + n(d − 1)) × nd and md × (n + m(d − 1)), respectively.
Fiedler linearizations preserve finite and infinite elementary divisors but do not, in

general, preserve the left and right minimal indices (in some cases, theminimal indices
may also be preserved, e.g. for full-rank matrix polynomials [32]). In Theorem 3,
proven in [6], we recall the relation between the minimal indices of polynomials
and their Fiedler linearizations; see also [5] for the similar results on square matrix
polynomials.

We say that a bijection σ : {0, 1, . . . , d − 1} → {1, . . . , d} has a consecution at
k if σ(k) < σ(k + 1), and that σ has an inversion at k if σ(k) > σ(k + 1), where
k = 0, . . . , d − 2. Define i(σ ) and c(σ ) to be the total numbers of inversions and
consecutions in σ , respectively. Note that

i(σ ) + c(σ ) = d − 1 (7)

for every σ .

Theorem 3 [6] Let P(λ) be anm×n matrix polynomial of degree d � 2, and letF σ
P(λ)

be its Fiedler linearization. If 0 � ε1 � ε2 � . . . � εs and 0 � η1 � η2 � . . . � ηt
are the right and left minimal indices of P(λ), then

0 � ε1 + i(σ ) � ε2 + i(σ ) � . . . � εs + i(σ ), and

0 � η1 + c(σ ) � η2 + c(σ ) � . . . � ηt + c(σ )

are the right and left minimal indices of F σ
P(λ).

Note also that the Fiedler linearization F σ
P(λ) has m c(σ ) + n i(σ ) + m rows and

m c(σ ) + n i(σ ) + n columns.

Remark 1 Theorem 3 can straightforwardly be applied to the first and second compan-
ion forms. For the first companion form C 1

P(λ), we have i(σ ) = d − 1 and c(σ ) = 0,

and for the second companion form C 2
P(λ), we have i(σ ) = 0 and c(σ ) = d − 1.

Theorems 2 and 3 allow us to describe all the possible combinations of elementary
divisors and minimal indices that the Fiedler linearizations of matrix polynomials
of certain degree may have. In other words, we can identify those orbits of general
matrix pencils which contain pencils that are the linearizations of some m × n matrix
polynomials of certain degree.
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4 Perturbations of Matrix Polynomials

Recall that for every matrix X = [xi j ], its Frobenius norm is given by ||X || :=
||X ||F =

(∑
i, j |xi j |2

) 1
2
. Define a norm of a matrix polynomial P(λ) = ∑d

k=0 λk Ak

as follows

||P(λ)|| :=
(

d∑
k=0

||Ak ||2F
) 1

2

.

Definition 2 Let P(λ) and E(λ) be two m × n matrix polynomials, with deg P(λ) ≥
deg E(λ). A matrix polynomial P̃(λ) := P(λ) + E(λ) is called a perturbation of an
m × n matrix polynomial P(λ).

Note that, in this paper we are interested in small perturbations, i.e. ||P̃(λ) − P(λ)||
is small compared to ||P(λ)|| (or equivalently ||E(λ)|| << ||P(λ)||). Moreover,
we say that there exists an arbitrarily small perturbation P̃(λ) of P(λ) that satisfies
a certain property, if for every ε > 0 there exists a perturbation P̃(λ) such that
||P̃(λ) − P(λ)|| � ε, and P̃(λ) satisfies the same property.

We remark that Definition 2 is also applicable to matrix pencils and matrices (they
are polynomials of degrees one and zero, respectively).

Theorem 4 (proven in [32]) ensures that each perturbation of the linearization of
an m × n matrix polynomial of degree d

˜C 1
P(λ) := λ

⎡
⎢⎢⎢⎣

Ad

In
. . .

In

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

Ad−1 Ad−2 . . . A0
−In 0 . . . 0

. . .
. . .

...

0 −In 0

⎤
⎥⎥⎥⎦

+ λ

⎡
⎢⎢⎢⎢⎢⎣

E11 E12 E13 . . . E1d
E21 E22 E23 . . . E2d
E31 E32 E33 . . . E3d
...

...
...

. . .
...

Ed1 Ed2 Ed3 . . . Edd

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

E ′
11 E ′

12 E ′
13 . . . E ′

1d
E ′
21 E ′

22 E ′
23 . . . E ′

2d
E ′
31 E ′

32 E ′
33 . . . E ′

3d
...

...
...

. . .
...

E ′
d1 E ′

d2 E ′
d3 . . . E ′

dd

⎤
⎥⎥⎥⎥⎥⎦

(8)
can be smoothly reduced by strict equivalence to the one in which only the blocks
Ai , i = 0, 1, . . . are perturbed
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C 1
˜P(λ)

= λ

⎡
⎢⎢⎢⎣

Ad

In
. . .

In

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

Ad−1 Ad−2 . . . A0
−In 0 . . . 0

. . .
. . .

...

0 −In 0

⎤
⎥⎥⎥⎦

+ λ

⎡
⎢⎢⎢⎣

Fd 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

Fd−1 Fd−2 . . . F0
0 0 . . . 0
...

...
...

0 0 . . . 0

⎤
⎥⎥⎥⎦ .

(9)

We refer to (8) as a perturbation of the linearization and to (9) as the linearization
of a perturbed matrix polynomial. The relation between these two types of perturba-
tions is reflected in the following theorem, which is a slightly adapted formulation of
Theorem 2.5 from [10], see also Theorem 5.21 in [19], as well as [32,43].

Theorem 4 Let P(λ) be an m × n matrix polynomial of degree d, and let C 1
P(λ) be its

first companion form. If ˜C 1
P(λ) is a perturbation of C 1

P(λ) such that

|| ˜C 1
P(λ) − C 1

P(λ)|| <
π

12 d3/2
,

then ˜C 1
P(λ) is strictly equivalent to a pencil C 1

˜P(λ)
, i.e. there exist two non-singular

matrices X and Y (they are small perturbations of the identity matrices) such that

X · ˜C 1
P(λ) · Y = C 1

˜P(λ)
,

and moreover,

||C 1
˜P(λ)

− C 1
P(λ)|| ≤ 4 d (1 + ||P(λ)||F ) || ˜C 1

P(λ) − C 1
P(λ)|| .

The following corollary toTheorem4shows that the canonical structure information
of all pencils that are attainable by perturbations of the form (8) are also attainable by
perturbations of the form (9).

