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ABSTRACT

In this paper, we present several high performance variants of the classical
Schur algorithm to factor various Toeplitz matrices. For positive definite block
Toeplitz matrices, we show how hyperbolic Householder transformations may be
blocked to yield a block Schur algorithm. This algorithm uses BLAS3 primitives
and makes efficient use of a memory hierarchy. We present three algorithms for
indefinite Toeplitz matrices. Two of these are based on look-ahead strategies
and produce an exact factorization of the Toeplitz matrix. The third produces
an inexact factorization via perturbations of singular principal minors. We also
present an analysis of the numerical behavior of the third algorithm and derive a
bound for the number of iterations to improve the accuracy of the solution. For
rank-deficient Toeplitz least-squares problems, we present a variant of the gene-
ralized Schur algorithm that avoids breakdown due to an exact rank-deficiency.
In the presence of a near rank-deficiency, an approximate rank factorization of
the Toeplitz matrix is produced. Finally, we suggest an algorithm to solve the
normal equations resulting from a real Toeplitz least-squares problem based on
transforming to Cauchy-like matrices. This algorithm exploits both realness and
symmetry in the normal equations.

1. INTRODUCTION

Algorithms to solve Toeplitz matrices can be broadly classified into two
categories, namely, the Levinson type and the Schur type. The Levinson
type algorithms produce factorizations of the inverse of the Toeplitz matrix
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such as 7-! = LDLT and T-! = QR, while the Schur type algorithms
produce factorizations of the Toeplitz matrix itself such as T' = LDLT and
T = QR. In addition, the two approaches differ in the kinds of computa-
tional primitives used during the factorization.

In [30] Schur derived a fast recursive algorithm to check if a power se-
ries is analytic and bounded in the unit disc. Interestingly, the recursions
proposed in this algorithm provide a fast factorization of matrices with
displacement rank 2. It is well known that Toeplitz matrices have a dis-
placement rank of 2 [23]. More generally block Toeplitz matrices with a
block size of m have a displacement rank of 2m. In this paper we dis-
cuss several high performance variants of the classical Schur algorithms to
factor symmetric block Toeplitz matrices. Specifically we discuss routines
to factor symmetric positive definite, positive semidefinite, and indefinite
matrices. Algorithms to obtain the QR factorization of exactly and nearly
rank deficient Toeplitz matrices are also discussed.

In this paper the classical Schur algorithm for obtaining the Cholesky
factorization of symmetric positive definite block Toeplitz matrices (8, 9] is
generalized to the block Toeplitz matrix case using a block generalization of
the hyperbolic Householder reflectors. The block generalization of the Schur
algorithm and various blocking schemes differing in the amount of storage
and computational primitives used are described in Section 2. Blocking
the hyperbolic Householder transformations allows us to apply these trans-
formations using BLAS 3 primitives rather than the BLAS 2 primitives
that are required for plain hyperbolic Householder transformations. On
machines with a memory hierarchy this provides us with a faster algorithm.

For symmetric indefinite block Toeplitz matrices the Schur algorithm
breaks down if the matrix has singular principal minors. A scheme to mod-
ify the block Schur algorithm by perturbing the generators and obtaining
an approximate factorization of the matrix is described in Section 3. The
approximate solution is then improved through iterative refinement. The
numerical behavior of this method to circumvent the singularities is studied.
If an exact factorization of the indefinite block Toeplitz matrix is desired,
then one would have to look ahead over the singular or near singular prin-
cipal minors. Look-ahead algorithms based on the Levinson algorithm have
appeared in the literature [4, 12] but suffer from the same reduced paral-
lelism relative to the Schur algorithm mentioned above and are limited to
point Toeplitz matrices. Look-ahead Schur algorithms based on orthogonal
polynomials exist [18] but are limited to point Toeplitz matrices. In Section
3 we present two look-ahead Schur algorithms for point and block Toeplitz
matrices and compare the two from a computational viewpoint.

The classical Schur algorithm can be generalized to obtain the QR fac-
torization of block Toeplitz matrices [5]. If the Toeplitz matrix is rank
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deficient, then we present a modification of the generalized Schur algorithm
in Section 4 to obtain the QR factorization by pruning the generators of
the Toeplitz matrix. If the matrix is nearly rank deficient, then this method
produces a low-rank approximation of the Toeplitz matrix.

Finally we discuss algorithms to factor Toeplitz matrices by converting
them to Cauchy type matrices. Toeplitz matrices can be converted using
the discrete Fourier transform into Cauchy type matrices that allow pivot-
ing during the factorization [15, 21]. These algorithms also have the same
complexity, O(n?), as the Schur algorithm. The problem with this method
is that any real-valued Toeplitz matrix is converted to a complex Cauchy
type matrix and the entire factorization algorithm proceeds in complex
arithmetic. This is computationally expensive. Similarly, any symmetry in
the Toeplitz matrix is ignored in this algorithm. In Section 5 we present
a modification to this algorithm that allows us to work in real arithmetic
and also exploit the symmetric structure of the matrix. This yields a rank
revealing algorithm for the factorization of a semidefinite block Toeplitz
matrix that is computationally less expensive than the algorithm presented
n (15, 21}.

2. SYMMETRIC POSITIVE DEFINITE BLOCK
TOEPLITZ MATRICES

In this section we present a block generalization of the classical Schur
algorithm [8, 9] using block hyperbolic Householder reflectors. Block hy-
perbolic Householder transformations can be applied at the BLAS 3 rate
rather than plain householder transformations, which are applied at the
BLAS 2 rate. On machines with a memory hierarchy this provides us with
a significant improvement in performance. Various blocking strategies that
differ in the computational primitives required during the construction are
presented. The cost of applying these transformations is also discussed.

2.1.  The Classical Schur Algorithm

Let T be an mp x mp symmetric positive definite block Toeplitz matrix
w1th a block size of m x m whose first block row is given by [Tl T2
Tp 1 T,,] Let Z be a block right shift matrix. The Schur algorithm is based
on the fact that the displacement of a block Toeplitz matrix T, defined as
T — ZTTZ, has a rank of at most 2m [23]. The derivation of the Schur
algorithm to compute the Cholesky factorization of a symmetric positive
definite block Toeplitz matrix is outlined below.

Since T1 isa symmetrlc positive definite matrix, we can find its Cholesky
factorization T1 =1L Ll, where L is an m x m lower triangular matrix.
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Let T; = Ll‘lfj. It is easy to see that 71 = LY. We now define two matrices
G1(T) and Go(T) as follows [6, 23]:

n T, Ty ... T,
0 Ty T ... Tp
G(T) =
0 . .1
0 o --- 0 T
0 T T3 ... T,
0 0 T ... Tpy
G2(T) = (1)
0 1>
o 0 --- 0 0

from which it follows that

= [6I(r) GLT)] [

0 -1, 1G2(T
where
G(T) Imp 0
G = d Wip = . 3
[G2(T)J " P [ 0 ‘ImpJ ( )

If we can obtain a transformation matrix U that satisfies the property
UTWypU = Wy, such that UG = R, where R is upper triangular, then
we have

T =G"W,,,G = GTUTW,,, UG

L kN

= RTR, (4)

which gives us the Cholesky factorization of T' [8]. The transformation
matrix U, which satisfies the property U TmeU = Wpyp, is called a hyper-
bolic Householder transformation [26]. The basic properties of hyperbolic
Householder reflectors are discussed in Section 2.2. Since the matrix G com-
prises two upper triangular block Toeplitz matrix, we show in Section 2.4
that considerable computational savings can be obtained by working with
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a generator matrix defined using the first block rows of G; and G5 as

(5)

o Ty o T,.1 T
Gen:[1 2 p=1 p]

0 To - Tpo1 Tp)

It can also be seen that the above generator matrix Gen is obtained by a
factorization of the displacement of the block Toeplitz matrix into

]Gen (6)

I
T—-2TT7Z = Gen™T | ™
0 _Im

Note that when fl is not positive definite we can consider the more
general decomposition 77 = L; ¥ LT, where ¥ is some signature matrix
with +1 on diagonal. This will exist provided T} has nonsingular leading
principal submatrices. The blocks 1} are obtained by T} = (LIE)"lfj and
the Wi, matrix becomes

LT 0

Winp = .
P 0 -L,®%

(7)

We then again use hyperbolic Householder transformations (now with re-
spect to the new signature matrix Wy,;) to reduce G to an upper triangular

matrix. A detailed discussion of the Schur algorithm for indefinite Toeplitz
matrices is presented in Section 3.

2.2.  Hyperbolic Householder Transformations

In [8], Cybenko and Berry use hyperbolic Householder transformations
[26] to reduce the generator matrix G of a scalar Toeplitz matrix to an upper
triangular matrix. We extend their idea to block hyperbolic Householder
transformations (required in the block Schur algorithm), using representa-
tions very similar to those proposed in [2] and [29].

