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Abstract. In this paper, we analyze the coupling between the isometric projections of two
square matrices. These two matrices of dimensions m × m and n × n are restricted to a lower k-
dimensional subspace under isometry constraints. We maximize the coupling between these isometric
projections expressed as the trace of the product of the projected matrices. First we connect this
problem to notions such as the generalized numerical range, the field of values, and the similarity
matrix. We show that these concepts are particular cases of our problem for special choices of m,
n, and k. The formulation used here applies to both real and complex matrices. We characterize
the objective function, its critical points, and its optimal value for Hermitian and normal matrices,
and, finally, give upper and lower bounds for the general case. An iterative algorithm based on the
singular value decomposition is proposed to solve the optimization problem.
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1. Introduction. The problem of projection of matrices in lower-dimensional
subspaces is of great interest for a large field of applications. The projection of
matrices provides an easier visualization and comprehension of the initial problem and
is often used to reduce the complexity of some computational problems. Moreover
the coupling between these projections can reveal some particularities inherent to the
data which can be analyzed and interpreted.

We consider the coupling or similarity between two “projected” matrices A and
B, respectively, of dimensions m×m and n×n, expressed as the real part of the trace
of the product of the isometric projections U∗AU and V ∗BV :

� tr(U∗AUV ∗B∗V )(1.1)

under the constraint that U∗U = V ∗V = Ik, where Ik denotes the identity matrix
of dimension k, with k ≤ min(m,n). In this paper, we will consider both real and
complex matrices. The notation will be different for the real and complex cases, i.e.,
T and ∗, respectively for the transpose and complex conjugate transpose, the real
inner product and real-valued inner product, respectively, for the real and complex
case (see the notations in section 2.1). In particular, for real matrices, the coupling
we consider is the following:

tr(UTAUV TBTV ).(1.2)
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Most results are developed for the complex case. When results are different for the
real and complex problems, we explicitly mention this; otherwise, we consider only
the complex problem.

This is a generic problem which can be linked to various applications treated
in the literature and which has been studied extensively in a variety of contexts for
particular dimensions of the projection and of the matrices. A first field of application
for real matrices lies in the analysis of graphs. The notion of the graph similarity
matrix, which is a matrix that expresses how similar the nodes of two graphs are,
has recently been introduced in [2]. For undirected graphs, the similarity matrix is
the product of the isometries U and V T maximizing (1.2) where A and B are real
symmetric adjacency matrices and which is obtained with k equal to one. The graph
similarity matrix is, e.g., useful for the development of efficient search engines or
the automatic extraction of synonyms in a dictionary. Another important task in
graph analysis is that of graph matching, which is a fundamental problem in pattern
recognition and in shape and image analysis (see, e.g., [6] for an overview of graph
matching techniques). A common class of methods in graph matching is the spectral
methods in which spectral properties of characteristic matrices are used to compare
the graphs. The spectral method developed in [4] combines a projection technique and
a clustering algorithm to match the graphs in a lower-dimensional subspace. It can be
shown that the step of projection used by the authors is equivalent to maximizing (1.2)
for symmetric matrices A and B. A second field of application where relevant matrices
are complex concerns experiments in quantum mechanics and in particular the task of
maximizing the signal intensity in coherent ensemble spectroscopy (see, e.g., [7], [9],
[16]). Indeed, the spectroscopic experiments require optimal unitary transformations
of a given initial operator onto a target operator maximizing the overlap between
these two operators. From a mathematical point of view, maximizing this overlap
is equivalent to maximizing an expression similar to (1.1) where all of the matrices
are square. The optimal value constitutes a transfer bound called the generalized
numerical radius of A.

In the linear algebra literature, problem (1.1) has also been studied for particular
cases and dimensions, and it hence constitutes an extension of a variety of known
problems. For the case where all of the matrices are square, this problem corresponds
to the generalized numerical range. See, e.g., [13] or [14] for a survey on the properties
of the generalized numerical range. For the scalar case, which corresponds to a one-
dimensional projection, the expression (1.1) is equivalent to the product of the field
of values of two matrices (see, e.g., [12]). In this paper we consider matrices A and B
of different dimensions and an arbitrary dimension k. We treat also the complex and
real cases.

There exist many numerical algorithms to maximize (1.1) for particular dimen-
sions of the matrices (e.g., [1], [3], [7], [9]). We develop here a simple recursive
algorithm valid for the general case, i.e., for complex or real problems and for all
dimensions of the matrices. Characterizations of the fixed points of the algorithm are
presented.

The paper is organized as follows. In section 2, we introduce some notations. In
section 3, we define the problem considered in the paper which consists of maximizing
an expression similar to (1.1). We recall some important results from the literature
that we can link to our problem. The first one concerns square matrices and appears
in the field of the generalized numerical range and in the context of semidefinite
programming relaxations. The second case is about one-dimensional projections and
is linked to the field of values of matrices. We extend also some of these results. The
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main new results are in section 4, where we characterize the critical points of the
problem. Then we focus on the case of Hermitian and normal matrices, and we give
lower and upper bounds for the optimal value. In section 5, we propose a simple
algorithm to solve the optimization problem. Some numerical experiments are also
presented. The last section 6 summarizes the results and describes some directions
for future research.

2. Notations. In this section, we introduce some notations used in the paper.
The first part treats the complex and real-valued inner product of matrices. The
second part summarizes some definitions and results about gradients of functions
with matrix arguments. Finally, the definitions of an isometry and of an isometric
projection are given.

2.1. Inner product. Let R
m×n and C

m×n denote the set of all m× n real and
complex matrices, respectively, and let XT , X̄, and X∗ represent, respectively, the
transpose, the complex conjugate, and the complex conjugate transpose of X. The
inner product between matrices is defined as follows. For X, Y ∈ R

m×n, the real
inner product is denoted by

(2.1) 〈X,Y 〉 =

m∑
i=1

n∑
j=1

XijYij

and can be linked to the trace function of a matrix:

〈X,Y 〉 = tr(XY T ) = tr(XTY ).

For complex matrices X, Y ∈ C
m×n, another inner product often useful in optimiza-

tion is the real-valued inner product defined by:

(2.2) 〈X,Y 〉H = 〈�(X),�(Y )〉 + 〈�(X),�(Y )〉,

where �(X) and �(X) represent the real and the imaginary part of X, respectively.
This inner product can be linked again to the trace

〈X,Y 〉H = � tr(X∗Y )

and satisfies the following properties:

(2.3) 〈X,Y 〉H = 〈Y ∗, X∗〉H = 〈X∗, Y ∗〉H .

For complex vectors x, y ∈ C
n, the real-valued inner product is defined similarly by:

(2.4) 〈x, y〉H =

n∑
i=1

�(x̄iyi) = 〈�(x),�(y)〉 + 〈�(x),�(y)〉.