Corollary 1 Let P(λ) and Q(λ) be two m × n matrix polynomials of degree d, and
C 1
P(λ) and C 1

Q(λ) be their first companion linearizations. There exist an arbitrarily

small perturbation of P(λ), denoted P̃(λ), and non-singular matrices U , V , such that

U · C 1
˜P(λ)

· V = C 1
Q(λ), (10)

if and only if there exist an arbitrarily small perturbation of the linearization of the

matrix polynomial P(λ), ˜C 1
P(λ), and non-singular matrices U ′, V ′, such that

U ′ · ˜C 1
P(λ) · V ′ = C 1

Q(λ). (11)
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Proof By Theorem 4, we have X · ˜C 1
P(λ) · Y = C 1

˜P(λ)
and substituting ˜C 1

P(λ) in (11)

we obtain U ′ · X−1 · C 1
˜P(λ)

· Y−1 · V ′ = C 1
Q(λ) which is (10) with U = U ′ · X−1 and

V = Y−1 · V ′. The “vice versa” part is obvious. 
�
An alternative way to derive the results of Corollary 1 is to use the theory of versal

deformations [2,12,13] as it was done for state-space system pencils in [15] and skew-
symmetric polynomials in [9]. See also Theorem9,which generalizes the above results
for any Fiedler linearization.

5 Matrix Pencils

We recall the Kronecker canonical form of general matrix pencils A − λB (a matrix
polynomial of degree one) under strict equivalence.

For each k = 1, 2, . . ., define the k × k matrices

Jk(μ) :=

⎡
⎢⎢⎢⎢⎣

μ 1

μ
.. .

. . . 1
μ

⎤
⎥⎥⎥⎥⎦

, Ik :=

⎡
⎢⎢⎢⎣

1
1

. . .

1

⎤
⎥⎥⎥⎦ ,

where μ ∈ C, and for each k = 0, 1, . . ., define the k × (k + 1) matrices

Fk :=
⎡
⎢⎣
0 1

. . .
. . .

0 1

⎤
⎥⎦ , Gk :=

⎡
⎢⎣
1 0

. . .
. . .

1 0

⎤
⎥⎦ .

All non-specified entries of Jk(μ), Ik, Fk, and Gk are zeros.
An m × n matrix pencil A− λB is called strictly equivalent to C − λD if there are

non-singular matrices Q and R such that Q−1AR = C and Q−1BR = D. The set
of matrix pencils strictly equivalent to A − λB forms a manifold in the complex 2mn
dimensional space. This manifold is the orbit of A−λB under the action of the group
GLm(C) × GLn(C) on the space of all matrix pencils by strict equivalence:

Oe
A−λB =

{
Q−1(A − λB)R : Q ∈ GLm(C), R ∈ GLn(C)

}
. (12)

The dimension of Oe
A−λB is the dimension of its tangent space

Te
A−λB := {(X A − AY ) − λ(XB − BY ) : X ∈ C

m×m,Y ∈ C
n×n}

at the point A−λB, denoted dim Te
A−λB . The orthogonal complement to Te

A−λB , with
respect to the Frobenius inner product

〈A − λB,C − λD〉 = trace(AC∗ + BD∗), (13)
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is called the normal space to this orbit. The dimension of the normal space is the
codimension of Oe

A−λB , denoted cod Oe
A−λB (cod Oe

A−λB = 2mn − dimOe
A−λB).

Explicit expressions for the codimensions of strict equivalence orbits are presented in
[8].

Theorem 5 [24, Sect. XII, 4] Each m × n matrix pencil A− λB is strictly equivalent
to a direct sum, uniquely determined up to permutation of summands, of pencils of the
form

E j (μ) := J j (μ) − λI j , in which μ ∈ C, E j (∞) := I j − λJ j (0),

Lk := Fk − λGk, and LT
k := FT

k − λGT
k ,

where j � 1 and k � 0. The j’s and k’s may be different in each block.

The canonical form defined by the E j , Lk and LT
k blocks in Theorem 5 is known as

the Kronecker canonical form (KCF) of the pencil A − λB. The blocks E j (μ) (with
up to min{m, n} different eigenvalues μi ) and E j (∞) correspond to the finite and
infinite eigenvalues, respectively, and altogether form the regular part of A−λB. The
blocks Lk and LT

k correspond to the right (column) and left (row) minimal indices,
respectively, and form the singular part of the matrix pencil.

A bundleBe
A−λB of amatrix pencil A−λB is a union of orbits Oe

A−λB with the same
singular structures and the same regular structures, except that the distinct eigenvalues
may be different.

6 Orbits of Linearizations of Matrix Polynomials and Their
Codimensions

Let P(λ)be anm×nmatrix polynomial of degreed andC1
P(λ) be its (m+n(d−1))×nd

first companion form. The generalized Sylvester space at P(λ) is defined as (see [32]
and references therein)

GSYL1
m×n = {C 1

P(λ) : P(λ) are m × n matrix polynomials}, (14)

whereGSYL1
m×n is a (d+1)mn-dimensional affine subspace in the (2d2n2+2dn(m−

n))-dimensional pencil space; each fixed element in the linearization decreases the
degree of freedom by one. If there is no risk of confusion, we write GSYL instead of
GSYL1

m×n . We define the orbit of linearizations of matrix polynomials as

OC 1
P(λ)

=
{
(Q−1C 1

P(λ)R) ∈ GSYL1
m×n : Q ∈ GLm+n(d−1)(C), R ∈ GLnd(C)

}
.

(15)
Note that all the elements of OC 1

P(λ)
have the block structure of C 1

P(λ), see (5). By [32,

Lemma 9.2], OC 1
P(λ)

is a manifold in the matrix pencil space.

Codimensions of this manifold are also of our interest, since they define the level of
the orbit in the stratification graph: an orbit has only orbits with higher codimensions
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in its closure. Recall that dim Oe
C 1
P(λ)

:= dim Te
C 1
P(λ)

and cod Oe
C 1
P(λ)

:= dimNe
C 1
P(λ)

,

where N denotes the normal space (see Sect. 5). Define

dimOC 1
P(λ)

:= dim(GSYL∩Te
C 1
P(λ)

). (16)

The following lemma shows that the codimensions of OC 1
P(λ)

and Oe
C 1
P(λ)

are equal; the

latter is computed in [8] (see also [20,25]) and implemented in theMCS Toolbox [31].
We also refer to [32, Section 9] for a slightly different explanation of the analogous
results.