Let W be a diagonal matrix whose entries are either +1 or —1. It is easy
to verify that the matrix W satisfies the equalities

W2=1 and WT=w (8)

Any matrix U that satisfies the equation UTWU = W is called a W-
unitary matrix. Let = be a column vector such that z7 Wz # 0. A hyper-

bolic Householder matrix is defined as

2xxT
cTWe' (9)

U, =W -

One easily checks [8, 27] that U, is W-unitary, i.e., Urwu, = W. These
transformations can be used to map one vector to another as long as they
have the same hyperbolic norm, i.e., if a? Wa = bT Wb. In our algorithm, we
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reduce the generator matrix to an upper triangular matrix by successively
zeroing elements below the diagonal of columns of the G matrix in (3).
Given a column vector u, we would like to find a hyperbolic Householder
matrix U, such that

Uzu = —oe;j, (10)

where e; is a column vector whose jth element is 1 and other elements
are 0 and o is a constant. We assume here that e; We; = 1; i.e., the jth

component corresponds to a +1 in W. Also the vectors u we consider will
have positive hyperbolic norm when the matrix T we decompose is positive
definite. Choosing

ws

o=—"2VuTWu (11)

s
then v and oe; have the same hyperbolic norm. If we take x = Wu + oe;,
it can be shown that U, is a hyperbolic Householder transformation that
maps u to —oe;.

2.8. Block Hyperbolic Householder Representations

If we have to perform a sequence of hyperbolic Householder transforma-
tions we could block these transformations together and then apply this
block to the appropriate matrices. This allows us to use level 3 BLAS
primitives rather than level 2 BLAS operations if we applied the transfor-
mations sequentially. Storage efficient ways to block regular Householder
transformations are derived in [2] and [29]. We extend these methods to
hyperbolic Householder transforms.

Suppose U = UU,_y--- Ul is a product of r n x n hyperbolic
Householder matrices. The matrix U can be written in two forms corre-
sponding to the VY form and the YTY7T form derived in [2] and [29]. The
two forms of the V'Y representation differ in the types of primitives they use.

LEMMA 1. Suppose UK = Wk 4 VkYkT is a product of k n x n hyper-
bolic Householder matrices, where Vi and Yy are n x k matrices. If

T T
2Th41Th 41 —2z,, UM
Uk+1 =W — —W—— and Zk+1 = TT)V—_7
Tigr "V Thet1 L1 W Th1

then
UCH) = U UR = W v vE

where Vg1 = WV 1) and Yiyy = [V 2L,,]. We call this the first
VY form.
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Proof. Ifr =1then, UV =U; = W — 222 /(T W) and we assign

Vi=zjand Y; = —21:1/:1:fo1 in order to have the desired form
U U® = (w - 21T (W* +WY)
+1 $£+1W53k+1 (34

T k
— Wk+l + WVkYkT _ 2mk+1$k+1U( )
Ty Wtka

=W L WVYT + 212041
k+1 vr
=Wkt 4 [WVk (L‘k+1]
Zk+1

= Wk+1 + Vk+1Yk’1;.1- n

LEMMA 2. Suppose UK) = Wk 4 ViYT is a product of k n x n hyper-
bolic Householder matrices, where Vi, and Yy are n X k matrices. If

T
2Tk +1Th 41 -2z, Wk
Uk+1 =W — -T——vv—— and Zk+1 = —T——W—-—,
L1 Tht1 Tr41"V Thet1

then
URHD) = U UK = wh+t Vi1 Yiss

where Vigyr = U1 Vi zi+1] and Y1 = [Y% z,{H]. We call this the
second VY form.

Proof. Ifr =1then, UV =U; = W — 22,27 /(2T Wz,) and we assign
1/(Ty

Vi=z;and Y7 = —21; /xszl in order to have the desired form
U1 U® = (W - M) (W* + viyy")
1‘{+1W$k+1 g
WA U YT - 2B W
Thp1 Wit

= Wk+1 + Uk+1VkY’;T -+ Th+1%k+1

yT
= Wkt! + [Uk+1vk $k+l] |: k jl
Zk+1

= Wkl | Vk+1YkT+1~
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LEMMA 3. Suppose UF) = W* L Vi T, YT W* =1 is a product of k nxn
hyperbolic Householder matrices, where Yy, is a n X k matriz and T}, is a
k x k matriz. If

T
U1 =W — 2—;%, Qk41 = —7——2—*(${+1Yka)
T Wkt T Wkt
and
brr1 = ——T—-Q—,
Thp 1 Wikt
then

U = U UKD = W L Y T YL WE,

where

T% 0
Yk+1 = [WYk .'L‘k+1] and Tk+l = .

Gk1 brg1

Proof. For k =1 it can be seen that U; = W+Y1T1Y1T, where Y1 =
and Ty = —2/zTWz,.

U(k‘+1) W 2.’13k+1${+1 Wk T k—1
= (W — g | (WF + YT} Y, W5)
kakaH

2
— k+1 s T k YT YT k-1
W + x4 2T Wann (o WF) + (WY TR (Y, WE1)
2 T Tyrrk—1
_— YT | (Yo W
+xk+1( zfﬂﬁ’kazkH k k)( k )

= W 4 i 1besr (2F W) + (WY) T (Y WET)

+ Th4+1Ak+1 (YkTWk_l)

T; 0 yITwk-1
= W 4 (WY, $k+1]|: k H k ]

T
k1 bk1] | Ty W

= Wk+! +Yk+1Tk+1YIZHWk. -

The three blocking schemes discussed above differ in the computational
primitives employed (dotproducts or sazpys) and the amount of storage. A
detailed performance analysis of the three blocking schemes is presented
in [13].



TOEPLITZ AND BLOCK TOEPLITZ 351

2.4. The Factorization Algorithm

The following algorithm is used to reduce matrix G (3) described in
Section 2.1 to an upper triangular matrix. This algorithm is essentially
the same as the one described in [8] except that we are dealing with blocks
instead of elements. We describe the algorithm using an example as follows.

Let T = GTW,,,G, where G and W,,, are

T Ty Ty - T,
0Ty Tw Ts - Ty
olo ™ T . T,
0/0 0 T

G =

0 T,
0 Tyt
0 Tpo
010 0 :

o (72 m

The goal of this algorithm is to reduce G into an upper triangular matrix
using block hyperbolic Householder matrices. Since the first column of the
generator is already in the right form we only use the generator matrix from
the second row down. The first row of the upper submatrix of the generator
is the first block row of the triangular factor of the Toeplitz matrix. The
first step in this algorithm therefore involves eliminating the first diagonal
in the lower half of the generator matrix (the boxed T3 blocks in (12)).
If this is done while maintaining the Toeplitz structure of the remaining
portion of the matrix (the submatrix from the third row downward), we
can repeat the process on the smaller generator till we triangularize G.

Consider the matrix formed by stacking the second block row of the
upper submatrix and the first block row of the lower submatrix as

. /0T T, Ts - T,
G:< vzl pl). (13)
0T Ty Ty - T,
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Let U be a block hyperbolic Householder transformation that eliminates
T, using T3. Applying this to G we get

. (0T Ty, T3 - T,
U1G=< b3 7‘11). (14)
0o 0 T3 Ty - T,

The matrix formed by stacking the third row of the upper submatrix
and the second row of the lower submatrix is just a shifted version of G
Similarly all matrices constructed by stacking the corresponding rows in
the two halves of the generator matrix are shifted versions of the G’ matrix
in (13). Hence, all the work that was needed to zero out the diagonal row
of T3 in the lower submatrix was done in the first step. At this stage, the
generator matrix G has a Toeplitz submatrix in its upper half (from the
third row onward) and another Toeplitz submatrix in its lower half as

T T|Ts Ty - T,

0 Tl Tz ~p—1

0 0|7y To - Tpo

0 0|0 Ty

G= — — (15)

0 0)|T3) Ty P

0 o0 [B] " T

0 0|0 0 Tp_s

0 0|0

The second row of the upper submatrix of G is the second block row of
the triangular factor of the Toeplitz matrix. The process is then repeated
on the two lower right submatrices of the generator in (15). After p — 2
steps the generator is completely triangularized.

