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Abstract-In this paper we show that the two-sided Lanczos procedure combined with implicit 
restarts, offers significant advantages over Pad6 approximations used typically for model reduction in 

circuit simulation. 
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1. INTRODUCTION 

Asymptotic Waveform Evaluation (AWE) is a recently developed technique for acquiring low- 

order approximations for large, linearized circuits [l-3]. Such a circuit is generally described by 

the set of state space equations 

i=Aa:+bu and y = cx + du, (1) 

where A is a square, sparse matrix of size n >> 1, b is a column vector, and c is a row vector. For 

simplicity, it will be assumed that the direct-coupling term d is zero. A corresponding, low-order 

approximation can then be defined by 

h=A*+i, and 6 = Ex, (2) 

where the size of a is k << n. If the outputs are close (i.e., ]]y - c]] is small) for some desired 

range of inputs 2~ the low-order approximation is generally considered acceptable. 

The zero-state (z(0) = 0) solution to the first expression in (1) is s(t) = $ eA(t-T)bu(T) dT. 

Thus, determining a good low-order approximation (2) is intimately connected with finding a pair 

{_&i} which yields a good approximation to the matrix exponential eAtb. A method based on 

orthogonal Krylov projectors (the Arnoldi algorithm) is utilized in [4,5] for approximating eAtb. 

But in fact, these concepts can be taken one step further by noting that one is ultimately only 

interested in that information in eAtb which lies in the direction of c. For example, the impulse 

response (i.e., u(t) = 6(t)) of the original system is y(t) = ceAtb. Numerous papers [6-91 are 

beginning to explore this last fact in the context of control (but not circuit simulation). An 

oblique Krylov projector (i.e., the Lanczos algorithm) is employed to generate the reduced-order 

system {a, &, 2). 
Intertwined with the Krylov projections performed in all of these papers is the Pade approxima- 

tion of the transfer function, h(s) = c(sl-A)-‘b. Model reduction via Pade approximation is well 
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documented in the literature [lo], and Pad6 approximants actually form the backbone of AWE. 
But unfortunately, existing AWE papers do not link Krylov projectors and Pad6 approximation 
together. 

In this paper, it will be demonstrated that a Pad6 approximation of the original circuit can 
be obtained without explicitly passing via the moments. Through the nonsymmetric Lanczos 
method [11,12], one can realize the reduced-order system {a, b, 2) directly from the original cir- 
cuit. Approximating the circuit through the Lanczos method requires approximately the same 
amount of effort as existing, explicit moment matching techniques. More importantly, the Lanc- 
zos method provides avenues for efficiently handling the shortcomings of Pad6 approximants 
(Section 3). 

2. MOMENT MATCHING 

In previous AWE papers, the response of the original circuit is typically approximated via 
a two-step process. First, moments which correspond to frequency domain expansions of the 
circuit’s impulse response are explicitly computed. Most commonly, the expansion is performed 
either about s = 0 to yield the low-frequency moments, mi = cA-~-‘~, i 2 0, or about s = oo to 
yield the high-frequency moments (Markov parameters) rni = cAei-‘b, i < 0. 

In the second step, the impulse response 

k(s) = 7&__1&-1 +. . . + 5al.s + no 

Sk + dk_ls”-’ + . . . + dls + d,, (3) 

of the approximate realization is forced to correspond to the first j low-frequency moments and 
(2/c-j) high-frequency moments of the original system. That is, given the Taylor series expansions 

i(s) = c FL& and k(s) = c -iisi, 
i=l i=o 

one forces h_(zk_j) through iLj_1 to be m_(2k_j) through mj_1. As a result, the impulse response 
completely defines a Pad6 approximation (partial realization) which matches the desired moments 
of the original system. Although it is not explicitly determined in existing AWE methods, note 
that state space equations (i.e., {a, b, 2)) can be obtained which correspond exactly to h(s). 

As an alternative to explicit moment matching, consider using the oblique Krylov projector 
rk = ?rp = vkw: to produce a kth order model 

%= (W~AVk)B+(W~b)U=a~++s, and G=(cVk)i=E? (4) 

for the original system (1). The matrices vk and wk are related to Krylov spaces, xk, in that 

coLSP(vk) = ]Ck(A,b) = span {b,Ab,. . . , Ak-‘b} 

COLSP(Wk)=xk(AT,cT)=span cT,ATcT,...,Ak-lTcT}. 
1 

(5) 

(6) 

The utility of selecting vk and wk in Krylov spaces comes from the fact that they can be generated 
with only inner-products and matrix-vector multiplications. By taking advantage of the sparsity 
of A, one can compute the projector relatively cheaply. 

But regardless of how quickly ?rk can be computed, one is certainly also interested in the 
correspondence between the original system {A, b, c} and the reduced-order system {A, 6,2}. An 
important insight into this relationship comes from [13,14]. 