2.2. Gradients. Let f : C
m×n → R be a differentiable real-valued function with

matrix argument X. Then the first-order approximation of f at a point X can be
expressed as

f(X + Δ) = f(X) + 〈∇f(X),Δ〉H + o(‖Δ‖),(2.5)

where the gradient ∇f(X) is the m×n matrix whose (i, j) entry is ∂f(X)
∂Xi,j

. As particular

examples, we provide some gradients of inner-product functions with respect to a
matrix X:

∇〈A,X∗X〉H = X(A + A∗),(2.6)

∇〈X∗AX,B〉H = AXB∗ + A∗XB.(2.7)
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2.3. Isometry and isometric projection. Let A ∈ C
m×m and U ∈ C

m×k,
k ≤ m, be given. If U∗U = Ik, with Ik the identity matrix of dimension k, then U is
called an isometry and U∗AU is called an isometric projection of A.

3. Main known results and some extensions of these results. For A ∈
C

m×m and B ∈ C
n×n, we consider the following problem:

max
U∗U=Ik
V ∗V =Ik

〈U∗AU, V ∗BV 〉H ,(3.1)

where U ∈ C
m×k and V ∈ C

n×k, with k ≤ min(m,n). If the matrices A and B
are real, one could restrict U and V to be real also which is then a different problem
expressed by:

max
UT U=Ik
V T V =Ik

〈UTAU, V TBV 〉.(3.2)

It will be clear, depending on the context, which case we consider. Since the algebraic
structure of the constraints and the objective function is the same, most results for
both problems will be essentially the same. Let us remark that, for k = min(m,n),
(3.1) is equivalent to

max
Q∗Q=In

〈Q∗AQ,B〉H ,(3.3)

where Q = UV ∗ is an isometry of dimension m × n. The general problem is then
reduced to an optimization problem over only one variable Q.

This problem has largely been studied for particular dimensions of m,n, and
k. Section 3.1 contains results for k = m = n, while section 3.2 summarizes some
properties for k = 1.

3.1. Square matrices U and V . In the case where m, n, and k are equal, U
and V are square matrices, and the problem is reduced to (3.3). This problem has
been studied in a variety of contexts. In the rest of the section, we summarize some
important results for the generalized numerical range (or C-numerical range) and for
semidefinite programming relaxations providing bounds on the problem. To link the
notations used in the literature for this problem with (3.3), we point out that

〈Q∗AQ,B〉H = � (tr(AQB∗Q∗)) = � (tr(B∗Q∗AQ)) .

3.1.1. C-numerical range. The problem (3.3) is equivalent to maximizing the
real part of the C-numerical range of A (or generalized numerical range) introduced
by [8] and defined by

(3.4) WC(A) := {tr(C∗Q∗AQ) : Q is unitary}.

See, e.g., [13] for a survey on the properties of the C-numerical range. In the literature
it is pointed out that the C-numerical range and in particular its geometry can be
quite complicated. For all A ∈ C

n×n, WC(A) is convex if C is Hermitian or if C is
normal with its eigenvalues colinear in the complex plane. Moreover, for general A
and C, WC(A) is always star-shaped with respect to the star-center (trA)(trC)/n [5]
but not necessarily convex. For example, [19] gave an example in which C is normal
but not Hermitian and where WC(A) is not convex. Upper bounds on the size of
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WC(A) are given in [9]. In the general case there is no closed formula for computing
the C-numerical range. One can only come up with an approximation. For example,
[9] provides a gradient flow leading to a numerical algorithm to approach the set of
critical points of �(tr(C∗Q∗AQ)). See also [3] and [7].

The C-numerical range has been studied by many authors in the past few decades
and has many domains of applications, e.g., in quantum dynamics for the study of the
efficiency of polarization or coherence transfer between quantized states under unitary
transformations. This application is equivalent to computing the C-numerical radius
of A for certain sparse nilpotent matrices C and A (e.g., [7], [9], [16]). Some authors
have also used the numerical range to study problems on norms of operators (see,
e.g., [15]).

3.1.2. Semidefinite programming relaxations.
Real matrices. In the case of real and symmetric matrices A and B, the problem

(3.3) is reduced to a classical problem called the quadratically constrained quadratic
program defined over orthogonal matrices:

μP = max
QTQ=I

tr(AQBQT ).(3.5)

This problem can be solved exactly, and the optimal value is obtained by performing
spectral decompositions of A and B (see, e.g., [1] or [18]). Let us suppose that the
orthogonal diagonalizations of A, B are A = UDAU

T and B = V DBV
T , respectively,

where the eigenvalues in DA and in DB are ordered in a nondecreasing fashion. Then
the optimal value of (3.5) is trDADB , and the optimal solution is obtained by using
the orthogonal matrices that yield the diagonalizations, i.e., Qopt = UV T .

For real matrices and by a reasoning similar to the one developed in [20], we con-
struct the following primal problem νP and its semidefinite programming relaxation
νD:

νP = max
QT Q=I

QQT =I

tr(AQBTQT ),

νD = min trS + trT(3.6)

such that (s.t.)
B ⊗A

2
+

BT ⊗AT

2
− S ⊗ I − I ⊗ T � 0,

S = ST ,
T = TT ,

where S and T are the symmetric matrices of Lagrange multipliers used to relax
the constraints QTQ = I and QQT = I and ⊗ denotes the Kronecker product. The
redundant constraint QQT = I is added in order to close the duality gap for symmetric
matrices A and B. Indeed, for symmetric A and B, it is proved that strong duality
holds; νP = νD [1]. A few examples show that there can be a nonzero duality gap
in the case of arbitrary matrices which are not symmetric. Strong duality does not
hold in this case, but this semidefinite relaxation provides an upper bound νD for the
problem we consider νP ≤ νD. See section 5.3.2 for an example where a duality gap
occurs.

Complex matrices. A complex matrix A = AR+jAI , with j =
√
−1, of dimension

n× n can be represented by a real matrix Ã of dimension 2n× 2n of the form:

Ã =

(
AR AI

−AI AR

)
.(3.7)
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For a Hermitian matrix A, Ã is symmetric, while, for a unitary matrix Q, Q̃ is
orthogonal. If the matrices A, B, and Q ∈ C

n×n are represented by the matrices Ã,
B̃, and Q̃ ∈ C

2n×2n, respectively, we obtain the following link between the two trace
functions:

2� tr(AQB∗Q∗) = tr(ÃQ̃B̃T Q̃T ).(3.8)

One can easily prove this relation by developing the two terms of the equality. The
problem (3.5) in terms of complex matrices is thus equivalent to maximizing

max
Q̃T Q̃=I

1

2
tr(ÃQ̃B̃T Q̃T )(3.9)

expressed in terms of real matrices. The dual method developed previously for real
matrices can then be applied in the same way and provides an upper bound for the
problem.