Lemma 1 Let C 1
P(λ) be the first companion form for the matrix polynomial P(λ), then

cod OC 1
P(λ)

= cod Oe
C 1
P(λ)

.

Proof A general matrix pencil of the same size as C 1
P(λ) belongs to the pencil space

P := C
(m+n(d−1))×nd × C

(m+n(d−1))×nd . Also, recall that GSYL in (14) is the
subspace of all first companion forms ofm×nmatrix polynomials. Following the argu-
ments in [32,43], GSYL is an affine subspace inP that together with the tangent space
Te
C 1
P(λ)

spans the completeP [32, proof of Lemma 9.2], and since GSYL∩Te
C 1
P(λ)

�= ∅

dim(P) = dim Te
C 1
P(λ)

+ dimGSYL− dim(GSYL∩Te
C 1
P(λ)

), (17)

see also [23, Section 2] for details. Knowing the dimensions of the tangent and the
normal spaces and using (16) and (17), we finally get

cod Oe
C 1
P(λ)

= dim(P) − dimOe
C 1
P(λ)

= dim Te
C 1
P(λ)

+ dimGSYL− dim(GSYL∩Te
C 1
P(λ)

) − dim Te
C 1
P(λ)

= dimGSYL− dimOC 1
P(λ)

= cod OC 1
P(λ)

.


�
We remark that there are other examples where codimension equalities similar to

the one in Lemma 1 do hold [22,32] as well as examples where they are not valid
[15,17,18].

7 Stratifications of Matrix Polynomial Linearizations

In this section, we start by presenting an algorithm for computing the stratification of
the Fiedler linearizations of general m × n matrix polynomials (1). The algorithm
relies on the results presented in Sects. 4–5. Section 7.1 introduces cover relations
for complete eigenstructures. Based on these concepts, Sect. 7.2 presents the results for
orbit stratifications. Similar results for bundle stratifications are presented in Sect. 7.3.
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Stratifications or closure hierarchy graphs for orbits of the matrix polynomial lin-
earizations are defined as follows. Each node (vertex) of the graph represents the orbit
of a matrix polynomial linearization, and each edge represents a cover relation, i.e.
there is an upward path from a node associated withF σ

P(λ) to a node associated with
F σ

Q(λ) if and only if P(λ) can be transformed by an arbitrarily small perturbation to a
matrix polynomial whose canonical structure information coincides with the one for
Q(λ).

The closure hierarchy graph obtained by the following algorithm is the orbit strat-
ification of the first companion form of m × n matrix polynomials of degree d.

Algorithm 6 Steps 1–3 produce the orbit stratification of the first companion lineariza-
tions of m × n matrix polynomials of degree d.

Step 1. Construct the stratification of (m+n(d −1))×nd matrix pencil orbits under
strict equivalence [21].

Step 2. Extract from the stratification obtained in Step 1 the orbits (nodes) that cor-
respond to the first companion linearizations of m × n matrix polynomials of
degree d (using Theorems 2 and 3, as well as Remark 1).

Step 3. Put an edge between two nodes obtained in Step 2 if there is an upward path
between these nodes in the graph obtained in Step 1 and do not put an edge
between these nodes otherwise (justified by Theorem 4 and Corollary 1).

Theorem 7 The stratification graphs for a matrix polynomial P(λ) and any of its
Fiedler linearizationsF σ

P(λ) are the same, up to the fact that the nodes in the graph for
the Fiedler linearization represent complete eigenstructures with the minimal indices
“shifted”, see Theorem 3.

Proof We take the stratification graph for C 1
P(λ) as a starting point since we know how

to construct it using Algorithm 6. Let also P1(λ) and P2(λ) be matrix polynomials
belonging to two different orbits in this stratification graph. If there is an arrow from
C 1
P1(λ) to C

1
P2(λ) in the stratification of the first companion forms, then P1(λ) + E(λ),

for some small perturbation E(λ), and P2(λ) have the same canonical structure infor-
mation. Therefore, there is an arrow from P1(λ) and P2(λ) in the stratification of
matrix polynomials. Moreover, for every σ the pencils F σ

P1(λ)+E(λ) and F σ
P2(λ) have

the same canonical structure information, and thus, there is an arrow from F σ
P1(λ) to

F σ
P2(λ) in the stratifications of all the Fiedler linearizations of P1(λ) and P2(λ). 
�

Remark 2 Theorem 7 does not contradict the fact that for a particular matrix polyno-
mial, some linerizations may be better conditioned, more favourable with respect to
backward errors, and/or structure preserving, and therefore, the choice of linearization
is typically application driven.

7.1 Cover Relation for Complete Eigenstructures

A sequence of integers N = (n1, n2, n3, . . . ) such that n1 + n2 + n3 + · · · =
n and n1 � n2 � . . . � 0 is called an integer partition of n (for more details
and references see [21]). For any a ∈ Z, we define N + a as the integer partition
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Fig. 1 To the partition (4, 3, 2, 1, 1), on the left, we apply two minimal leftward coin moves: first (i) is a
move of a dark grey coin one column leftward, and then, (ii) is a move of a light grey coin one row upward.
Note that monotonicity must be preserved. The resulting partition is (4, 4, 2, 1), on the right

(n1 + a, n2 + a, n3 + a, . . . ). The additive union of two integer partitionsN andM
is defined asK = N

⊎
M where all the elements fromN andM are ordered such

thatK is monotonically non-increasing (i.e.K is a multiset sum ofN andM , see,
e.g. [26, Chap. 1.2.4], ordered non-increasingly). For example, if N = (3, 3, 1) and
M = (7, 3, 2, 2), then K = N

⊎
M = (7, 3, 3, 3, 2, 2, 1). We write N � M if

and only if n1 + n2 +· · ·+ ni � m1 +m2 +· · ·+mi , for i � 1. The set of all integer
partitions forms a poset (even a lattice) with respect to the order “�”.