THEOREM 1. Let the reduced-order system {a, 6, i’} b e a restriction of the system {A, b, c} by 

the projector nk where vk and wk are defined as in (5) and (6), respectively. Then the first 2k 

Markov parameters of the original and reduced-order systems are identical. 
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Restating Theorem 1, the reduced-order model is a Pade approximation (partial realization) 

which matches the first 2k high-frequency moments of the original system. 

Through a projector corresponding to KI,(A, b) and Kk(AT, cT), one can obtain a state space 

realization which matches moments about s = 00. In a completely analogous manner, a projector 

corresponding to Kk(A-‘, b) and Kk(ApT, cT) can be employed to generate a realization which 

matches moments about s = 0. And in fact, projectors can be constructed which are combinations 

of both approaches. 

A popular technique for computing Vj and wk in the Krylov projector is due to Lanczos [12]. 

Given the starting vectors 2ri and 2~1, the Lanczos algorithm produces the rectangular matrices 

vk = [vi,...,?&] l R nxk and wk = [Wl,. . . ,Wk] E Rnxk which satisfy the recursive identities 

Ah = VkTk + Pk+l vk+l e: 

ATWk = wkT,T + ‘-fk+l wk+l e;. 

(7) 

(8) 

The vector ck is the kth standard basis vector while Tk is a truncated reduction of A that is in 

tridiagonal form. Generally, the elements pz and yi are chosen so that v&iwk+i = 1. When 

vk+i and wk+i are biorthogonal, multiplying (7) on the left by WL yields the relationship 

W;AVk = Tk. 

To choose the starting vectors, vi and wi, it is important to note from (7) and (8) that 

?&+I E Kk+l(A, VI) and wk+i E Kk+l(AT, 2~1). Then if vi = b/Pi and wi = cT/7i, the matrices 
vk and wk correspond to the Krylov spaces Kk(A, b) and &(AT, cT), respectively. And more 

importantly from (4), a = W> AVk = Tk, & = WT b = el /?I and c = cvk = eT yi, which is our 

reduced-order model! 

3. ADVANTAGES OF LANCZOS-BASED MODEL REDUCTION 

Compared to explicit moment matching, the Lanczos method provides superior results and/or 
greater flexibility in several areas: the sensitivity of the reduced-order realization, the scaling 

of the moments, the stability of the reduced-order approximation, and singularities in the Pade 

table. This section explores these issues in greater detail. 

3.1. Sensitivity of the Realization 

In past AWE papers [2], the reduced-order model is expressed via the partial fraction 

expansion (PFE) of (3) 

G) = & $1 
j=l 

(9) 

where the polespj are the (assumed unique) roots of the denominator of (3) and the coefficients rj 

are denoted as the residuals. Note that given (9), it is simple to obtain a state space representation 

in Jordan canonical form 

[+I [ 
Pl Aj ij . . = tj d 

Pk 

1 . . . 1 

(10) 

Unfortunately, given an arbitrary representation {a, &, ?}, the transformation required to obtain 
the Jordan canonical form is oftentimes poorly conditioned [15,16]. More specifically, computing 

the eigenvectors and eigenvalues of an arbitrary a (which amounts to computing the residuals rj 
and frequencies pj) can be extremely sensitive. 
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On the other hand, the realization produced by the Lanczos method takes the tridiagonal form 

c a1 Y2 I 1 Pl . . 
a, 61 

02 . .., 

El d - 
. . 
. . ‘+‘-A '.Yk ’ 

pk Qk 

Yl 0 

(11) 

The transformation to obtain this realization is known to be better conditioned in general [11,15]. 
As an example, consider the simple system defined by 

Via implicit state space transformations, one can also realize this system in Jordan form (moment 
matching) and tridiagonal form (Lanczos method). One of the eigenvalues of A is at -0.01, 
while the remaining three lie clustered around -1, (-0.9997, -1.0001 f O.O002j}. Although 
these three eigenvalues are close to each other, they are by no means identical, relative to the 
machine precision. Yet the proximity of the three eigenvalues is sufficient to demonstrate the ill- 
conditioning of the Jordan realization. In Figure 1, relative errors are plotted which correspond 
to the step responses of the initial (12), Jordan, and tridiagonal realizations. 
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Figure 1. Relative error in the step responses of the Jordan and tridiagonal realizations vs. the 
step response of the original realization. 

As one would expect, the response error (dashed line) between the initial and tridiagonal 
realizations, is nearly on the order of the machine precision. Yet the error between the responses 
of the initial and Jordan realizations (solid line) demonstrates a significant loss of precision 
in the Jordan realization. In fact, no digits are accurate during most of the response of the 
Jordan realization. Moreover, this difference is only for a fourth order system! In general, better 
conditioned realizations (such as a tridiagonal one) should be chosen over the Jordan form. 