For Hermitian matrices A and B, strong duality holds because the representations
Ã and B̃ are symmetric, and then the gap between the primal and dual problems is
zero. In this case, we know that the solution is simply the trace of the product of the
diagonal matrices of the eigenvalues of Ã and B̃ ordered in an adequate way trDÃDB̃ .
By developing the expressions one can easily see that trDÃDB̃ = 2 trDADB . The
optimal value obtained for Hermitian matrices is then the product of the eigenvalues
of the matrices. For general complex matrices A and B, the dual problem provides
only an upper bound for the initial problem.

3.2. The one-dimensional case. When k equals one, the matrices U and V are
reduced to vectors u and v, respectively, and the problem (3.1) becomes

max
u∗u=1
v∗v=1

〈u∗Au, v∗Bv〉H .(3.10)

This problem is related to the notion of the field of values. The field of values of a
matrix A (also known as the numerical range) is defined by [12]

F (A) := {x∗Ax : x ∈ C
n, x∗x = 1}.

The problem is then reduced to obtaining the maximum of the products of the ele-
ments from the fields of values of A and of B.

The field of values is known to be a convex subset of the complex plane, while the
product of two fields of values F (A)F (B) is generally not a convex set. We provide a
simple counterexample.

Example 1. Let

A =

(
1 0
0 j

)
, B =

(
−1 0
0 −j

)
.

Then F (A) is the line segment joining 1 and j, and F (B) is the line segment joining
−1 and −j. Thus F (A)F (B) is not a convex set since 1, −1 ∈ F (A)F (B) and 0 /∈
F (A)F (B).

In the real and Hermitian cases, we obtain the exact optimal value of the function.
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3.2.1. Hermitian case. For a Hermitian matrix A, the field of values is the
interval

[λmin (A) , λmax (A)] ,

with λmin(A) and λmax(A) the smallest and largest eigenvalues of A, respectively. The
solution of (3.10) is then the product of the adequate extremal (smallest and largest)
eigenvalues of the Hermitian matrices A and B depending on their signs. The solutions
u and v providing the optimum are the eigenvectors of A and B corresponding to the
eigenvalues providing the solution, respectively.

3.2.2. Real case. For a real matrix A, the field of values could be complex in
general. The real field of values associated with a real square matrix A is defined by
[12]

FR(A) := {xTAx : x ∈ R
n, xTx = 1}.

If we notice that FR(A) = FR(AH), with AH = A+AT

2 the symmetric part of A, then
it is sufficient to consider only the symmetric part of the matrix in order to study
the real field of values. FR(A) is the real interval joining the smallest and the largest
eigenvalues of AH and is thus always convex. The solution of (3.10), for A, B, u,
and v real, is then the product of the adequate extremal eigenvalues of AH and BH

depending on their signs.
In the particular case of real symmetric matrices, this scalar case can be linked

to the concept of the similarity matrix S introduced in [2]. This matrix expresses
how similar vertices of two graphs are and is defined as a particular fixed point of the
iteration

Sk+1 =
ASkB

T + ATSkB

‖ASkBT + ATSkB‖F
,(3.11)

with the Frobenius norm ‖.‖F =
√
〈., .〉 and where A and B, representing the ad-

jacency matrices of the graphs, have nonnegative elements. In the case where the
adjacency matrix of one graph is normal, the similarity matrix has rank one and can
then be decomposed into the product of two vectors u and v, S = uvT , and it satisfies
the equation ρS = ASBT + ATSB [2]. In the case of undirected graphs which are
characterized by symmetric adjacency matrices, u and v are the Perron vectors of A
and B. The solutions u and v of (3.10) are then those giving the similarity matrix S.
In general S is not of rank one, but we will see in section 5.1 an algorithm to solve
the corresponding optimization problem. The similarity matrix can be linked to our
problem and is obtained as the limit of the normalized iterates Auiv

T
i B

T +ATuiv
T
i B.

4. The general case. In this section we provide some results obtained for the
general problem

max
U∗U=Ik
V ∗V =Ik

〈U∗AU, V ∗BV 〉H ,(4.1)

where A ∈ C
m×m, B ∈ C

n×n, U ∈ C
m×k, and V ∈ C

n×k, with k ≤ min(m,n).
We derive first the expressions for the critical points of the optimization problem.

Then we consider some particular cases, i.e., when one matrix is Hermitian and when
the two matrices are normal. An upper and a lower bound to the general problem are
also obtained by decomposing the problem into the sum of two Hermitian problems.
Let us mention that the techniques used in the rest of the section are quite similar to
the ones used in [9].
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4.1. Critical points. We consider the following problem:

max
U∗U=Ik
V ∗V =Ik

F (U, V ),(4.2)

where the objective function

(4.3) F (U, V ) = 〈U∗AU, V ∗BV 〉H =
1

2
[〈U∗AU, V ∗BV 〉H + 〈U∗A∗U, V ∗B∗V 〉H ]

according to the trace properties (2.3). The problem is equivalent to maximizing the
coupling between two constrained matrices A and B. This is an optimization problem
of a continuous function F (U, V ) on a compact domain. In particular, the constraint
set constitutes a smooth manifold as a product of two compact Stiefel manifolds (see,
e.g., [10]). There always exists a solution U and V optimizing the function such that
the first-order conditions are satisfied.

The first-order optimality conditions for (4.2) can be derived from the Lagrangian
L(U, V,X, Y )

(4.4)
L(U, V,X, Y ) =

1

2
[〈U∗AU, V ∗BV 〉H + 〈U∗A∗U, V ∗B∗V 〉H

+ 〈X, I − U∗U〉H + 〈Y, I − V ∗V 〉H ],

where X and Y are Hermitian matrices of Lagrange multipliers for the isometry
constraints. Partial gradients of L with respect to (U, V ) according to (2.6) and (2.7)
lead to the following first-order optimality conditions:

∇UL = AU (V ∗B∗V ) + A∗U (V ∗BV ) − UX = 0,

∇V L = BV (U∗A∗U) + B∗V (U∗AU) − V Y = 0

or, equivalently,

UX = AU(V ∗B∗V ) + A∗U(V ∗BV ),

V Y = BV (U∗A∗U) + B∗V (U∗AU),

and of course the constraints U∗U = V ∗V = I. It easily follows from this that
X = Y . If we decompose X = Y by an eigendecomposition ÛΛÛ∗, where Û ∈ C

k×k

is an unitary matrix, then we can replace U by UÛ and V by V Û which amounts to
changing the bases in which we describe the spaces Im(U) and Im(V ), the images
of U and V . In this particular coordinate system the above first-order conditions
would have a real diagonal matrix Λ with ordered diagonal elements λi ≥ λi+1,
i = 1, . . . , k − 1:

(4.5)
UΛ = AU(V ∗B∗V ) + A∗U(V ∗BV ),

V Λ = BV (U∗A∗U) + B∗V (U∗AU).