With every matrix pencilW ≡ A−λB (with eigenvalues μi ∈ C∪{∞}), we asso-
ciate the set of integer partitions R(W ),L (W ), and {Jμi (W ) : j = 1, . . . , q, μi ∈
C ∪ {∞}}, where q is the number of distinct eigenvalues of W (e.g. see [21]). Alto-
gether, these partitions, known as the Weyr characteristics, are constructed as follows:

– For each distinctμi , we haveJμi (W ) = ( jμi
1 , jμi

2 , . . . ), where jμi
k is the number

of Jordan blocks of size δi j greater than or equal to k (the position numeration
starting from 1).

– R(W ) = (r0, r1, . . . ), where rk is the number of L (right singular, see Theorem 5)
blockswith the indices εi greater thanor equal to k (the position numeration starting
from 0).

– L (W ) = (l0, l1, . . . ), where lk is the number of LT (left singular, see Theorem 5)
blocks with the indices ηi greater than or equal to k (the position numeration
starting from 0).

Example 1 Let W = 2E3(μ1) ⊕ E1(μ1) ⊕ 2E2(∞) ⊕ L4 ⊕ L1 ⊕ LT
1 be an 18 × 19

matrix pencil in KCF. The associated partitions are:

Jμ1(W ) = (3, 2, 2), J∞(W ) = (2, 2),

R(W ) = (2, 2, 1, 1, 1), L (W ) = (1, 1).

An integer partition N = (n1, n2, n3, . . . ) can also be represented by n piles of
coins, where the first pile has n1 coins, the second n2 coins and so on. Moving one
coin one column rightwards or one row downwards in the integer partition N , and
keepingN monotonically non-increasing, is called a minimum rightward coin move.
Similarly, moving one coin one column leftwards or one row upwards in the integer
partition N , and keeping N monotonically non-increasing, is called a minimum
leftward coin move. These two types of coin moves are defined in [21], see also Fig. 1.
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By X we denote the closure of a set X in the Euclidean topology. For a matrix
polynomial P(λ), define OF σ

P(λ)
to be a set of matrix pencils strictly equivalent to

F σ
P(λ) and with the same block structure asF σ

P(λ) (this definition is analogous to the

definition of OC 1
P(λ)

for the first companion linearization C 1
P(λ)). We say that the orbit

OF σ
P1(λ)

is covered by OF σ
P2(λ)

if and only if OF σ
P2(λ)

⊃ OF σ
P1(λ)

and there exists no

orbit OF σ
Q(λ)

such that OF σ
P2(λ)

⊃ OF σ
Q(λ)

and OF σ
Q(λ)

⊃ OF σ
P1(λ)

; or equivalently, if

and only if there is an edge from OF σ
P1(λ)

to OF σ
P2(λ)

in the orbit stratification (OF σ
P2(λ)

is higher up in the graph).

7.2 Neighbouring Orbits in the Stratification

By representing the canonical structure information as integer partitions, we can
express the cover relations between two orbits by utilizing minimal coin moves and
combinatorial rules on these integer partitions.

In Theorem 8, the rules are formulated for the first companion form C 1
P(λ), where

OC 1
P(λ)

is defined as in (15). Moreover, in Corollary 2 we show that these rules are

actually the same for any Fiedler linearization F σ
P(λ). See also Sect. 8 where the

stratification rules for matrix polynomial invariants are presented.

Theorem 8 (Orbit upward rules—matrix polynomial linearizations) Let P1(λ) and
P2(λ) be two m × n matrix polynomials of degree d with the corresponding Fiedler
linearizations C 1

P1(λ) and C 1
P2(λ), respectively.

The orbit OC 1
P1(λ)

is covered by OC 1
P2(λ)

if and only if the canonical structure

information of C 1
P2(λ) can be obtained by applying one of the rules below to the

structure integer partitions representing the canonical structure information ofC 1
P1(λ),

(here μi ∈ C ∪ {∞}):
(a) Minimum leftward coin move in R (orL ).1

(b) IfR (orL ) is non-empty and the rightmost column in anyJμi is one single coin,
move that coin to a new rightmost column of R (orL ).

(c) Minimum rightward coin move in any Jμi .
(d) If bothR andL are non-empty, Let k denote the total number of coins in the longest

(= lowest) rows from bothR andL together. Remove these k coins, subtract one
coin from the set and distribute k − 1 coins as follows. First distribute one coin
to each nonzero column in all existing Jμi . The remaining coins are distributed
among new rightmost columns, with one coin per column to any Jμi which may
be empty initially (i.e. new partitions for new eigenvalues can be created).2,3

Proof We first show that applying any of the rules (a)–(d) to the structure integer
partitions of C 1

P1(λ) for an m × n matrix polynomial P1(λ) of degree d, there exits

1 The rule is not allowed to do coin moves that affect r0 or l0 (first column in R orL , respectively).
2 If μi = ∞ for some i , then j

μi
1 (first column in Jμi ) has to remain strictly less than the rank of

the corresponding matrix polynomial (this restrict the matrix polynomials to those with a nonzero leading
coefficient matrix).
3 Cannot be applied if the total number of nonzero columns of all Jμi is greater than k − 1.
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an m × n matrix polynomial P2(λ) of degree d such that C 1
P2(λ) has the obtained

new partitions. We prove the existence of such polynomial P2(λ) by checking that
the associated invariants satisfy the index sum identity (3) in Theorem 2. Below, this
is shown to hold for each of the rules (a)–(d). Then, we show that if C 1

P2(λ) covers

C 1
P1(λ) the partitions of C 1

P2(λ) are obtained from C 1
P1(λ) by one and only one of the

rules (a)–(d).
Applying rule (a) either effects the partitionR orL and does not change the sum

of the invariants
∑

ε j or
∑

η j , respectively, in (3). Thus, the index sum identity
holds for rule (a). Applying rule (b) moves one coin fromJ toR orL , i.e. the rule
simultaneously subtracts 1 from either

∑
δ j or

∑
γ j and adds 1 to either

∑
ε j or∑

η j . Thus, the index sum identity holds for rule (b). Proof for rule (c) is analogous to
the proof of rule (a). Applying rule (d) removes ε+d (= ε+1+i(σ )) coins fromR and
η+1 (= η+1+c(σ )) coins fromL (where i(σ ) = d−1 and c(σ ) = 0 are the number
of inversions and consecutions, respectively, see Sect. 3 and Remark 1; we also add 1
since the numbering in R and L starts from 0). From Theorem 3, this corresponds
to the fact that the sum

∑
ε j in (3) is decreased by ε and

∑
η j by η. Furthermore,

the rule adds k − 1 coins to one or several Jμi , where now k = ε + d + η + 1,
which corresponds to that the degrees δ of the new invariant polynomials gr+1(λ) in
Theorem 2 is δ = ε + d + η + 1− 1 = ε + η + d, where r is the rank of P1(λ). After
applying rule (d) and since the identity (3) holds for P1(λ), the right hand side of the
identity (3) loses ε + η but gains δ = ε + η + d; and r increases by 1, and hence, the
left hand side changes from rd to (r + 1)d. Thus, the index sum identity holds for
rule (d). Moreover, to ensure that the leading coefficient matrix Ad in (1) is nonzero
the condition j∞1 < r is added (footnote 2 of rule (d)), where r is the rank of the
corresponding matrix polynomial. Summing up, the partitions obtained by applying
any of rules (a)–(d) correspond to some OC 1

P2(λ)
that covers OC 1

P1(λ)
.