Note that in addition to being able to work with only two block rows,
we can work with the same two block rows because the reduced generator
in the next step has the same lower block row but the upper block row
is shifted by one block to the right. Before this shift is made the upper
block row must be stored in the right place in the triangular factor of the
original Toeplitz matrix. At the first step of the algorithm, this reduced
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matrix, which we refer to as the generator matrix, is

T Ty - T
Genz( bl ”). (16)
0 T, T3 - T,

Also, we see that in the first step T} is upper triangular because by
construction 77 = LT. The diagonal elements of T} are sequentially used
to zero out all the elements in the corresponding column of the lower block
(T3). This implies that at each step of the algorithm the block hyperbolic
Householder matrices are computed using vectors that have one nonzero
element in their upper half and a non zero lower half. This means that the
V, Y matrices in the first two forms and the ¥ matrix in the third form
have more sparsity than usual. The sparsity patterns of the matrices V,
Y and Y, T and their performance implications can be found in [13]. In
this paper we provide a summary of the computational costs involved in
blocking the hyperbolic Householder reflector.

The blocking scheme described in Lemma 1 requires two reduction prim-
itives (matrix vector products) at each step. For a block Toeplitz matrix
with block size m, if the m hyperbolic Householder reflectors at each step
of the Schur algorithm are blocked, then the total flop count is 2.33m2 +
3.75m? + 8m. Also, applying the blocked reflector to a generator of size
2m x mp requires 5m>p + 3m?p operations performed at the BLAS 3 (ma-
trix multiplication) rate.

If the blocking scheme described in Lemma 2 is used, one matrix vector
product and one rank 1 update are used at each step of the blocking process.
The total flop count to block the reflectors is 2m?3 + 3m? + 8m and the cost
of applying the blocked reflector to the rest of the generator is 5m3p-+2m?p.

The blocking scheme described in Lemma 3 requires two reduction prim-
itives like in Lemma 1 but the cost of blocking m reflectors is 1.33m* +
3.75m? + 8m, which is less than the two schemes mentioned above. On the
other hand, applying the blocked reflector in this form to the rest of the
generator is the most expensive, requiring 5m3p + 5m?p flops.

From this discussion it can be seen that there are definite tradeoffs in
implementing the three blocking schemes and implementation choices must
be made following a detailed performance analysis taking into consideration
the architecture of the machine at hand.

2.5. LDLT Factorization of a s.p.d. Block Toeplitz Matriz

In this section we derive another form of the block hyperbolic House-
holder reflector that is used to obtain an LDLT factorization of a symmetric
positive definite block Toeplitz matrix as opposed to a Cholesky factoriza-
tion. This blocking schéme can be used if the matrix is symmetric indefinite
unless there is a breakdown. Modifications to the Schur algorithm in the
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presence of breakdowns are discussed in Section 3.
Consider a symmetric positive definite block Toeplitz matrix T" having

blocks T5,i = 1, ..., p of dimension m x m. The generator for such a Toeplitz
matrix can be written as
I I, 13 ... T,
G = 2ol i >, a7
0 I Tz -+ T,
where T; = fflf’i,i = 1,...,p. The generator matrix shown above gives

us a factorization of the displacement of the Toeplitz matrix T’

T, 0
T-2"rz=67("" " \¢
0 -7,
=GTwa, (18)

where Z is the block right shift matrix of size mp x mp. The first step of
the Schur algorithm for such a generator is trivial. After the shift at the
end of the first step, the generator for the second step is

Gm:<I Tr Iy oo T (19)
T, T3 Ty - T, )

If we choose a block hyperbolic Householder reflector U such that U TWU =
W, where W is also block diagonal, then the factorization obtained is of
the form LDLT, where D is block diagonal. If Tg is the Schur complement
of T w.r.t. the first leading m x m block and Z is a block right shift matrix
of size m(p — 1) x m(p — 1), then

7. 5. g-co" (11 0 e
0 -1y

- c@Tyr ( z(;l Z(J) )UG@)

2
_ ()6,

where _ _
~ I 1T, T3 --- T,_ o~ b)) 0
G® = 2 3 Pl and W = ! — .
0o T3 Ty - T, 0
From the above equations we see that if = LDLT, then

Lim+1:2mm+1:mp)=(I Ty Tz --- T,.1)
Dm4+1:2m,m+1:2m) = %;. (20)
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From this discussion it is obvious that we need to construct a block hyper-
bolic Householder reflector U such that

5 0 ¥, 0
UT< b )U:( ! ) (21)
0 22 0 Z2

“(x)= (o) @

The steps to construct the block reflector U are shown below. From (21)
and (22) it can be seen that

S =+ X7y, x (23)
and _
o] S I e e (24)
0] X X z -
U~1 can be factored as
U_I_'I 01[I Y (25)
Clx I1]lo w)
where Z = XY + W and
I ~YW-\ [ I 0
U= . . (26)
0o W -X I
Substituting for U, ¥, and £in (21) we get
S =%+ XTS.X (27)
~Syw-t = xTy, (28)
S, =W T(YTS Y +5)WL (29)
If we choose W = I, then we have
8 =3 +(XT8)X (30)
Y = -S7HXTSy) (31)
S = - YIS )Y =5, + (XTey)TY. (32)

It can be seen from the above description that the primitives used in
this blocking scheme are of the BLAS 3 type (matrix multiplication). The
cost of obtaining the block reflector in this form is 6.83m3 + m? flops.
This is substantially higher than the cost of the previous blocking schemes
but the operations are performed at a higher rate (BLAS 3 rate versus
BLAS 2 for the other schemes). The advantage of this scheme over the
others is that applying the block reflector to the rest of the generator of
size 2m x mp requires 4m3p flops, which is significantly less than that of
the other blocking schemes.
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3. SYMMETRIC INDEFINITE BLOCK TOEPLITZ MATRICES

In Section 2 we described the Schur algorithm to obtain a Cholesky
(LLT) factorization and an LDLT factorization of a block Toeplitz ma-
trix. In this section, we discuss modifications to the classical Schur to ob-
tain an LDL” factorization of a symmetric indefinite block Toeplitz ma-
trix. We begin by discussing a possible degeneracy for indefinite matrices
and then present a few techniques to overcome these degenerate steps in
the Schur algorithm.

The following theorem states that if the block Toeplitz matrix 1" is pos-
itive definite, it can be shown that the block reflector U (22) always exists
at every step of the Schur algorithm.

THEOREM 4. Given a symmetric positive definite block Toeplitz T, at
every step of the Schur algorithm, one can always construct a block reflector
U, such that (21) and (22) are satisfied.

Proof. See [13]. ]

8.1. Modifications to the Schur Algorithm for the Indefinite Case

If the block Toeplitz matrix T" is symmetric indefinite, then the Schur
algorithm could break down because of a singular ¥, (see (31)). Even if
¥ is badly conditioned the Schur algorithm would produce an inaccurate
factorization. If at any step of the Schur algorithm X; is found to be well
conditioned, then one can proceed with the Schur algorithm exactly as
described in Section 2.5 to the next step.

There are two ways in which one can, in the event of degeneracy, avoid
the problem of near or total breakdown of the Schur algorithm. The first
method involves perturbing the pivot element of the generator such that the
matrix ¥ in (31) is invertible. This method of “boosting” the pivot block
provides an inexact factorization of the block Toeplitz matrix. Iterative
refinement may be used to correct the solution of such a system. The other
method of avoiding degeneracy is to look ahead a few steps of the Schur
algorithm, till a well-conditioned principal minor can be obtained. These
two techniques are discussed in Sections 3.2 and 3.3.

8.2.  Approzimate Factorization of Indefinite Toeplitz Matrices
Using Perturbations

We outline a modification to the Schur algorithm to factor a symmetric
indefinite block Toeplitz matrix with singular principal minors. As indi-
cated in the previous subsection, if the matrix has a singular principal
minor, then the hyperbolic Householder reflector cannot be constructed



TOEPLITZ AND BLOCK TOEPLITZ 357

and the Schur algorithm breaks down. If the pivot block is perturbed such
that the matrix ¥; becomes nonsingular, then the Schur algorithm can
be continued. This provides an approximate factorization of block Toeplitz
matrix.

The blocking scheme used in this subsection is different from the one
discussed in the previous subsection. The scheme used is a modification
of the techniques discussed in Section 2. Consider a symmetric indefinite
block Toeplitz matrix T' with block size m x m whose first block row is
given as Tl, i1=1,...,p. If T1 is nonsingular and T1 PLlElLTPT (Pisa
permutation matrix), then the generator for the Toeplitz matrix is given as

T T, - T S0
Genz( b2 ”) and W:( ' ) (33)
0 T - T 0 -%

where T, = (LEl)'lPTﬁ,iA: 1,...,p and ¥, is a diagonal signature
matrix. If the leading block T3 is singular, then the generator is given as

05(Ty + L) To - T, I, 0
Gen = (Al + Im) AQ P and W = ( i ),
05(T1 — Im) T2 s Tp 0 _‘Im

where [, is an identity matrix of size m.