4.2. Case where one matrix is Hermitian. If A is Hermitian or A = A∗,
the maximum of (4.1) is achieved for matrices U and V corresponding, respectively,
to the dominant eigenvectors of A and (B + B∗). Moreover UΛV ∗ is exactly of rank
k. In other words, in this case the problem is decoupled regarding the matrices A and
B, and the solutions U and V satisfy

(4.6)
AU = UAsub,

(B + B∗)V = V Bsub,
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where Asub and Bsub are diagonal matrices of dimension k whose elements are the
dominant eigenvalues of A and (B+B∗), respectively. The following theorem provides
a characterization of the maximum of (4.1).

Theorem 4.1. If A = A∗,

max
U∗U=Ik
V ∗V =Ik

〈U∗AU, V ∗BV 〉H =
1

2
max
π1,π2

(
k∑

i=1

απ1(i)βπ2(i)

)
,(4.7)

where α1, . . . , αm and β1, . . . , βn are the real eigenvalues of A and (B+B∗) and π1(.)
and π2(.) permutations of 1, . . . ,m and 1, . . . n, respectively.

Proof. The solution (U, V ) satisfies the equations for the critical points

(4.8)
Λ = U∗AUV ∗(B + B∗)V,

Λ = V ∗(B + B∗)V U∗AU,

which point out that the two matrices U∗AU and V ∗(B + B∗)V commute and are
thus simultaneously diagonalizable under the same unitary transformation W such
that

(4.9)
W ∗U∗AUW = DA,

W ∗V ∗(B + B∗)VW = DB .

The expressions in (4.8) become

(4.10)
W ∗ΛW = Λ̂ = DADB ,

W ∗ΛW = Λ̂ = DBDA,

where Λ̂ is diagonal as a product of two diagonal matrices DA and DB . In this
coordinate system, the critical point condition (4.5) can be expressed as

uiλi = Auiβi,

viλi = (B + B∗)viαi,

where αi and βi are the eigenvalues of A and (B + B∗), respectively. If λi �= 0, it is
obvious that ui and vi are eigenvectors of A and (B+B∗), respectively. The matrices
U and V providing the optimum are thus composed of the dominant eigenvectors. If
λi = 0, the above formulas do not imply that both ui and vi are eigenvectors, since
only one of αi and βi needs to be zero, but it easy to see that one can choose both ui

and vi to be eigenvectors without altering the objective function.
It follows from (4.8) and (4.10) that the value of F for a critical point is equal to

the trace of

(4.11)
1

2
W ∗U∗AUV ∗(B + B∗)VW.

The maximal value for all of the critical points is therefore obtained by

(4.12)
1

2
max
π1,π2

(
k∑

i=1

απ1(i)βπ2(i)

)
,

where α1, . . . , αm and β1, . . . , βn are the real eigenvalues of A and (B+B∗) and π1(.)
and π2(.) permutations of 1, . . . ,m and 1, . . . n, respectively.
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Let us remark that, in the square case (k = m = n), Theorem 4.1 is a well-known
fact (see, e.g., [1]). In practice, problem (4.12) can be solved by the following theorem
(see Figure 4.1 for the notations).

Lemma 4.2. Let {αi, i = 1, . . . ,m} and {βi, i = 1, . . . , n} be the eigenvalues of
A and (B + B∗), respectively, ordered in a decreasing fashion. Let m+ and m− be
the number of nonnegative (positive or zero) and negative eigenvalues of A and n+

and n− the number of nonnegative and negative eigenvalues of (B + B∗), and let
k+ = min(m+, n+), k− = min(m−, n−), and l = k − (k+ + k−).

If k ≤ k+ + k−, the couples of eigenvalues yielding (4.12) are obtained as follows.
Take the k+ products formed with {(αi, βi), i = 1, . . . , k+} and the k− products formed
with {(αm−i+1, βn−i+1), i = 1, . . . , k−} whose values are all nonnegative. Order the
values of these products in a decreasing fashion, and keep the pairs of eigenvalues
producing the k largest products.

If k > k+ +k−, take the k+ +k− pairs as explained above whose products all have
a nonnegative value. The l remaining pairs will give products of negative values which
have to be as small as possible in absolute value. These pairs are the following:{

(αm+−i+1, βn++l−i+1), i = 1, . . . , l if k− = m−,

(αm++l−i+1, βn+−i+1), i = 1, . . . , l if k− = n−.
(4.13)

Proof. Let us put the points {αi, i = 1, . . . ,m} and {βi, i = 1, . . . , n} on two
parallel axes and connect the elements of the selected couples by a line (see Figure
4.1). The optimal couples satisfy two properties.

1. The elements have to be coupled such that no crossing between the pairs
appears. In other words, only parallel couplings are allowed. Indeed, if we consider
the couples (αp, βq) and (αr, βs), with p > r, q > s, i.e., αp ≤ αr and βq ≤ βs, we
have

αpβq + αrβs − αpβs − αrβq = (αp − αr)(βq − βs) ≥ 0.

The combination of the two couples (αp, βq) and (αr, βs) produces therefore a larger
value than the value obtained for (αp, βs) and (αr, βq).

2. The pairs formed by elements of the same sign have to be chosen first, since
their product is nonnegative and therefore larger than a product of two elements of
different sign.

Following these two properties, one can easily see that, for k ≤ k++k−, the couples
of eigenvalues producing (4.12) are the couples formed by the extremal eigenvalues
of A and (B + B∗). Indeed these products are all nonnegative and maximize the
function.

For k > k+ + k−, we take into account as well negative products that have to be
as small as possible in absolute value for all of the combinations of eigenvalues. Two
cases may occur: k− = m− or k− = n−. We consider k− = m− (see Figure 4.1), and
the reasoning for k− = n− is similar. In this case, the first k+ +k− pairs are the pairs
formed by elements of the same sign according to the second property. The l remaining
couples are formed as expressed by (4.13), which takes into account the first property
of no crossing between the elements. This expression also takes into account that
only the elements closest to zero are kept. Indeed, permuting any element from this
set with an element farther from zero will give a product, of negative value, greater
in absolute value. For example, if we take αm+−3 instead of αm+−2 in Figure 4.1,
we obtain the couple αm+−3βn++1, which is smaller than αm+−2βn++1. By reasoning
similarly for all of the elements, one proves that only the elements closest to zero yield
(4.12).
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Fig. 4.1. Representation of the eigenvalues αi of A and βi of B with their numbering (on the
top) and of the k adequate couples for finding the maximal combination (4.12) (on the bottom).

4.3. Sum of two Hermitian problems. The square matrices A and B can
always be decomposed into

A = AH + jAS , B = BH + jBS ,

where the matrices AH = A+A∗

2 and AS = A−A∗

2j are Hermitian matrices. The
objective function can also then be decomposed into a sum of two Hermitian problems

1

2
〈U∗AHU, V ∗BHV 〉H +

1

2
〈U∗ASU, V

∗BSV 〉H .(4.14)

This expression of the objective function provides an upper bound for the optimal
value. This bound is expressed in the following corollary.