Now assume that OC 1
P2(λ)

covers OC 1
P1(λ)

in the stratification of the companion lin-

earizations. By Theorem 4 and Corollary 1 (see also Algorithm 6, Step 3), there is
a path from Oe

C 1
P1(λ)

to Oe
C 1
P2(λ)

in the stratification of equivalence orbits of general

matrix pencils of size (m + n(d − 1)) × nd. Therefore, the partitions of C 1
P2(λ) are

obtained from the partitions of C 1
P1(λ) by a sequence of the rules for general matrix

pencils [21,30], which indeed are similar to the rules (a)–(d) (see also Remark 3). If
the sequence consists of more than one rule, then we have a contradiction with OC 1

P2(λ)

covering OC 1
P1(λ)

; therefore, OC 1
P2(λ)

must be obtained by one of the rules (a)–(d). 
�

Remark 3 The rules for obtaining the neighbouring orbit above in the stratification
graph of a first companion form linearization orbit (and any Fiedler linearization orbit,
which is shown in Corollary 2) of a matrix polynomial coincide with the stratification
rules for general matrix pencil orbits [30, Table 3(B)] and [21, Theorem 3.2], with
the added restriction that the leading coefficient matrix Ad of the matrix polynomial
remains nonzero.

Corollary 2 OF σ
P1(λ)

is covered by OF σ
P2(λ)

if and only if the canonical structure infor-

mation of F σ
P2(λ) can be obtained by applying one of the rules (a)–(d) of Theorem 8
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to the structure integer partitions representing the canonical structure information of
F σ

P1(λ).

Proof By Theorem 7, there is an arrow from OC 1
P1(λ)

to OC 1
P2(λ)

if and only if there is

an arrow from OF σ
P1(λ)

to OF σ
P2(λ)

. Now we show that C 1
P1(λ) is obtained from C 1

P2(λ)

by rule (x) of Theorem 8 (where x ∈ {a, b, c, d}) if and only if F σ
P1(λ) is obtained

fromF σ
P2(λ) by applying exactly the same rule (x).

The linearization C 1
P1(λ) is obtained from C 1

P2(λ) by applying rule (a) if and only

if the canonical structure information of C 1
P2(λ) and C 1

P1(λ) differs only in two right

minimal indices: ε1 + d − 1 and ε2 + d − 1 in C 1
P2(λ) versus ε1 + d and ε2 + d − 2 in

C 1
P1(λ). Thus,F

σ
P1(λ) andF

σ
P2(λ) differ only in two right minimal indices too: ε1+ i(σ )

and ε2 + i(σ ) inF σ
P2(λ) versus ε1 + i(σ )+ 1 and ε2 + i(σ )− 1 inF σ

P1(λ). The latter is
equivalent to the fact that the linearizationF σ

P1(λ) is obtained fromF σ
P2(λ) by applying

rule (a). The same explanation works for rule (a) applied to the left minimal indices.
Note that all the Fiedler linearizations of the samematrix polynomial (including the

first companion form) have the same number of right (left) minimal indices (thus the
first column ofR (andL ) has the same number of coins for any Fiedler linearization)
as well as that the integer partitions for the regular parts are exactly the same for all
the Fiedler linearizations. Therefore, we can apply (b) to C 1

P2(λ) if and only if we can

apply (b) toF σ
P2(λ). Moreover, the change in the complete eigenstructure of C 1

P2(λ) is
done by applying rule (b) if and only if the change in the structure of any other Fiedler
linearization is done by applying rule (b).

The case of rule (c) follows from the fact that the integer partitions for the regular
parts are exactly the same for all the Fiedler linearizations.

Applying rule (d) means that the largest right and left minimal indices of C 1
P2(λ)

(ε1+d−1 and η1) are changed to a regular block of size ε1+η1+d. The corresponding
largest indices in a Fiedler linearizationF σ

P2(λ) are ε1 + 1 + i(σ ) and η1 + 1 + c(σ ).
Since (ε1+1+i(σ ))+(η1+1+c(σ ))−1 = ε1+η1+(i(σ )+c(σ )+1) = ε1+η1+d,
the regular block created by rule (d) is of size ε1 + η1 + d in the case of any Fiedler
linearization. 
�

Theorem 8 and Corollary 2 provide the rules to obtain neighbouring pencils in
the stratification graphs of OC 1

P1(λ)
and OF σ

P(λ)
, respectively, under block-structure

preserving perturbations of these linearizations. The following theorem generalizes
Theorem 4 by relating block-structure preserving perturbations and full perturbations
of matrix pencils for any Fiedler linearization, see also [19, Theorem 6.23].