At each step of the Schur algorithm, a block hyperbolic Householder
matrix is constructed using the first block column of the generator at that
step. Let us consider the blocking schemes discussed in Section 2. A se-
quence of hyperbolic Householder matrices is constructed such that the
diagonal element of the upper block is used to zero out all the elements of
the column below it. At the jth step of the process of zeroing out the lower
block, the vector u has the form [0,...,0,u;,..., uzm]. Let the hyperbolic
norm of u be ul Wu. A hyperbolic Householder reflector can transform a
vector u to another vector b such that uTWu = bT Wb. If we choose b to
be —oe; (using u; to zero out the column), then ¥TWb = W(j,j)o2. If
sign(W(j,7)) # sign(u”Wu), then one cannot obtain a reflector U such
that Uu = —oe;. We would have to look for an alternate nonzero pivot ele-
ment in the column of u that has the same signature as the sign of u” Wu.
Let this be ug. The element u, can be permuted to the jth position and
can be used as a pivot element to zero out the column below it.

Let us first assume that the hyperbolic norms of all the u vectors during
the block reflector generation process are nonzero. The case of a zero hy-
perbolic norm is discussed later. The blocking schemes discussed in Section
2 can be easily extended to the indefinite case in the presence of permuta-
tions of the kind described above. Let us consider the VY blocking scheme.
A derivation of the YTYT form can be obtained similarly.
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Let us consider a particular step in the Schur algorithm. Let the gener-
ator and signature matrix Gen and W satisfy the following displacement
equation

T — ZTTZ = Gen™”W Gen. (34)

Consider the first step of the blocking process. Let P, be the permutation
matrix to get the correct pivot element in place. The hyperbolic reflector
U, is given as

27127

U] == W1 - ~—T/—\,_~—,
Xy Wll‘l

(35)

where W; = PyW,PT (where W), = W) and Z; = Pyz. Let us denote
the first block column of the generator Gen that is used to produce the

block reflector as A. The reflector U; is applied to a permuted version
of A,

N = =T
U\PLA = Wy — =2 p g
Ty W11131
v (P + (P (=2 )) 4
.’IITWL'IH
UWA = (PW, +viy]) A. (36)

The reflector U} shown above is W-unitary in the following sense
vOTWUM = w, (37)
where Wl =P WPlT . This result is derived as follows:

vOTWUD = (PWy + oyT) Wi (PW; + vyyT)
= Wi PTW, P,W; + 12T PTW, Py T
+ ylwaf/I/T/lPlWl + WlPlTwlPlxlle
If PTW,P =W,
UOT WU = Wy + e Wiyl + yiaT + iyl
= W;. (38)

Let ¢ = PiW,, VO = y; and Y = g1, we show by induction that
at the (¢ + 1)th step the block relector has the form UG+) = CcG+D 4
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VDY DT where CU+D = PEHD WG+ | At the first step PV = Py,

W) = W, and U = U;. Assume that U has been obtained in the

correct form. We show that U¢*1) can be obtained in the correct form.
At the (¢ + 1)th step W,y is given by

Foor < Pons (4] : Pz
T oW1 2myi+12m) )T

= P Wi P, (39)
and
[+ U'i+1Pi+1U(i)
= (Pis1Wig1 + Pi1zit1yi ) (C(i) + V(i)y(z‘)T)
= PiyiWip CW

@ Y@
+(PiaWirit VY | Piiziga) yT (C +V(i)y(i)T)

= oU+D 4 V(i+1)y(i+1)T)
where
C*Y = P Wi, €O
= Py Wi POWO
— (pin(i)) (p(i)T{yin(i)W(i))
= pl+l) G+ (40)
The block hyperbolic Householder tjrﬂansformation at the end of m sTte_Es
has the form U™ = (™) + V™Y (™" From (37) we know that UV W,
UM =W, where Wy = PLWPL. It can be shown by induction that
U(m)TWnextU(m) =W
Wiext = pm...leplT...pT

m

= pmwpm, (41)

where W eyt is the signature matrix for the next Schur step.

If the hyperbolic norm of any column is zero, then the Schur algorithm
breaks down. The column of the generator is perturbed such that the hy-
perbolic norm of the column is of the order of |6|. An algorithm for the
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perturbation of such a column of the generator is:

if (wTW,_1u = 0) then
u; — pivot element
a—(O Ou]+1,...,u2m)
if (W;- 1(J j) =1) then
u; = \/W;-10,3)(18] - a7W; 1a)
else
45 = /W10, 3)(~16] = aTW;_10)
end N
else if (u TW;_1u > 0) then (+e| say)
if (Wj—1(j,) = 1) then
u; — pivot element
a= (0 0 u_7+1, .. U,Qm)

\/ 2103, 9)(18] + lel = aTW;_1a)

else
ug — pivot element (Wj_l(k, k) =1 say)
a = (0,...,O,uj,...,uk_l,O,ukH,...,uQm)
u = \/Wy_1(k, K)(18] + |l — a7 W_10)
end
else (UTW;’_IU = —|e¢| say)

’Lf (Wj_l(j,j) = 1) then N
ur — pivot element (Wj_1(k, k) = -1 say)

a = (O,...,O,Uj,...,uk_l,O,’u,k+1,...,u2m)

ue = \/Wj_l(k,k)(—w] el - oW, -1a)
else

uj — pivot element

a = (O,...,O,Uj+1,_._,uQm)

us = W51, 3) (18] — el — aT W 10)
end

end

The perturbation of a column of the pivot block column of the gen-
erator with zero hyperbolic norm allows us to continue the factorization
process but introduces numerical instability into the algorithm. One way
to circumvent the possible numerical instability of the Schur algorithm is to
use iterative refinement on the system of equations. A similar perturbation
technique has been used in [7] for the Levinson algorithm. They use the
approximate factorization as a preconditioner in the conjugate-gradient al-
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gorithm. The iterative refinement technique we propose requires less work
than the preconditioned conjugate-gradient algorithm per iteration.

Let us consider the system of equations T'x = b, where T is an indefinite
symmetric block Toeplitz with singular principal submatrices. Using the
perturbation technique described above we obtain an approximate factor-
ization

T +6T =LDLT. (42)
We solve the system of equations to get
LDLTz, =b (43)
and then compute the residual r;
ry=—-Tz; +b (44)
Using the correction term Az; obtained from
LDLAz; =1 (45)
we improve the estimated solution by
To =1 + Az, (46)

The algorithm then becomes

Construct LDLT = T + 6T using the Schur algorithm.
Solve LDLT z; = b, and set ry = —Tzy + b.
forv=1,...

Solve LDLTAz; =1,

if |Az;|| < tol |lz;l] then stop

else
Tiq41 = T4 + Azx;
Tit1 = 1Ty +b
endif
endfor

From the error analysis of [32] we know that the computed quantities
E;, AZ;, and 7; satisfy the following identities

Fi = —T'Ei + b + 5?1' = Ty + (SFi With HéTzn S 61||TH ||f¢l| (47)
(LDL" + 6T)AT;, =7, with  ||6T) < millL|* | D|l, (48)

where ¢;, 7; are of the order of the machine precision of the computer.
From these equations we obtain

(T + 6T + éTl)A.’fz =b-—-T%z; + 6T (49)

and after some rewriting

Tit+1 = b— T(_f-b + ATZ) = (6T -+ (ST,,)ATz — (5?1'
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or also
rig1 = (6T + 6T)(T + 6T + 6T;) ™ (r; + 67,) — 67
= AT(T + AT}) 'ri — T(T + AT;) 167,

where the terms 67" and 67}, which are typically of the same order, have
been grouped together in AT;. Defining M; = AT; T~! we have
Ti41 = Ml(I + Mi)‘lm - (I + Mi)_l(S’_f-i. (50)
If we can now obtain that max; ||AT; T} = v < 1 then the above
equation is a difference equation that will converge linearly, with a factor
8 = v(1 —~), to a steady-state value of
1 1 1

Irooll = $ =5 7= I67maxll = T 167maxll < T25- 1T el (51)
Since our assumption is that v is small, this final residual is about what
one can expect from a stable algorithm. If we obtain that v = /€ then the
number of iteration steps to get “convergence” to this result would be £.

As shown above it is important to bound [|§7° T~1|| in the construction
of the factorization. Since LDLT is only an approximate decomposition
of T (but an exact decomposition of T + §T), we have the freedom to
perturb 7" so as to obtain a better bound for T 7. In this subsection
we show how to obtain this by selective perturbations introduced in the
Schur algorithm. Similar ideas have been developed independently for the
Levinson algorithm by Concus and Saylor [7].