Corollary 4.3. By Theorem 4.1, an upper bound for (4.2) where F (U, V ) is
expressed by (4.14) is

(4.15)
1

2
max
π1,π2

(
k∑

i=1

αH
π1(i)

βH
π2(i)

)
+

1

2
max
π1,π2

(
k∑

i=1

αS
π1(i)

βS
π2(i)

)
,

with αH
i and βH

i the eigenvalues of AH and BH , respectively, and αS
j and βS

j the
eigenvalues of AS and BS, respectively. π1(.) and π2(.) are permutations of 1, . . . ,m
and 1, . . . n, respectively.

Let us point out that the permutations π1 and π2 in these two terms at the
respective maxima can be different. A lower bound can also be found by choosing the
matrices U and V optimizing one of the two Hermitian problems and by calculating the
value of (4.14) for this pair of matrices (U, V ). For example, if we take U1, V1 optimum
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for 1
2 〈U∗AHU, V ∗BHV 〉H , the optimal solution is lower and upper bounded by

1

2
max
π1,π2

(
k∑

i=1

αH
π1(i)

βH
π2(i)

)
+

1

2
〈U∗

1ASU1, V
∗
1 BSV1〉H

≤ max
U∗U=Ik
V ∗V =Ik

1

2
〈U∗AHU, V ∗BHV 〉H +

1

2
〈U∗ASU, V

∗BSV 〉H(4.16)

≤ 1

2
max
π1,π2

(
k∑

i=1

αH
π1(i)

βH
π2(i)

)
+

1

2
max
π1,π2

(
k∑

i=1

αS
π1(i)

βS
π2(i)

)
.

4.4. Case of two normal matrices. In the case of normal matrices A and B
(i.e., AA∗ = A∗A and BB∗ = B∗B), the optimal value for the objective function
can be found for k = 1 and k = m = n. For general k ≤ min(m,n), only an
upper bound for the optimal value of the problem can be obtained. The following
developments are based on the fact that all normal matrices are diagonalizable under
unitary transformation. We can thus make the matrices A and B diagonal matrices
DA and DB by unitary transformations, with DA = DAR

+ jDAI
and DB = DBR

+
jDBI

, where the subscripts R and I denote, respectively, the real and imaginary parts
of the matrices. In the rest of the section, αi, i = 1, . . . ,m, and βi, i = 1 . . . , n, are
the eigenvalues of A and B, respectively.

4.4.1. One-dimensional case.
Theorem 4.4. For k = 1 and for A and B normal matrices,

(4.17) max
u∗u=1
v∗v=1

〈u∗DAu, v
∗DBv〉H = max

i,j
�(αiβj).

Proof. For k = 1, and by using the diagonalization of the normal matrices A and
B, the maximization (4.1) can be expressed as follows:

(4.18) max
u∗u=1
v∗v=1

〈u∗DAu, v
∗DBv〉H .

This problem is equivalent to

max �
(

n∑
i=1

μiαi

)(
m∑
i=1

νiβi

)
(4.19)

s.t.
∑
i

μi = 1,∑
i

νi = 1,

μi ≥ 0, νi ≥ 0,

where μi = |ui|2 and νi = |vi|2 are nonnegative real numbers. This amounts to
optimizing the real part of the products of convex combinations of the eigenvalues
of A and B. This problem is a bilinear form with respect to μi and νi. If we fix
μi, the problem is linear in νi and amounts to a linear programming problem. The
feasible set forms a polyhedron, and the optimal solution is situated on a vertex of
this polyhedron (or on a face of the polyhedron). We then apply the same reasoning
for μi to obtain the optimal solution. The problem is then equivalent to finding the
indices i and j maximizing

max
i,j

�(αiβj) = max
i,j

(αiRβjR + αiIβjI ),(4.20)

where the subscripts R and I denote, respectively, the real and imaginary parts.
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This problem can be solved in O(mn) operations by merely trying out all products.

4.4.2. Square matrices.
Theorem 4.5. For k = m = n and for A and B normal matrices,

(4.21) max
Q∗Q=I

〈Q∗AQ,B〉H = max
π2

n∑
i=1

(αiRβπ2(i)R + αiIβπ2(i)I ),

where π2(.) is a permutation of 1, 2, . . . , n.
Proof. By using again the diagonalization of the matrices, the maximization can

be expressed as follows:

max
Q∗Q=I

(〈Q∗DAR
Q,DBR

〉H + 〈Q∗DAI
Q,DBI

〉H) .(4.22)

If we develop the first term in the function and we define dAR
= diag(DAR

), dBR
=

diag(DBR
), αiR and βiR the elements i of dAR

and dBR
, and qi the row i of Q, we

obtain

〈Q∗DAR
Q,DBR

〉H =

n∑
i=1

〈|qi|2, dAR
〉βiR .

The last expression is equivalent to

〈Q̂dAR
, dBR

〉H ,

where Q̂ij = |Qij |2. Q̂ is an orthostochastic1 matrix and hence a type of doubly

stochastic matrix, i.e., Q̂ij ≥ 0 for all i, j and Q̂e = Q̂T e = e, with e the vector whose
entries are all equal to 1. The fact that the row and column sums are all +1 follows
from the fact that the rows and columns of Q are all Euclidean unit vectors. From
Birkhoff’s theorem (see [11]), Q̂ is a convex combination of permutation matrices, i.e.,

Q̂ =
∑n!

i=1 ciPi, with
∑n!

i=1 ci = 1 and ci > 0. The above quantity 〈Q̂dAR
, dBR

〉 is
real, and then the problem (4.22) is bounded by the maximum of

〈Q̂dAR
, dBR

〉 + 〈Q̂dAI
, dBI

〉(4.23)

for all Q̂ doubly stochastic matrices. We are optimizing over the set of doubly stochas-
tic matrices, but the solution is a permutation matrix and hence corresponds to a
permutation matrix Q as well. The maximal value of (4.23) is the solution of a
corresponding linear programming problem. This value is simply

max
π2

n∑
i=1

(αiRβπ2(i)R + αiIβπ2(i)I ),(4.24)

where π2(.) is a permutation of 1, 2, . . . , n.
In the case of Hermitian matrix A or B, the problem simplifies further and is

equivalent to optimizing

〈Q̂dAR
, dBR

〉

because the eigenvalues of a Hermitian matrix are real. We retrieve then the original
problem developed in section 4.2.

1A square matrix X of the form X = U ◦ Ū (i.e., X is the Hadamard product of U with itself,
Xij = U2

ij) for some unitary U is said to be orthostochastic.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COUPLING BETWEEN ISOMETRIC PROJECTIONS OF MATRICES 337

Table 4.1

Summary of the results and bounds obtained for particular matrices and dimensions.