Theorem 9 Let P(λ) be an m × n matrix polynomial. If there exists a matrix pencil

R such that F̃ σ
P(λ) is strictly equivalent to R, for some arbitrarily small perturbation

of F σ
P(λ), then

1) There exists an m × n matrix polynomial Q(λ) such that R is strictly equivalent
toF σ

Q(λ);

2) There exists an arbitrarily small perturbation P̃(λ) of P(λ) such that F σ
˜P(λ)

is

strictly equivalent to F σ
Q(λ).
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Proof First note that the case when small perturbations do not change the eigenstruc-

ture ofF σ
P(λ), i.e. X ·F̃ σ

P(λ)·Y = F σ
P(λ), is obvious. For small perturbations that change

the complete eigenstructure ofF σ
P(λ), the canonical form of F̃ σ

P(λ) is one of the canon-
ical forms in the stratification graph of (m c(σ )+n i(σ )+m)× (m c(σ )+n i(σ )+n)

matrix pencils to which there is an upward path from F σ
P(λ). By [21, Theorem 3.2],

the canonical form of F̃ σ
P(λ) can be obtained from the canonical form of F σ

P(λ) by
applying a sequence of rules (1)–(4) of [21, Theorem 3.2]. Since rules (1)–(4) of [21,
Theorem 3.2] coincide with rules (a)–(d) of Corollary 2 (i.e. they make exactly the
same changes in the complete eigenstructure), by Corollary 2 there existsF σ

˜P(λ)
, such

that F σ
˜P(λ)

has the same complete eigenstructure as F̃ σ
P(λ). 
�

Remark 4 Theorem 9 justifies that an algorithm similar to Algorithm 6 can be used to
construct a stratification of any Fiedler linearization.

Example 2 Consider a 2 × 2 matrix polynomial of degree 3, i.e.

A3λ
3 + A2λ

2 + A1λ + A0, A3 �= 0. (18)

By Theorem 2 such a matrix polynomial has the canonical structure information
δ1, δ2, γ1, γ2, ε1, and η1 presented in one of the columns of Table 1 (δ1, δ2, γ1 and γ2
form the regular part; ε1 and η1 form the singular part).

Wenowexplain howsmall perturbations of the coefficientmatrices, A3, A2, A1, A0,
of the polynomial may change this canonical structure information. For example, if
a polynomial has the canonical structure information δ1 = 1, γ1 = 0, ε1 = 0, and
η1 = 2 (column 7 of Table 1) and if we perturb this polynomial its canonical structure
information may change to δ1 = 0, γ1 = 0, ε1 = 0, and η1 = 3 (column 4 of Table 1).

By Theorem 4 and Corollary 1, perturbations of Fiedler linearization pencils corre-
spond to perturbations in the matrix coefficients of the underlyingmatrix polynomials.
Thus, we can investigate changes of the canonical structure information of the corre-
sponding matrix pencil linearizations. Notably, the sets of the corresponding matrix
pencil linearizations are different for different linearizations since Fiedler lineariza-
tions preserve elementary divisors but, by Theorem 3, “shift” the minimal indices. In
this case, the following shifts are possible: for the first companion form (5), we have
+2 for the right and no shift for the left minimal indices; for the second companion
form (6), we have no shift for the right and +2 for the left minimal indices; for the
Fiedler linearizations

λ

⎡
⎣
A3 0 0
0 I 0
0 0 I

⎤
⎦ +

⎡
⎣
A2 A1 −I
−I 0 0
0 A0 0

⎤
⎦ and λ

⎡
⎣
A3 0 0
0 I 0
0 0 I

⎤
⎦ +

⎡
⎣
A2 −I 0
A1 0 A0
−I 0 0

⎤
⎦ ,

(19)
with 1 inversion and 1 consecution, we have +1 for the right and +1 for the left
minimal indices. We obtain the same stratification graph for all the linearizations, see
Fig. 2 and Theorem 7, otherwise it would mean that different linearizations “behave”
generally different under small perturbations, but see also Remark 2.
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Table 1 There exists a 2×2matrix polynomial of degree 3 (A3 �= 0)with the canonical structure information
δ1, δ2, γ1, γ2, ε1, and η1 if and only if δ1, δ2, γ1, γ2, ε1, and η1 are those in one of the columns of this
table. Columns 1–10 correspond to singular polynomials and columns 11–26 to regular polynomials. (The
table is split into two parts just to fit on the page)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

δ1 0 0 0 0 1 1 1 2 2 3 0 1 2 3

δ2 – – – – – – – – – – 6 5 4 3

γ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

γ2 – – – – – – – – – – 0 0 0 0

ε1 3 2 1 0 2 1 0 1 0 0 – – – –

η1 0 1 2 3 0 1 2 0 1 0 – – – –

15 16 17 18 19 20 21 22 23 24 25 26

δ1 0 1 2 0 1 2 0 1 0 1 0 0

δ2 5 4 3 4 3 2 3 2 2 1 1 0

γ1 0 0 0 0 0 0 0 0 0 0 0 0

γ2 1 1 1 2 2 2 3 3 4 4 5 6

ε1 – – – – – – – – – – – –

η1 – – – – – – – – – – – –

Note that δ j is just the degree of g j (λ) and it gives a few alternatives for the
powers δ jk of the elementary divisors. To be exact, the number of these alternatives
is the number of ways the integer δ j can be written as a sum of positive integers, i.e.
δ j = δ j1 + δ j2 + · · · + δ jl j . Thus, some columns in Table 1 correspond to more than
one node in the graph in Fig. 2. Since the considered matrix polynomials may have
rank at most 2 and A3 �= 0, by [7, Lemma 2.6] these polynomials may have at most
1 infinite elementary divisor. Therefore, the eigenvalues in the nodes of Fig. 2 which
have two Jordan blocks associated with them can not be infinite.

Example 3 Consider rectangular 1×2 matrix polynomials of degree 3. Like in Exam-
ple 2,we explain how small perturbations of the coefficientmatrices of the polynomials
may change their canonical structure information. By Theorem 2, such a polynomial
has the canonical structure information δ1, γ1, and ε1, presented in one of the four
columns of Table 2. Note that the ranks of these polynomials are 1 and that A3 �= 0.
Thus, by [7, Lemma 2.6] we have no infinite elementary divisors in this case.

Since the polynomials are rectangular, the Fiedler linearizations are of different
sizes: the first companion form is 5×6, the second companion form is 3×4, and both
linearizations in (19) are 4 × 5. These Fiedler type linearizations “shift” the minimal
indices exactly as in Example 2.