At the ith step of the Schur algorithm we apply a block hyperbolic
Householder transformation U; to the generator G'(¢) to get G'(i + 1), i.e.,
U,G'(i) = G'(i+1). The corresponding decomposition for the Toeplitz ma-
trix is

T = [GT(5) GE(i)] UiWﬁi[Gl(i)]

Ga (1)
Gi(t+1)
Ga(i+ 1)} ’
where (71 is essentially a block arrangement of identity matrices and U;
blocks. Hence,
I0illz = 1U:lla - and [T, = (U7l (52)

If we now perturb the generator matrix G’(i) by a perturbation of norm
5||G(1}||2 then the equivalent perturbation ||AG(1)|| of G(1) is bounded by

= [GT(i +1)GE (i +1)] W[

1acl < s[jor |, - loidl, 16l

and that of T is proportional to §|U; |z -+ - |U;Z4 2]/l In other words,

i
the norms of the inverses of the block transformations performed thus far



TOEPLITZ AND BLOCK TOEPLITZ 363

act as a growth factor in the back transformations of the perturbation to
the original matrix. Another factor that we have to be concerned about is
that the transformation U; for which the § perturbation was done will have
a norm of approximately 1/6 and the norm of the next generator G(i + 1)
will be increased by that amount. Numerical errors in subsequent steps will
thus be proportional to this value and when transforming these back to the
original matrix T we find again that we have to keep
ULl [ Uy

bounded. Experience has shown that for each perturbation é performed at
a certain step ¢, there will be two block transformations of norm approx-

imately 1/6. For hyperbolic Householder transformations, |U|| = ||U!|.
Hence, the total error due to one perturbation is
AT €
T =+ —. (53)
17| 6°

We choose 6 so as to minimize the above expression. The value of § that
minimizes the above expression is v/2¢ or 6 = /e. This gives us

v= AT T}
< AT) (T
AT
< —~——cond(T
iy o)
6+ 5% (if T is well conditioned)
~ e (if we set § = ). (54)

The subsequent number of steps of iterative refinement would be three.
The above analysis holds true if we perturb the generator matrix just once.

Let us consider the case when we need to perturb twice. Let 8; and 62 be
the two perturbations at steps i and j respectively. The total perturbation
to the original Toeplitz matrix can be expected to be of the following order

6T = (8uJUTH| - UL + ollUTH |- U4 DT
~ (51 4 %) 17l (55)

The numerical error due to the block transformations of norms approxi-
mately equal to 1/6% and 1/62 is

Numerical errors = ¢||Uyl| -+ |Un—1|| ||
€
= —. 56)
78 (%6
The total error due to the two factors is

AT [P €
—_ —= + —==. 57
TR AT &7
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The above expression is minimized by choosing §; = /€ and 3 = ¥¢. This
means that we would require nine iterations to get to machine precision. It
is impossible to know ahead of time how many perturbations one requires to
carry on with the Schur algorithm. If, upon performing one perturbation of
/e, we see during the Schur algorithm that another perturbation is needed,
we would have to backtrack to the first perturbation and change the value
of §; from e to ¥/c. This is usually very wasteful of computation. Also,
if the number of times the generator needs to be perturbed increases, the
accuracy is lost very quickly and we might have to look for other ways to
handle such cases. From our experiments with Toeplitz matrices, we have
observed that even for Toeplitz matrices with several singular minors one
perturbation is sufficient. So, in practice, it might be safe to assume that
a large number of systems can be solved by perturbing the generator only
once and the above analysis holds. For systems where this is not the case
the algorithms discussed below are applicable.

We now present an example of a symmetric Toeplitz matrix with a sin-
gular principal minor. Consider the following block Toeplitz matrix T" with
a block size of 2.

0.04324379151529  0.20158091418084

T1:2,1:2) = (0.29158091418984 0.67982106506507)
. 0.00769818621115 0.06684223751856
T(1:2,3:4) = <0.38341565075489 0.41748597445781)

0.58897664285683 0.84616689050857
0.52692877758617 0.65391896229885
0.09196489075756 0.41599935685098)

This matrix has a singular principal minor {T'(1 : 4,1 : 4) is singular). At
the second step of the Schur algorithm, while blocking the two hyperbolic
Householder transformations, the second column of the pivot block col-
umn of the generator has zero hyperbolic norm. We introduce a pertur-
bation of v/10-16 =~ 107%. The norm of the block hyperbolic Householder
after perturbation is 2.2172e+07 and the norm of Uy is 2.821e+07. This in-
dicates that a single perturbation of § produces two block hyperbolic House-
holder transformations of norm approximately equal to 1/8. The norm of
6§T.T~! is 5.5761e — 04. If we consider z=(1 1 1 1 1 1 1 1)T, then
b=(3.2074 3.7154 2.4177 3.6918 2.0762 4.0332 2.6206 4.3022).
We find ||z — z1]] = 3.1699¢ — 04. Using iterative refinement, we find that
after one step ||z — x2|| =9.7515e — 08, after the second step |z —z3|| =
3.2389e — 11, and after the third step ||z — z4|| =3.5231¢ — 15, which is
approximately equal to the machine precision. Note that this is consistent
with the analysis above.

0.68677271236050 0.93043649472782
T(1:2,5:6) =

T(1:2,7:8):<
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8.8. Look-Ahead Schur Algorithms

Perturbing the generators in the event of singularities during the Schur
algorithm produces an approximate factorization of the block Toeplitz ma-
trix. Iterative refinement is needed to improve the accuracy of the solution.
If an exact factorization of a symmetric indefinite block Toeplitz matrix is
desired, then we would have to deal with the singular principal minors of
the Toeplitz matrix in a different way.

One important way of avoiding the singular principal minors during the
Schur algorithm is to look ahead over the singularities. This technique may
also be used when the principal minors are badly conditioned. Look-ahead
techniques were originally proposed to improve the numerical robustness
of the Lanczos algorithm applied to an indefinite matrix T in the presence
of singular and nearly singular leading principal minors in T' {25]. Most of
the techniques related to these developments are based on the theory of
orthogonal polynomials [17] or equivalently on that of T conjugate direc-
tions. This theory is in turn closely connected to that of Hankel matrices
and the Padé algorithm [3] and of Toeplitz matrices and the Levinson algo-
rithm [12]. In both cases one constructs the decomposition L~'TL~T = D
where T is the given Toeplitz matrix. The rows of L~} are the conjugate
directions or also contain the coefficients of the orthogonal polynomials.
Look-ahead techniques have been proposed and yielded algorithms with
satisfactory numerical behavior [3, 4, 12, 18, 25].

The look-ahead Schur algorithm proposed in [18] is based on orthogonal
polynomials and does not extend to block Toeplitz matrices. Look-ahead
Schur algorithms for Toeplitz systems with exactly singular principal mi-
nors have been proposed in [10, 24].

In Sections 3.3.1 and 3.3.2 we discuss two look-ahead Schur algorithms
that are based entirely on matrix operations and hence extend easily to
block Toeplitz matrices.

8.8.1. Algorithm 1. Consider a mp x mp block Toeplitz or quasi-block
Toeplitz matrix T" with a block size of m x m. Let the displacement equation
of this matrix be

T-2"TZ = GT%4Gy

where

_<H00 Hor Hop - HOp—1>
A\ Goo Gu Goz -+ Gopor

So1 0
Yo =" )
0 S

and
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The Schur algorithm proceeds by applying a Y-unitary transformation Uy
(UTL,Uy = %) to Gy such that

N Ho Hyi Hop -+ Hgp

Gy = UGy = 00 ‘o1 Hoo Hop-1 ,

0 Gor Go2 -+ Gop-1
by 0
o = ( " >
0 X2

It was shown earlier that if Hd) o1 Hgo + GEoZ02Goo is singular, then the
Schur algorithm breaks down. If it is badly conditioned, the factorization
would have significant numerical errors. It can be seen that H&%ZOIHOO +
03“02026'00 is the (1,1} block of the Toeplitz or quasi-Toeplitz matrix.
More generally, if the 2m,3m, ..., (k —1)m principal minors are singular or
badly conditioned and the km principal minor is well conditioned, then to

preserve numerical accuracy we would have to look ahead over the (k—1)m
steps of the Schur algorithm. Let the matrix T" be partitioned as

n le}
T= , 59
o (59)

where 771 is the km x km principal minor of T that is well conditioned.
If we are to “jump” over (k — 1)m steps of the Schur algorithm, we also
require that the off-diagonal entries of 77;'T12 not be too large. A detailed
discussion on the determination of the look-ahead step size (denoted here
by k) can be found in [4] and [12]. We restrict our discussion to the look-
ahead scheme after the determination of the step size k.

The first step in this look-ahead scheme is the computation of the first
km rows of the Toeplitz or quasi-Toeplitz matrix given by [T11 | T12]. From
this we obtain the diagonal block and the upper triangular factor of the
Toeplitz or quasi-Toeplitz matrix by an O(n3) “slow” algorithm such as
the Bunch-Kaufman for symmetric indefinite matrices. The first km rows
of the block Toeplitz matrix can be obtained from the generator matrix
and the signature in O(m?p) flops.