Dimensions Matrices Optimum/Upper bound

k = m = n A Hermitian, B
arbitrary

Optimum: maximal combination of the eigenvalues of A
and (B + B∗) (4.7): 1

2
maxπ1,π2 (

∑k
i=1 απ1(i)βπ2(i))

A, B normal Optimum: maximal combination of the eigenvalues of A
and B (4.24): maxπ2

∑n
i=1(αiRβπ2(i)R

+ αiIβπ2(i)I
)

A, B arbitrary Bound: solution of the semidefinite programming relaxation
νD (3.6) or (4.15).

k = 1 A, B real Optimum: product of the adequate extremal eigenvalues of
the symmetric parts of A and B (section 3.2.2)

A, B Hermitian Optimum: product of the adequate eigenvalues of A and B
(section 3.2.1)

A, B normal Optimum: maximal combination of the real and imaginary
parts of an eigenvalue of A and an eigenvalue of B (4.20):
maxi,j (αRi

βRj
+ αIiβIj )

A, B arbitrary Bound: maximal sum of the products of the adequate
extremal eigenvalues of the Hermitian and skew-Hermitian
parts of A and B (4.15)

k ≤ min(m,n) A Hermitian, B
arbitrary

Optimum: maximal sum of the products of k eigenvalues of
A and (B + B∗) (4.7): 1

2
maxπ1,π2 (

∑k
i=1 απ1(i)βπ2(i))

A, B normal Bound: maximal sum of the combinations of the real and
imaginary parts of k eigenvalues of A and B (4.25):

maxπ1,π2

∑k
i=1(απ1(i)R

βπ2(i)R
) +

maxπ1,π2

∑k
i=1(απ1(i)I

βπ2(i)I
)

A, B arbitrary Bound: maximal sum of the combinations of the eigenvalues
of k Hermitian and skew-Hermitian parts of A and B (4.15):
1
2

maxπ1,π2 (
∑k

i=1 α
H
π1(i)β

H
π2(i)) +

1
2

maxπ1,π2 (
∑k

i=1 α
S
π1(i)β

S
π2(i))

4.4.3. General case. In the general case of normal matrices A ∈ C
m×m and

B ∈ C
n×n, for 1 ≤ k ≤ min(m,n) an upper bound for the general problem (4.1) can

be found. We optimize the function

max
U∗U=Ik
V ∗V =Ik

(〈U∗DAR
U, V ∗DBR

V 〉H + 〈U∗DAI
U, V ∗DBI

V 〉H) .

An upper bound to this problem is then

max
π1,π2

k∑
i=1

(απ1(i)Rβπ2(i)R) + max
π1,π2

k∑
i=1

(απ1(i)Iβπ2(i)I ),(4.25)

where αiR and βiR are the elements of diag(DAR
) and diag(DBR

), respectively, and
αiI and βiI the elements of diag(DAI

) and diag(DBI
), respectively. This problem is

combinatorial and differs from (4.24).

4.5. Summary of optimal values and bounds. Table 4.1 summarizes the
results and the bounds for the problem (4.1) developed in the previous sections.
These results and bounds depend on the kind of matrices and their sizes.

5. Numerical computation. In this section we present first an iterative algo-
rithm to find a critical point of (4.1). We then show the equivalence between the fixed
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points of the iteration and the critical points of (4.1). At the end of the section, we
present some numerical experiments of the algorithm applied to nilpotent matrices.

5.1. Algorithm. The proposed algorithm to solve (4.1) is based on the following
relations:

F (U, V ) = 〈U∗AU, V ∗BV 〉H

=
1

2
〈UV ∗, AUV ∗B∗ + A∗UV ∗B〉H

=
1

2
(〈UV ∗, AUV ∗B∗ + A∗UV ∗B + sUV ∗〉H − sk)

resulting from the properties (2.3) and where s is a constant scalar. Let us now define
the linear map Ms(X) = AXB∗ +A∗XB + sX, and then the problem of maximizing
F (U, V ) is equivalent to the following constrained maximization problem:

max
X

G(X) = 〈X,Ms(X)〉H s.t. X = UV ∗, U∗U = V ∗V = Ik.(5.1)

An algorithm for this problem is given in this section, but it relies on a few interme-
diate results. In order to show the uniqueness of the iterates of our algorithm, we will
need the following two lemmas.

Lemma 5.1. Let the singular value decomposition of the matrix M ∈ C
m×n be

partitioned as

M =
[
P1 P2

] [ Σ1 0
0 Σ2

] [
Q1 Q2

]∗
,

with P1 ∈ C
m×k, P2 ∈ C

m×(m−k), Q1 ∈ C
n×k, Q2 ∈ C

n×(n−k), Σ1 ∈ R
k×k, and

Σ2 ∈ R
(m−k)×(n−k) and where k ≤ min(m,n). Then the product P1Q

∗
1 is unique if

σmin(Σ1) > σmax(Σ2) for k < min(m,n) and if σmin(Σ1) > 0 for k = min(m,n).
Proof. This is a well-known result, discussed, e.g., in [12, Theorems 3.1.1 and

3.1.1’].
Notice that the pairs of matrices (P1, Q1) are not unique but are all given by

(P1R,Q1R), where R is a unitary matrix commuting with Σ1. But the degree of
freedom R disappears in the product P1Q

∗
1.

Lemma 5.2. Let ai, bi ∈ R, i = 1, . . . ,m, and let b1 ≥ b2 ≥ · · · ≥ bm ≥ 0. If∑m
i=1 ai ≤ k, k ≤ m, and 0 ≤ ai ≤ 1, i = 1, . . . ,m, then

m∑
i=1

aibi ≤
k∑

i=1

bi.

The upper bound is achieved if ai = 1, i ≤ k, and ai = 0, i > k. Moreover, this is the
unique solution achieving the upper bound if bk > bk+1 (k < m) or bk > 0 (k = m).

Proof. The inequality results from Proposition B.7 for majorized sequences in
[17] by remarking that

∑m
i=1 aibi = bTa and

∑k
i=1 bi = bT v, with

v = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
m−k

).

The upper bound is achieved if
∑k

i=1(1 − ai)bi =
∑m

i=k+1 aibi. The terms are
all nonnegative because bi ≥ 0 and 0 ≤ ai ≤ 1 for i = 1, . . . ,m. The condition∑m

i=1 ai ≤ k implies that

k∑
i=1

ai ≤ k − ε,

m∑
i=k+1

ai ≤ ε,
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with 0 ≤ ε. Therefore

k∑
i=1

(1 − ai)bi ≥ bk

k∑
i=1

(1 − ai) ≥ bkε

and

m∑
i=k+1

aibi ≤ bk+1ε.

If bk > bk+1 (or bk > 0 if k = m), the equality
∑k

i=1(1 − ai)bi =
∑m

i=k+1 aibi is thus
achieved if and only if ε = 0, i.e., all of the terms equal 0. This happens if a = v,
which is the unique solution.