The three graphs in Fig. 3 have the same set of edges that connect nodes corre-
sponding to matrix pencil orbits with the same regular structures (Jk(μ) blocks) but
that differ in the sizes of the singular structure (Lk blocks). For example, the most
generic nodes are L5 for Fig. 3a, L4 for Fig. 3b, and L3 for Fig. 3c. Note that each
of these graphs is a subgraph of the corresponding general matrix pencil stratification
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Fig. 2 Orbit stratification of the linearizations of 2 × 2 matrix polynomials of degree 3 (A3 �= 0). Only
the sizes of the singular canonical blocks depend on the choice of Fiedler linearization, not the numbers of
singular blocks, the regular parts, or the closure relations (graph edges). The numbers 6–13, listed on the left,
are the codimensions of the orbits in the corresponding level of the graph. The codimensions are computed
by Lemma 1. In (a), (b), and (c), we show the three most degenerate structures (the bottom nodes of the
graphs) for the first companion form, the linearizations (19), and the second companion form, respectively

Table 2 There exists a 1 × 2
matrix polynomial of degree 3
(A3 �= 0) with the canonical
structure information δ1, γ1, and
ε1, if and only if δ1, γ1, and ε1
take the values in one of the
columns of this table

1 2 3 4

δ1 0 1 2 3

γ1 0 0 0 0

ε1 3 2 1 0

graph; for example, the graph in Fig. 3c is a subgraph of the stratification graph of
3 × 4 matrix pencils, see Fig. 4.

Note also that the polynomials in this example have full rank. Thus, we can apply
the theory from [32] to construct graph (c) in Fig. 3 (but not (a) or (b) since in [32]
the choice of the linearization is fixed).

7.3 Neighbouring Bundles in the Stratification

In the orbit stratifications, eigenvalues may appear and disappear but their values
cannot change. However, in many applications, see for example [22,32,33], the eigen-
values of the underlying matrices may coalesce or split apart to different eigenvalues,
whichmotivates so-called bundle stratifications. Theories for bundle stratifications are
developed along with theories for the orbit stratifications and are known for a num-
ber of cases [15,16,20–22,32]. Similarly, we consider stratifications of the bundles
of matrix polynomial Fiedler linearizations. Defining a bundle may be a problem by
itself, in particular, for the cases where the behaviour of an eigenvalue depends on
its value, e.g. see [11, Section 6]. Nevertheless, in our case of the matrix polynomial
Fiedler linearizations all the eigenvalues have the same behaviour and the restriction
on the number of Jordan blocks associated with the infinite eigenvalue, for example
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Fig. 3 Orbit stratification of the Fiedler linearizations of 1×2matrix polynomials of degree 3 (A3 �= 0). The
numbers 0, 2, 4 and 6, listed on the left, are the codimensions of the orbits in the corresponding level of the
graph. These codimensions are computed by Lemma 1. Graph a is the stratification of the first companion
form; the nodes represent 5× 6 matrix pencils. Graph b is the stratification of the linearizations in (19); the
nodes represent 4 × 5 matrix pencils. Finally, graph c is the stratification of the second companion form;
the nodes represent 3 × 4 matrix pencils

in Theorem 8, is coming from our desire to have nonzero leading coefficient matrices
of the polynomials but not from the geometrical properties.

Following the definition of bundles for general matrix pencils, we define a bundle
BF σ

P(λ)
of the matrix polynomial linearization F σ

P(λ) to be a union of orbits OF σ
P(λ)

with the same singular structures and the same regular structures, except that the
distinct eigenvaluesmay be different, see also [32]. Therefore, we have that two Fiedler
linearizations F σ

P(λ) and F σ
R(λ) are in the same bundle if and only if they are in the

same bundle as general matrix pencils. This ensures that the stratification algorithm
for bundles of matrix polynomial Fiedler linearizations is analogous to Algorithm 6.
So we extract the bundles that correspond to the linearizations from the stratification
of the general matrix pencil bundles and put an edge between two of them if there
is a path between them in the stratification graph for the general matrix pencils. In
addition, the codimensions of the bundles of F σ

P(λ) are defined as
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Fig. 4 Orbit stratification for 3× 4 matrix pencils. The subgraph in the grey region is exactly the one from
Fig. 3c, i.e. it is the stratification of the second companion form of 1 × 2 matrix polynomials of degree 3
(A3 �= 0). The numbers 0–24, listed on the left, are the codimensions of the orbits in the corresponding
level of the graph. These codimensions are computed by Lemma 1

cod BF σ
P(λ)

= cod OF σ
P(λ)

− #
{
distinct eigenvalues of F σ

P(λ)

}
.

The definition for the cover relation is analogous to the one for orbits, see Sect. 7.1.
The following theorem is the bundle analog of Theorem 8.

Theorem 10 (Bundle upward rules—matrix polynomial linearizations) Let P1(λ) and
P2(λ) be twomatrix polynomials with the corresponding Fiedler linearizationsF σ

P1(λ)

and F σ
P2(λ), respectively. The bundle BF σ

P1(λ)
is covered by BF σ

P2(λ)
if and only if the

canonical structure information of P2(λ) can be obtained by applying one of the
rules below to the structure integer partitions representing the canonical structure
information of P1(λ) (here μi ∈ C ∪ {∞}):
(a) Same as rule (a) in Theorem 8.
(b) Same as rule (b) in Theorem 8, but only for anyJμi which consists of one single

coin.
(c) Same as rule (c) in Theorem 8.
(d) Same as rule (d) in Theorem 8 with the following changes. A new partition Jμi

for a new finite eigenvalue may only be created if there does not exist any J
partitions. If so, all coins should be assigned to it and create one row.

(e) For any Jμi , split the set of coins into two new non-empty partitions such that
their additive union isJμi , i.e. let an eigenvalue separate into two new (different)
eigenvalues.
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Similarly, to Theorem 8, rules (a)–(e) above in Theorem 10 coincide with the
analogous rules for the general matrix pencils presented in Table 3(D) in [30], see also
[21, Theorem 3.3]. The proof is essentially the same as the proof of Theorem 8.

Remark 5 Instead of Fiedler linearizations used in this paper, it is also possible to use
a broader class of linearizations, namely the block Kronecker linearizations [19]. To
do so, we would have to repeat the steps of this paper for the new linearization class,
proving all the missing results.

Note also that using any of the Fiedler linearizations, e.g. the first companion
form, is enough to describe the changes of the complete eigenstructure of a matrix
polynomial under small perturbations, see the Supplementary Materials to this paper
for the rules to obtain for a given matrix polynomial, the complete eigenstructures of
its neighbouring matrix polynomials, both above and below.

Example 4 In Fig. 5, we stratify the bundles of the Fiedler linerizations (19) of 2 × 2
matrix polynomials of degree 3. In the graph, each node represents a bundle and each
edge a cover relation.An arbitrarily small perturbation of coefficientmatrices ofmatrix
polynomials, in any bundle, may change the canonical structure to any more generic
node that we have an upward path to.