Let the matrix [T11 | T12] be factored into

[T11 | Tiz) = Dy LY, (60)

where Dy = T1; and LE is a km x mp matrix with a leading identity matrix
of size km

LT = (Itm | T(1'T12)
= (Iem | LT). (61)
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The Schur complement of the Toeplitz matrix T w.r.t. the kmth principal
minor is

T® = T(km +1:mp,km +1: mp) — EkaE{. (62)

The Schur algorithm can be continued if we obtain a factorization of TS(C"c )
that is of the form shown in (58). Since the displacement rank of the Schur
complement of a block Toeplitz matrix is 2m, such a factorization exists.
We now proceed to show how such a factorization can be obtained.

Let us denote the matrix T'(km + 1 : mp,km + 1 : mp) as T. Let Z be
a block right shift matrix of size (p — k)m. The displacement of the Schur
complement Ts(ck ) is given as

T - ZTTRZ =T — Z'TZ — Ly Dy LY + ZTLy Dy LT Z. (63)

If the generator Gy is partitioned as

Go = <H00 -+ Hop—y |Hox -~ HOp—1>
Goo - Gok-1|Gor -+ Gop—1
= (Go | Go), (64)
then
T -Z"TZ = GTS,Gy (65)
and

Ts(f) - ZTTs(ck)Z = aoTZoéo - EkaEZ + ZTZkaffZ (66)
Factoring Dy = Lp,Xp, L}, , where Ip, is a diagonal matrix with +1
entries, the right-hand side of the above equation can be rewritten as

S 0 0 Go
(éoT EkLDk. ZTEkLDk) 0 —-%¥p, O Lp, lALZ
0 0 ZDk LDk E{Z
Hence, we have

AT =78 _ ZTTR 7 = GTWG. (67)

This indicates that we can readily obtain a generator for the Schur com-
plement. The problem with (67) is that the generator G has a rank of at
most 2km + 2m. We know that the minimal generator of a block Toeplitz
matrix has rank 2m. We, therefore, have to reduce the generator shown
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above so that a mlmmal generator is obtained. The displacement of the
Schur complement;, ATsc ), is a symmetric indefinite matrix of rank 2m. To
obtain a rank 2m factorization of this matrix one would have to use the
Bunch-Kaufman algorithm. A brief description of a delayed update ver-
sion of the algorithm follows. Consider the ith step of the Bunch~Kaufman
algorithm, and let the partial factorization of the matrix ATs(Ck ) be

d{u
ATH) = , 68
sc [ﬁ—f;:l ( )

where d is a block diagonal matrix with 1 x 1 or 2 x 2 blocks. The next
step is the computation of the first row of the matnx X. This can be
obtained by computing the corresponding row of AT sc ) and updating it
with uTdu. It must be noted that the matrix ATS(C) can be stored in its
factored form and when a certain row is needed it can be computed using
the factorization in (67). For example, the jth row of ATsc is given by

WG and requires O(mkn) flops where m is the block size, k is the look-

ahead step size, and n is the number of columns of G. After obtaining
the first row of X, the maximum element of this row is computed. If the
(1,1) element of X can be used as the pivot (for a detailed description
of the Bunch-Kaufman algorithm see [16]), then this row can be used to
compute the next row of the factorization. If the (1,1) element cannot be
used as a pivot, another row of the matrix X needs to be computed in
the same way as described above. In some cases this new row becomes the
pivot row. In others the first row and the new row are used to define a
2 x 2 pivot block, which is used in the elimination. After M steps with
8; X s; pivot blocks, where ZZ 1 8i = 2m, the generator of the ATSC)
obtained.

This look-ahead algorithm requires 2km + 2m of storage for the gener-
ator G. In addition, during the reduction of G to G a Bunch-Kaufman
like pivoting strategy is applied to obtain 1 x 1 or 2 x 2 pivot blocks that
are used to compute the hyperbolic Householder transforms. The pivot
search strategy requires reduction primitives to find the column with max-
imum hyperbolic norm. In Section 3.3.2 we present an alternate look-ahead
Schur algorithm that requires less storage and in some cases less computa-
tion than this method and avoids the Bunch-Kaufman pivoting strategy all
together. Hence, reduction primitives that perform poorly on distributed
memory machines are avoided.

3.3.2. Algorithm 2. In this section we discuss another look-ahead Schur
algorithm that requires less storage than the previous scheme and avoids the
reduction primitives used in the Bunch-Kaufman pivoting strategy. A simi-
lar algorithm has been developed independently by Sayed and Kailath [28].
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Let T be a general symmetric, block Toeplitz matrix of dimension N x N
and block size m x m, i.e., row of T be given as

To T, - Ty
Tr Ty . T,

T 0 P2l =TT, N=mxp. (69)
Y, TL, ... Tp

Let Z be a block right shift matrix of size mp; then the displacement
equation of the matrix 7' can be written as

T-2TTZ = GTLG. (70)

Let us assume that Tj is ill conditioned. A look-ahead Schur step would be
needed to preserve numerical accuracy of the factorization. In addition, let
us assume that the m,2m, ..., (k—1)m principal minors are ill conditioned
and that the km principal minor is well conditioned. Partition 7" and Z

conformally as
ANRAY)
1 1 ’ (1)
0 | Zo2

where 77, and Z3; are of dimension mk x mk (a multiple of the block size)
and T7; is assumed to be invertible (this is always possible by choosing k
large enough). Let us also assume that all the conditions for determining
the look-ahead step size of k as discussed in [12] are satisfied. We now
derive updating formulas for the Schur complement of a matrix T with
low displacement rank and show that it also has low displacement rank.
The rank 2m, factorization of the displacement of the Schur complement
provides the generator for the subsequent steps of the Schur algorithm.
This part is related to the work of [22], but is not contained in it.

T | T2
To1 | Ta2

?

Define
X =TTy, XT-TOTRL U |2 _IX] ;o (12)
then it follows that
UTTu = [Tn | T = Tho — THT1' Tha, (73)
s

where T, is the Schur complement of T" with respect to T3;. Applying
UT()U to (70) yields

vTru - Tzt uTTu (U~1zZU) = UTGTRGU.  (74)
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Note that

Z11 | Zaa
Zy

, 212=[I|X]Z[;I—}.

UT1ZU = { (75)

Using (73) and (75) we can reduce (74) to

Ty | /AT | Zn l Zys

] Lo

=UTGTLGU. (76)

T
Zf |

7T T
ZIZ ] Z22

Isc

Tsc

Equating the (1,2) and (2, 2) positions in the above equation we have

-X
—| =0,
I

= ZLT1Zw + [-XT|I) G726 [TJ

M = ZLT,Z15 + 1 0|GTEG

ATsc = Lg¢c — Z’érszch
(77)

Substituting for 212 from (75) we can further simplify M and AT to

M:[I]O]{ZT —;—T]TH[HX]ZJFGTZG} =0 (19
AT, = [-XT | 1]{ 2T Lz [1|X)Z + GTx¢ - (79)
sC XT 11 I .

Substituting for X in the matrix in the middle of the above equations we
get

TT
W= 2T T—ITIJ TMTy | Tw)Z + GTEG
12
lei Tl_ll I 0 [TH | le]Z
=2 |- |67 . (80)
%, 0 |z G

This expression can now be further simplified to prove that the rank of
AT, is at most a. To prove this we first need the following lemma.

b 0 F F;
[ 1 ] [ 11 12]’ (81)
0 Xa|[Fo1 Fao

LEMMA 5. Let

Ff Fj
W=\pr pr
12 22
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where L1 and Wy = Fﬂlell-{-ngnggl are invertible. Then there always
exists a transformation H such that

0 20
HT |7 | H= [ ! ] (82)
0 EQ 0 22
Fi, F Fy, F
H[ 11 12] _ | e (83)
Fy  Foy 0 Fy
Proof. See [14]. ]
To simplify (80) we now must apply this lemma to construct a transforma-
tion H such that
T—l T#l
T |Zu l~ o |Zu l ‘ (84)
B B
[Th Tz T | jil? (35)
G 0 |G,

where fm and fu are matrices of size mk x mk, G has dimensions o« x N,
and Gq has dimensions a x (N — mk). To apply the above lemma we ounly
need to show that Wy is invertible since 77, is invertible by assumption.
From (76) it follows that

! 86
ol (86)

J

Tn = 2L, 2, +GTSG,,  where Gy =G

From (80), W11 equals

Th (1
erl = [I | O] {ZT _— Tl_ll[Tn | Tm]Z + GT}:G} E:l (87)
12 L
and since
VATERAT
Z = , G=[Gy Go, 88
[ a Zzz] (61 Gl (88)
we have