3.2. Moment Scaling 

Besides the sensitivity of the final realization, one must be concerned with the scaling of the 
moments (to simplify the discussion in this paragraph, consider only high-frequency ones for the 
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time being.) If certain eigenvalues of A are extremely large, the size of the moments cAib will 

increase rapidly. Compared to cA”b, the value of cb will be zero in finite precision, resulting in 

a situation where realizations of size > i cannot be computed. To overcome this difficulty, [2] 

proposes scaling the matrix A. Unfortunately, scaling does not address a second difficulty inherent 

to computing matrix-vector products containing increasing powers of A. Consider an A with 

one eigenvalue Xr significantly larger than the others. Then as i increases, the product Aib will 

converge to the eigenvector corresponding to Xi. In finite precision, the information corresponding 

to the other eigenvectors will be lost in the higher moments. Regardless of how many moments 

are matched in this situation, the computed approximation never converges to the original circuit 

(see [l, Example 11). To contend with this difficulty, [l] suggests working around the problem by 

attempting to appropriately shift the moments. If forming a certain type of moment emphasizes 

an extreme eigenvalue of A, one must select other types of moments which emphasize information 

from other portions of the spectrum. 

The Lanczos method, on the other hand, completely avoids both issues because it never 

computes the moments. Rather {a, I?,?} are computed from the Krylov spaces ?&(A, b) and 

&(AT, cT). As an example, consider the state space equations arising from a small, stiff RC 

ladder circuit 

,*,=[ -:F -51 ~;:I~“1 

where Cl = 10w3, CZ = 10e6, and C’s = lo-‘. Allowing Ic = 3, the eigenvalues of the realization 

obtained with both explicit moment matching (about s = 0) and the Lanczos method (corre- 

sponding to Kk(A-‘, b) and &(ApT, cT)) are presented in Table 1. Due to the poor scaling of 

the moments, explicit moment matching is unable to accurately determine the fastest pole. The 

Lanczos method, on the other hand, is able to capture all of the eigenvalues of A. 

Table 1. Computed eigenvalues of A 

ei.g 1 eig 2 eig 3 

Exact -9.98999000e2 - 1.00000100e6 -1.00100100e9 

Moment Match 1 -9.98999000e2 1 -1.00000078e6 1 -5.45486876e6 

Lanczos 1 -9.98999000e2 1 -1.00000100e6 1 -1.00100100e9 1 

3.3. Stability of the Approximation 

When moment matching is employed, the reduced-order model for a stable circuit may be 

unstable [17]. To handle this problem, existing AWE papers prescribe searching the Pad& table 

until a stable realization is located. Although such a technique must eventually succeed for a 

sufficiently large k, it is both heuristic and potentially expensive. One cannot know a priori how 

many realizations must be generated before a stable one is acquired. Moreover, when a stable 

realization is determined, its size may exceed some desired value. 

As an alternative to searching the Pad6 table, [18] stabilizes a realization of specified size k 
by incorporating implicit restarts into the Lanczos algorithm. With implicit restarts, the projec- 

tor rk is modified to El, = wTv which corresponds to the new starting vectors 

6r = (A - /+I). . . (A - pII) u1 and 271r = (AT - pJ) . . . (AT - p11) wl. (13) 

These implicit restarts (which correspond to LR-steps [16] with the tridiagonal matrix Tk) incor- 
porate information from higher moments into the reduced-order model. Strategies for choosing 
the parameters pi in (13) can be employed to insure that this extra information stabilizes the 

partial realization. Examples in [18] demonstrate that when properly employed, implicit restarts 
can stabilize a realization with negligible computational effort. 
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3.4. Singularities in the Pad& Table 

Singularities can occur in the Pade table. Where these singularities exist, partial realizations (2) 
will not be possible. Additionally, poorly conditioned entries in the Pade table must be avoided. 
To the best of the authors’ knowledge, this issue is not addressed in previous AWE papers. Yet 
the occurrence of ill-conditioned table entries is well-studied in the Lanczos algorithm, where it 
is termed a “serious” breakdown. By employing “look-ahead” into the Lanczos method [19], one 
possesses a powerful tool for detecting and avoiding ill-conditioned table entries. 

4. CONCLUDING REMARKS 

Both explicit moment matching and the Lanczos method are efficient techniques for generating 
partial realizations. But by either entirely avoiding a difficulty or providing well-defined tech- 
niques for fixing it, the Lanczos method is better suited for handling the problems inherent to 
Pade approximants. 

Lanczos methods are already being applied to model reduction problems in the areas of con- 
trol [6,7,9] and dynamical structures [S]. Similar methods appear promising for partial circuit 
realizations in AWE. 
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