We now propose an algorithm to solve (5.1) by using an iteration

Xi+1 = arg max
X

〈X,Ms(Xi)〉H

which is analyzed in the following theorem.
Theorem 5.3. Let Ms(Xi) ∈ C

m×n be given by

Ms(Xi) = AXiB
∗ + A∗XiB + sXi, Xi = UiV

∗
i , U

∗
i Ui = Ik = V ∗

i Vi,

with A ∈ C
m×m, B ∈ C

n×n, Ui ∈ C
m×k, and Vi ∈ C

n×k, where k ≤ min(m,n), and
s a constant which is strictly larger than smin := 4‖A‖2‖B‖2. Assume that Ms(Xi)
has an ordered singular value decomposition

Ms(Xi) =
[
P1 P2

] [ Σ1 0
0 Σ2

] [
Q1 Q2

]∗
= PΣQ∗,(5.2)

with P1 ∈ C
m×k, P2 ∈ C

m×(m−k), Q1 ∈ C
n×k, Q2 ∈ C

n×(n−k), Σ1 ∈ R
k×k, and

Σ2 ∈ R
(m−k)×(n−k). Let also U ∈ C

m×k, V ∈ C
n×k be isometries. Then

max
X=UV ∗

U∗U=Ik=V ∗V

〈X,Ms(Xi)〉H =

k∑
i=1

σi(Ms)(5.3)

where {σi(Ms)} is the set of singular values of Ms(Xi) ordered in a decreasing way.
Moreover the maximizing solution X is unique and equals P1Q

∗
1.

Proof. We first show that σk(Ms) > smin/2 and σk+1(Ms) ≤ smin/2 and hence
that there is a gap between σk(Ms) and σk+1(Ms). This is proved as follows. The
k leading singular values of sXi are given by s and the others by 0, and the largest
singular value σ1(M0) of M0(Xi) = AXiB

∗ + A∗XiB is upper bounded by smin/2
because

σ1(M0) = ‖AXiB
∗ + A∗XiB‖2

≤ ‖AXiB
∗‖2 + ‖A∗XiB‖2

≤ ‖A‖2‖B‖2 + ‖A‖2‖B‖2 = 2‖A‖2‖B‖2 = smin/2.

We now apply the perturbation result (Theorem 3.3.16 in [12]) to MS(Xi) = M0(Xi)+
sXi and obtain

σk+1(Ms) ≤ σk+1(sXi) + σ1(M0) ≤ smin/2
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and

σk(Ms) ≥ σk(sXi) − σ1(M0) > smin/2.

We have

〈X,Ms(Xi)〉H = 〈X,PΣQ∗〉H = 〈P ∗XQ,Σ〉H ,

and the following two problems are equivalent:

max
X=UV ∗

U∗U=Ik=V ∗V

〈X,Ms(Xi)〉H = max
X̃=ŨṼ ∗

Ũ∗Ũ=Ik=Ṽ ∗Ṽ

〈X̃,Σ〉H ,

where Ũ = P ∗U and Ṽ = Q∗V . Without loss of generality, we assume that n ≤ m
(otherwise the proof is very similar). Then

(5.4) 〈X̃,Σ〉H =

n∑
i=1

�(X̃ii)σi(Ms) ≤
n∑

i=1

|X̃iiσi(Ms)| ≤
n∑

i=1

σi(X̃∗Σ) ≤
k∑

i=1

σi(Ms)

according to Formula 3.3.10b and Lemma 3.3.1 in [12]. Moreover, since Ũ and Ṽ are
isometries, we have

0 ≤ |X̃ii| ≤ 1, i = 1, . . . , n,

and, by a reasoning similar to (5.4) with a matrix Ms(Xi) for which σi(Ms) = 1, i =
1, . . . , n,

n∑
i=1

|X̃ii| ≤ k.

According to Lemma 5.2,
∑n

i=1 |X̃ii|σi(Ms) =
∑k

i=1 σi(Ms) in (5.4) when |X̃ii| = 1

for i = 1, . . . , k and |X̃ii| = 0 for i > k. The upper bound in (5.4) is achieved if
all inequalities are equalities. This implies that �(X̃ii) = |X̃ii| = 1, i = 1, . . . , k,
and �(X̃ii) = |X̃ii| = 0, i > k, i.e., if and only if X̃ii = 1, i = 1, . . . , k, and
X̃ii = 0, i > k. Since X̃ = Ũ Ṽ ∗ and Ũ and Ṽ are isometries, it happens only when
X̃ = Ũ Ṽ ∗ = P ∗UV ∗Q =

(Ik 0
0 0

)
, i.e., when X = UV ∗ = P1Q

∗
1. The conditions of

Lemma 5.1 are satisfied, and the solution X is therefore unique.
The proposed iterative algorithm to solve (4.1) is then the following one. Choose

initial isometries U0, V0, and, for i ≥ 0 until convergence, compute

Xi+1 = fs(Xi) = arg max
X=UV ∗

U∗U=Ik=V ∗V

〈X,Ms(Xi)〉H ,(5.5)

where we assume that σk(Ms) > σk+1(Ms), which is always satisfied by choosing
adequately s. Theorem 5.3 gives the maximizing solution and shows that it is unique.
In practice, we apply the following procedure in which we switch again to the formu-
lation in terms of U and V : Choose initial isometries U0 and V0 and a value for s,
and, for i = 0, 1, . . . until convergence, compute the SVD:

[
Ui+1 U⊥

] [ Σ1 0
0 Σ2

] [
Vi+1 V⊥

]∗
= AUiV

∗
i B

∗ + A∗UiV
∗
i B + sUiV

∗
i .
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When the product UiV
∗
i converges (i.e., when ‖UiV

∗
i − Ui+1V

∗
i+1‖ → 0), there exists

a diagonal matrix Λ = Σ1 − sIk such that

UΛV ∗ = AUV ∗B∗ + A∗UV ∗B − U⊥Σ2V
∗
⊥,(5.6)

where U⊥ and V⊥ are matrices such that every column of U⊥ (resp., V⊥) is orthogonal
to every column of U (resp., V ). Σ2 is a diagonal matrix with elements which are all
smaller than the elements of Σ1. The scalar s must be larger than smin = 4‖A‖2‖B‖2.
The convergence is not proved, but in all experiments the process always converged
linearly to a solution.

Remark 1. An indication that the method has typically linear convergence can
be seen from the case k = 1 and one of the matrices Hermitian (say, A = A∗) (with
|α1| ≥ |αi|, i = 1, . . . ,m, |β1| ≥ |βi|, i = 1, . . . , n, and α1β1 > 0 to simplify the
reasoning; indeed the parameter s could then be zero). In this particular case, the
iteration becomes

(5.7) ui+1σi+1v
∗
i+1 = Auiv

∗
i (B + B∗)

because the right-hand side is exactly of rank one. This algorithm corresponds to the
combination of two power methods for A and B + B∗. Linear convergence is thus
guaranteed. The reasoning could be extended for arbitrary k ≤ min(m,n) and for
s = 0 in the iteration.