Wi = ZLT0TH T Z1 + GTEGy = Ty, (89)

which thus shows that Wi, is invertible as well.
Applying (84) and (85) to (80) we obtain

| 0] [Tn]o

erllo|s

f11 ' T\12
0 |G

—

T,
= 90)
T,

T
11
T
12
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Inserting this in (78) and (79) yields

X
M:[I|O]W[——
I

AT,. = GITSG,

-~

=THT' T |f12}

-X}
— ] =0
I

N - I e
+ =X ] | = | T11 [T | ] : (91)
TL I
Since M = 0 and fn and T} are invertible, we have
T | Tl || =0
el == =0,
which yields,
AT, = GTSG,. (92)

This establishes a new displacement identity where % and G, are obtained

from (84)—(85).
The above description of the

algorithm did not provide a method to

construct the transformation H. We now outline one method to construct

the matrix H. Assuming that 17,
satisfies the following

is invertible, we know that the matrix A

(T11 | Th2) 2 _ T l7;12 (©3)
G 0 |G,
T vk
g |t g |1 ' (94)
¥ b))

Let H = R(Q, where R is upper block triangular and @ is unitary. Let G
be partitioned as [Gy | G2], where G; has dimensions a x mk. Let R be

partitioned as
R =

From (93), it can be seen that H

Tnzy Ty |

[Ri1| Riz
. (95)
| 0 | Ra
must satisfy
T1Z11 Ty
Q|- | (%6)

G 0
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The first step involves a QR factorization:

T11Z11
G,

— * B - * * B _ *B
= Q {_0_} - [Q1 le] I:—O—} = Ql - (97)

From (96) and (97), we obtain

Ry | Ri [B}_
0 |Ra| LO]

Substituting for H in (94) we obtain,

T

0 = RllB = T11 = Rll = TllB‘l. (98)

T 71
R* 11 R: 11 *
$ « »| %
RiTn'Ru|  RiTh'Ru e e T
R{,Ti'Rir | RipTy 5 Ryz + R3ySRa 0, 5 | ter @l
(99)

Equating the (1, 2} position in the above matrix equation after some sim-
plification we obtain

f = Q Zn 100
12 = Q2 EGJ' (100)

Equating the (2, 2) position in (99) and rearranging the terms, we have

—1

1
3o B Roy :QQ[ b 2} Q3 — R,T Ria. (101)

The matrix H is then computed as a product of R and Q.

This algorithm is of course only conceptual. It does not describe how to
track the condition number of T7;. For this we refer to techniques as those
described in [4, 12, 18]. If no look ahead is necessary, then the blocking
scheme discussed in Section 2.5 can be used to compute H. If a look ahead
of size km is required, then H can be computed as shown in Lemma 5. It
should be pointed out that when T7; is well conditioned then the transfor-
mation H and its construction should give no numerical problems.

8.8.3. Comparison of the two algorithms. In this section we compare
the two look-ahead algorithms from a computational and numerical stand
point. Consider a block Toeplitz matrix with a block size of m. Further,
let us consider a look-ahead step size of km at some stage of the Schur
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algorithm. Let the size of the Schur complement following the look-ahead
step be Im x Ilm.

In Algorithm 1, the Bunch-Kaufman pivoting strategy would have to
be applied to obtain the generator for the Schur complement. In the worst
case, we would have 2m steps with each step requiring two rows of AT,
be computed and contributing a 1 x 1 pivot. This would mean that a total
of 4m reduction operations, each of length Im are done throughout the
algorithm. Computing one row of ATy for example, say the ith row, is

done as gT WG. It can be seen that computing one row of ATy costs

total flops = 8m? + 4m?2k? + 4m?(k + 1)I. (102)

As mentioned earlier, in the worst case there are 2m steps requiring two
rows at each step. Also, at each step the rows computed need to be updated
with the factorization computed till the previous step. At the jth step
this requires 2(j — 1)im operations. Hence, the total cost of the entire
algorithm is

2m
= 2m 2 (3m® + 4m?k® + 4m2(k + 1)) + 2m Y 22(j — 1)Im
i=1
= 16ml + 8m31 + 16m3kl + 16m3k* + 32m>. (103)

In comparison, if we use Algorithm 2, the computation of the matrix H
(described in (93 through 101)) requires a QR factorization of the matrix

[TIIZIIJ

G (104)

which has a dimension of m(k 4 2) x km. The cost of QR factorization of
an M x N matrix is 4M?N —2M N? + 2N3 /3. For the matrix in (104) the
computational cost would be

= 4m?2(k + 2)*mk — 2(mk)*(k + 2)m + (2/3)(mk)?
= 2.67m3k> + 12m3k® + 16m3k. (105)

We then have to compute Rjg from (100). The total number of operations
to compute Ris is

8m3k + 16m3 + 2m2k. (106)

If we assume Rps = I, then the number of operations required to compute
3 from (101) is

= 2m3k? + 16m3k + 16m3 + 8m?. (107)
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The cost of applying H to the generator of size m(k + 2) x lm is just the
cost of applying Q)5 to the generator. This cost is

= dm3kl + 8m31. (108)

The total cost of this method is found by adding (105, 106, 107, 108)
together. This gives us

= 4m3kl+8m31+2.6Tm3k3 +14m3 k% +-40m3k +-2m2k +32m3 +-8m?2. (109)
Comparing (109) and (103) and factoring the common multipliers we have

2m3k? + 12m3kl + 16m*l vs. 2.67m3k® + 40m3k + 2m?k + 8m?
k4
k? + 6kl + 8ml vs. 1.33k% 4 20k + -+ (110)
m

Counsider an example where m = 4 and | = 100. It can be seen from (110)
that for look-ahead step sizes greater than 24 Algorithm 1 is less expensive
than Algorithm 2.

Hence for small block sizes, if the look-ahead step size is large, the
Bunch-Kaufman-based look-ahead algorithm is faster than the one without
pivoting. Note that in this calculation the cost of the reduction operation
has not figured in. The results are not very different for serial machines.
For parallel machines, the reduction operations give rise to several syn-
chronization points but the reduction is done in parallel. For Algorithm 2
the computation of H is a serial bottleneck. It is possible on some par-
allel machines that Algorithm 1 will have a wider range of applicability
than on a sequential machine. From this it is clear that the two algo-
rithms have distinct ranges of applicability. The performance implications
of these algorithms on serial and parallel machines is currently being in-
vestigated.

It has been shown that in certain pathological cases, the Bunch-Kaufman
algorithm may not be able to detect, accurately, the rank of a low rank
matrix [31]. Algorithm 1 relies on obtaining a rank 2 factorization of the
displacement of the Schur complement after each look-ahead step. The pro-
cess is stopped after one or two steps of the Bunch-Kaufman algorithm. In
such cases, Algorithm 1 would produce only an approximate factorization
and the exact solution would have to be obtained using iterative refine-
ment. Iterative refinement may also be used to improve the accuracy of the
solution in the second look-ahead algorithm, if the solution is inaccurate.
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4. QR FACTORIZATION OF BLOCK TOEPLITZ MATRICES

The Schur algorithm can be generalized to obtain the QR factorization
of block Toeplitz matrices due to the low displacement rank of the matrix
TTT. This generalized Schur algorithm has been outlined in [5] for scalar
Toeplitz matrices and can be trivially extended to block Toeplitz matrices.
In this section we present a modification of the generalized Schur algorithm
for rank deficient Toeplitz matrices. It is shown that for exactly rank defi-
cient block Toeplitz matrices, in the event of a degeneracy, the rank of the
generator matrix can be dropped by 2. This reduces the complexity of the
generalized Schur algorithm. For numerically rank deficient block Toeplitz
matrices this algorithm yields a low-rank approximation.

The generalized Schur algorithm described in [5] was applied to block
Toeplitz systems with full column rank. In several applications in signal
and image processing the Toeplitz systems are related to rank deficient
least-squares problems and hence regularization has to be applied to yield
an acceptable solution.

A standard approach would be to apply Tikhonov regularization which
still yields a matrix in the same class of matrices. If 7" is a N x N Hermitian
(and semidefinite) Toeplitz matrix, then both T and T + ol are Toeplitz
Hermitian and hence of displacement rank 2. Similarly, if 1" is a general
M x N Toeplitz matrix, then both 7*7T" and T*7"+ ol have a displacement
rank of at most 4. The complexity of this approach would thus be that of
a Toeplitz solver, i.e., O(N?).