We recall that the orbit stratification of the polynomials presented in Fig. 2 has
eleven most generic orbits (all with codimension 6), marked by yellow colour. In
Fig. 5, these eleven orbits are marked by yellow colour again but since eigenvalues are
allowed to split apart in the bundle case, only one of them is the most generic (with
codimension 0).

Example 5 Similarly, to Example 4, we stratify the bundles of the Fiedler linerizations
of 1 × 2 matrix polynomials of degree 3 and present them in Fig. 6. Recall that the
orbit stratification graphs are presented in Fig. 3, see Example 3. Notably, for the
bundle case there is only one least generic node and one most generic node, the latter
corresponds to the same canonical structures for both the orbit and bundle cases.

8 Stratification of Matrix Polynomial Invariants

In this section, we present rules for the orbit and bundle stratifications acting directly
on the minimal indices and elementary divisors of the matrix polynomials, see Sect. 2
for the definitions of these invariants. These rules can sometimes be preferable over
the rules for the Fiedler linearizations given in Sects. 7.2 and 7.3 since they are inde-
pendent of any linearization. The rules for orbits are presented in Theorem 11 and the
corresponding rules for bundles in Theorem 12. Moreover, these rules also separate
the infinite eigenvalues from the finite.

Note that, orbits and bundles of matrix polynomials are defined by analogy with
the matrix pencils, i.e. an orbit of a matrix polynomial P(λ) is a set of all the matrix
polynomials with the same complete eigenstructure as P(λ); and a bundle of a matrix
polynomial P(λ) is a union of orbits of matrix polynomials with the same complete
eigenstructure as P(λ) but with possibly different values of the eigenvalues. A codi-
mension of the orbit or bundle of a matrix polynomial P(λ) is defined to be the
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Fig. 6 Bundle stratification of the Fiedler linerizations of 1×2matrix polynomials of degree 3. The numbers
0–5, listed on the left, are the codimensions of the bundles in the corresponding level of the graph. Similarly,
to Figure 3, the graphs a, b, and c are the bundle stratifications of the first companion form (5 × 6 matrix
pencils), linearizations in (19) (4 × 5 matrix pencils), and second companion form (3 × 4 matrix pencils),
respectively
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Fig. 7 Orbit (top figure) and bundle (bottom figure) stratifications of 1× 2 matrix polynomials of degree 3
(A3 �= 0). The numbers, listed on the left, are the codimensions of the orbits or bundles in the corresponding
level of the graph. The canonical structure information of thematrix polynomials in each node is represented
by the set ε of right minimal indices and the set δ(μ) of the exponents of the elementary divisors for an
eigenvalue μ, see Sect. 2

codimension of, respectively, the orbits or bundles of the first companion linearization
of thematrix polynomial OC1

P(λ)
. In Fig. 7, we present the orbit and bundle stratification

graphs for 1 × 2 matrix polynomials of degree 3. Since the stratification now is done
on the invariants of matrix polynomials P(λ) (not on a linearization), the canonical
structure information of the orbits/bundles in the graphs is represented by the set of
right ε and left η minimal indices and the set δ(μ) of exponents of the elementary
divisors for an eigenvalue μ. This in contrast to Theorems 8 and 10 where the strati-
fication is done on a Fiedler linearization and the canonical structure information can
be represented by Kronecker canonical blocks. Note that the geometry of graphs is
the same as the corresponding graphs for the Fiedler linearizations in Figs. 3 and 6.

Theorem 11 (Orbit upward rules—matrix polynomial invariants)Let P1(λ) and P2(λ)

be two matrix polynomials with the corresponding Fiedler linearizations F σ
P1(λ) and

F σ
P2(λ), respectively.
The orbit OF σ

P1(λ)
is covered by OF σ

P2(λ)
if and only if the canonical structure

information of P2(λ) can be obtained by applying one of the rules below to the structure
integer partitions representing the canonical structure information of P1(λ).

(a) Same as rule (a) in Theorem 8.
(b) Same as rule (b) in Theorem 8, where μi = ∞ or μi ∈ C.
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(c) Same as rule (c) in Theorem 8, where μi = ∞ or μi ∈ C.
(d) Same as rule (d) in Theorem 8, but instead distribute k+d−2 = (k−1)+ (d−1)

coins as follows. First add one coin to each nonzero column in J∞ and then
distribute one coin to each nonzero column in all existing Jμi , μi ∈ C. The
remaining coins are distributed toJ∞ or anyJμi which may be empty initially.

4

Below follows the stratification rules for bundles. In addition to the differences
between the orbit and bundle cases pointed out in Sect. 7.3, the following theorem
has the two additional rules (f) and (g) for the specified infinite eigenvalue. The two
rules are a direct consequence of that the infinite eigenvalue is treated as a specified
eigenvalue.

Theorem 12 (Bundle upward rules—matrix polynomial invariants) Let P1(λ) and
P2(λ) be twomatrix polynomials with the corresponding Fiedler linearizationsF σ

P1(λ)

and F σ
P2(λ), respectively.

The bundle BF σ
P1(λ)

is covered by BF σ
P2(λ)

if and only if the canonical structure

information of P2(λ) can be obtained by applying one of the rules below to the structure
integer partitions representing the canonical structure information of P1(λ).

(a) Same as rule (a) in Theorem 10.
(b) Same as rule (b) in Theorem 10, where μi = ∞ or μi ∈ C.
(c) Same as rule (c) in Theorem 10, where μi = ∞ or μi ∈ C.
(d) Same as rule (d) in Theorem 10, but instead distribute k+d−2 = (k−1)+(d−1)

coins as follows. First add one coin to each nonzero column in J∞ and then
distribute one coin to each nonzero column in all existing Jμi , μi ∈ C. The
remaining coins are distributed toJ∞ (whichmay be empty initially) or to existing
Jμi (see footnote 4).

(e) Same as rule (e) in Theorem 10, where μi ∈ C.
(f) ForJ∞, split the set of coins into one newnon-empty partitionJμi for a newfinite

eigenvalue and keep the remaining coins inJ∞ such thatJ old∞ = J new∞
⊎

Jμi .
(g) If J∞ consists of one single coin, move that coin to a new Jμi for a new finite

eigenvalue μi .
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