5.2. Relation to the optimization problem. In this part we show that solv-
ing the iteration (5.5) is equivalent to solving the optimization problem (4.1), whose
critical points are expressed by (4.5).

Theorem 5.4. Let s ≥ smin in Ms(UV ∗). Then every fixed point of fs(UV ∗)
yields a pair (U, V ) that is a critical point of F (U, V ). Conversely, every critical point
(U, V ) of F (U, V ) yields a fixed point UV ∗ of fs(UV ∗).

Proof. Let UV ∗ be a fixed point of fs(UV ∗). Then according to Theorem 5.3

UΣ1V
∗ + U⊥Σ2V

∗
⊥ = AUV ∗B∗ + A∗UV ∗B + sUV ∗.

Multiply this matrix by V and its Hermitian conjugate by U to get

U(Σ1 − sIk) = AUV ∗B∗V + A∗UV ∗BV,

V (Σ1 − sIk) = BV U∗A∗U + B∗V U∗AU.

This is nothing but the condition for a critical point (U, V ) of F (U, V ) (see (4.5)).
Conversely, let (U, V ) be a critical point of F (U, V ), and then

UΛ = AU(V ∗B∗V ) + A∗U(V ∗BV ),

V Λ = BV (U∗A∗U) + B∗V (U∗AU),

where we have chosen the diagonal ordered form for Λ (see (4.5)). Then, if we define
Σ1 = Λ + sI, with s > 4‖A‖2‖B‖2,

UΣ1 = Ms(UV ∗)V, Σ1V
∗ = U∗Ms(UV ∗).

These equations express that the diagonal elements of Σ1 are singular values of
Ms(UV ∗) and that the columns of U and V are corresponding right and left sin-
gular vectors. Hence there exists an SVD

Ms(UV ∗) =
[
U U⊥

] [ Σ1 0
0 Σ2

] [
V V⊥

]∗
,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

342 C. FRAIKIN, Y. NESTEROV, AND P. VAN DOOREN

Table 5.1

Conjectured values for (5.10) given in [9].

n 1 2 3 4 5 6

fmax
n 2 4 4(1 +

√
3) 8(1 +

√
3) 16(1 +

√
3) + 4

√
5 32(1 +

√
3) + 8

√
5

where Σ2, U⊥, V⊥ contain the remaining singular values and vectors of Ms(UV ∗)
(where we can choose to order the diagonal elements of Σ2 as well). Moreover
σmin(Σ1) > 2‖A‖2‖B‖2 ≥ σmax(Σ2) (see proof of Theorem 5.3). This is the con-
dition for a fixed point UV ∗ of fs(UV ∗), according to Theorem 5.3.

Remark that, for arbitrary matrices A and B, local minima and local maxima
can exist, and then the algorithm may not always converge to the global optimum of
the function.

5.3. Numerical experiments. As an illustration of the algorithm, we consider
the problem of maximizing (4.1) in the case of special nilpotent matrices An and Bn.
For any n ∈ N, the nilpotent (2n+1 × 2n+1) matrices are recursively defined by

An =

(
Nn 0
0 Nn

)
, Bn =

(
0 0
I2n 0

)
,(5.8)

with Im the m×m identity matrix and Nn given inductively by

Nn =

(
Nn−1 0
I2n−1 Nn−1

)
, N0 = 0.(5.9)

The matrices U and V are chosen of the same dimension 2n+1 × 2n+1. The problem
(3.1) is equivalent to maximizing the C-numerical range of An

max
Q∗Q=I

〈Q∗AnQ,Bn〉H .(5.10)

In [9], the authors provide conjectured maximal values of the function, depending on
n. These values are represented in Table 5.1 and have been proved to be correct for
n = 1, 2.

5.3.1. Numerical values by application of the algorithm. We apply the
algorithm given in section 5.1 for nilpotent matrices An and Bn defined above (for
n = 1, . . . , 6). Initial unitary matrices U0 and V0 are randomly generated. The results
are presented in Figure 5.1. Each plot combines the trajectories for three different
initial values. The function

residual = fmax
n − max

U∗U=I
V ∗V =I

〈U∗AnU, V
∗BnV 〉H(5.11)

is plotted on a logarithmic scale against the number of iterations. The values of fmax
n

are taken from the above conjecture. The termination criteria we used for the different
plots are represented in Table 5.2. We observe a convergence to a maximum defined
by the values of the conjecture given in [9].

5.3.2. Duality gap. In this part we show that a duality gap can occur for the
problem (3.6) in the case of nonsymmetric matrices. Consider (3.6) for nilpotent
matrices A3 and B3. In the assumption that the conjecture in [9] is true, νP =
4(1 +

√
3) = 10.92. The value obtained for the dual problem is νD = 11. That proves

that a nonduality gap can occur, i.e., νP ≤ νD.
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Fig. 5.1. Minimization of the residual (5.11) by application of the SVD algorithm.
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Table 5.2

Termination criteria for the plots.

n Residual or Number of steps

1 < 10−6 > 1000
2 < 10−6 > 1000
3 < 10−6 > 1000
4 < 10−5 > 1000
5 < 10−4 > 1000
6 < 10−3 > 1000

6. Conclusion. In this paper, we analyze the coupling between two restricted
matrices under isometry constraints. Our problem provides a method to project
simultaneously the matrices in a subspace of arbitrary dimension k and can be applied
to both real and complex matrices. We indicate that it is an extension of various
problems found in the literature. Many applications can arise from this formulation.

We present some mathematical properties of the problem and we characterize the
maximal coupling for particular matrices such as Hermitian or normal matrices. In
general only an upper bound can be found theoretically.

We develop an iterative algorithm in order to reach the optimum, and we char-
acterize the fixed points. This algorithm is very simple to implement and is based on
the singular value decomposition. Because this problem is not convex, the analysis of
convergence and stability of the fixed points is difficult to realize.

Investigations of mathematical properties and applications of the similarity be-
tween restricted matrices can be pursued in several directions. A deeper analysis of
the convergence of the algorithm is worthwhile to consider. We outline in the rest of
the section a nonexhaustive list of some possible improvements and future research
directions.

The first possible improvement concerns the convergence of the algorithm. Exper-
imentally we observe a linear convergence to the optimum, but this convergence has
not yet been proved and remains an important point to develop in the future. Second,
because the problem is not convex, the analysis of the stability of the fixed points and
the study of their basins of attraction are not easy to obtain. This last point is thus a
delicate but interesting task to explore. From a more applied point of view, another
topic of interest is to investigate how the mathematical concepts proposed here can
be used, possibly in modified form, for applications in various areas. Some research
for the use of the algorithm in the graph matching problem has been initiated but
still needs further investigation. We can conclude that the problem envisaged in this
paper gives rise to the study of interesting mathematical properties but also to various
applications in different areas.

Acknowledgment. The authors thank the anonymous referee whose enormous
work largely improved this paper.
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