For some applications, T is a large matrix, and its rank r is small com-
pared to the dimensions of T’ (r <« min{M, N}). This fact is not exploited in
the standard approach because the regularized problems yield full-rank ma-
trices. One would expect that the Toeplitz algorithms should only require
O(Nr) operations instead since the Cholesky decomposition of a low-rank
semidefinite matrix A is

A=07U,,

where U,. in a r x N “upper-triangular” matrix or rank r. Depending of
the given matrix, the rank profile of U, will be of the type

or

Matrices of displacement rank 2 are always of the first type, whereas ma-
trices of displacement rank 4 can be of both types.
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Consider a column rank deficient point Toeplitz matrix T of size M x N.
Let the matrix have ! consecutive linearly dependent columns 7'(:, k), .. .,
T(:,k 4+ 1 —1). We show that in this case a very particular property holds
in the generator obtained at the start of the kth step of the generalized
Schur algorithm. As seen in [5], the generator for the matrix T7T is of
the form

1o 0o o07][G

0 0 0 Ga
ATTT = [GT |GT | GT | GT —1, 111
[1|z|3l4]00_10 s (111)

o 73

o
o
|
~
D
['~N

where G;,i =1,...,4is of size 1 x N. Let us denote the generator of T7T,
at the ith step of the generalized Schur algorithm by

G = (112)

where G is of size 4 x (N — i + 1). Since the matrix 77T is positive
semidefinite and since the matrix 7" has [ linearly dependent columns &, . . .,
k+1—1, the Schur complement of 77T w.r.t. the (k —1)th principal minor
has the form

O E)l,(N—k+1—l)

OV —k+1-1) 1 , X

plk—1) _

sC

where X is a (N — k — 1) x (N — k —[) matrix with nonzero entries. The
displacement of the Schur complement, TS(C’C ~1 also has the same sparsity
pattern. The generator at the start of kth step of the generalized Schur
algorithm is (the superscript indicating the kth step has been dropped for

convenience)

giiy912 - G1(N-k+1)

G = 9211922 -+ G2AN-k41) (114)
g31(932 --- G3(N—k+1)
9411942 .. Ga(N-k+1)

Instead of applying a hyperbolic Householder transform to zero out the
first column using gy1, we first apply two orthogonal transforms to zero
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out go1 and g4; using g;; and gs; respectively. Let Q; and Q3 be those
transforms. The sparsity pattern of the generator will then be as shown:

|- Gu Jia+y) - G(N—k+1)
T — -~
01]... 0O e _

Q1 , G=|_ A gz(z+1) /g\Z(N k+1) (115)

Q3 931 (- g3 G3u+1) -+ G3(N-k+1)

0 ]... 0 Gauyry - GaN—k+1)

Since the (1,1) element of the Schur complement is 0, we have

531 - !7§1 =0 (116)

and since the first row of the displacement of the Schur complement is zero
we have

g1l 912 ... Quwv—k+1)) —931[@31 G2 ... Gaw—k41)] =0.
(117)

The above equations yield

(911 G2 - Guwn—k+n] =1[931 G2 .- Gav-kt+n ) (118)

Hence, the first and third rows of the generator shown in (115) can be
dropped. Also, since the first [ columns of the reduced generator are “zero”
we can skip the next [ steps of the generalized Schur algorithm. The gen-
erator at the start of the (k + [)th step of the generalized Schur algo-
rithm is

§2(l+1) §2(N—k+1) (119)
Ga0+1)  GaN-k+1)

Since the matrix 777 is a positive semidefinite matrix, if the pivot
column of the generator has a zero hyperbolic norm, then the (1, 1) element
of the displacement of the Schur complement will be zerc and the entire row
will also be zero. A detection of a zero hyperbolic norm of the pivot column
of the generator is therefore sufficient to drop the rank of the generator.
The next time the pivot column of the generator has zero hyperbolic norm,
the rank of the generator again drops by two causing the Schur algorithm
to terminate with an upper triangular factor of the form
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This reduction in the generator size and rank avoids breakdowns. The
algorithm has as many steps as the number of linearly independent columns
in T. The complexity of the algorithm therefore is O(Nr) (where r is the
column rank of T') as opposed to O(N?) for matrices with full column
rank.

If the matrix 7" has columns that are nearly linearly dependent on the
other columus, i.e., it is nearly rank deficient, then the hyperbolic norm of
the pivot column of the generator at those steps will be nonzero. In this
case a simple thresholding mechanism applied to the above algorithm can

be used to obtain an approximate low-rank decomposition of the matrix
TTT

A+ 8A=UrU,. (120)

In case one is solving least-squares problems, it is easy also to use the
obtained decomposition to perform a few steps of iterative refinement on
the seminormal equations.

If the matrix T is a block Toeplitz matrix of block size m, then the gen-
erator at the start of the generalized Schur algorithm has rank 4m. Again,
if the hyperbolic norm of the generator is zero, then the Schur complement
will have a leading “zero.” Also since the matrix 77T is semidefinite, the
entire row of the displacement of the Schur complement will be zero and the
rank of the generator can be dropped by two by dropping the two identical
rows with opposite signatures.

The algorithm proposed in this section is a significant simplification over
a similar approach proposed in [20], which uses the Levinson algorithm
with look ahead. We include an example to illustrate the above algorithm.
Consider a Toeplitz matrix T

5 4 3 2 1 2 2 37
6 5 4 3 2 1 2 2
7 6 5 4 3 2 1 2
8 7 6 5 4 3 21
9 8 7 6 5 4 3 2

T=}10 9 8 7 6 5 4 3

1 10 9 8 7 6 5 4
12 11 10 9 8 7 6 5
13 12 11 10 9 8 7 6
14 13 12 11 10 9 8 7

L15 14 13 12 11 10 9 8]
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Columns 3, 4, and 5 are linearly dependent of the first two columns, while 6,
7, and 8 are again linearly independent. The (generalized) Schur algorithm
uses the following generator for the matrix A = 7T*7T"

(34.7851 31.6228 28.4605 25.29827

G(g)(:, 1: 4) =

G(O)(:,S : 8) =

0
0
0

[22.1359
1.0000
22.1359

| 12.000

4.0000
31.6228
15.000

19.2611
2.0000
19.2611
11.000

3.0000
28.4605
14.000

16.5876
2.0000
16.5876
10.000

2.0000
25.2982
13.000 |

14.2877]
3.0000

14.2877
9.0000 |

Two steps of the (generalized) Schur algorithm generate the first two rows
of the upper triangular factor of 7*T'. At the beginning of the third step
the first column of the generator has a 3-norm equal to zero

1.0000  2.0000  3.0000 4.0000  3.9091  3.4545
—0.7583 —1.5166 —2.2749 —0.9113 —0.5391  0.9020
C@ = | _19515 —25030 —3.7545 —3.7545 —3.4860 —2.2085
—0.0936 —0.1873 —0.2809 0.0827 04783 1.1324

We then use Householder transformations to eliminate G(3)(2,1) using

G(2)(1,1) and G(3)(4,1) using G(2)(3,1). This gives us the generator
—1.25560 -2.5100 —-3.7650 —3.7379 —3.4406 —2.2076
& 0 0 0 1.6908 1.9324 2.8060
@7 | _1.2550 —2.5100 —3.7650 —3.7379 —3.4406 —2.2076
0 0 0 —0.3626 —0.7370 —1.3008

Since the first and third rows of the generator are equal and have signatures
of opposite signs, they can be removed and the generator for the next
step will have only two columns. Also, it can be seen that the first three
columns of this generator are zeros and this means that we can skip the
corresponding rows in the upper triangular factor U,. The next step would
use the generator

1.6908
—0.3626

1.9324
—0.7370

2.8060

G = [
®) —1.3008
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and the factorization process continues. This finally yields the triangular
factor U, as

[—34.785 --31.623 —28.461 —25.298]
1.000  2.000  3.000
U.(:,1:4) =
L J
[-22.136 ~19.261 —16.588 —14.288]
4.000  3.909 3455 = 2.182
Ur(:,5:8) = -1.651 -1.817 —2.587
1.618  1.708
i ~1.578 |

The backward error 6A of the matrix A = T*T defined as

A= Uz
6 All 4|
is 3.57 x 1071%, which is of the order of the machine precision (e ~ 2.22 x
10716}, This shows the good numerical behavior of the regularization
algorithm.

The numerical behavior of this algorithm was good because the above
example was exactly rank deficient. If there is a sharp drop in the singular
values of the matrix, this algorithm will yield accurate results. However, if
there is no sharp drop, then this algorithm may produce an inaccurate fac-
torization due to the sensitivity of Schur complements [31]. The algorithm
discussed in the next section addresses this issue.

5. CONVERSION TO CAUCHY TYPE MATRICES

In Section 4, we discussed modifications to the QR factorization algo-
rithm for block Toeplitz matrices proposed by Chun et al. [5]. The modi-
fied algorithm could be used to obtain the QR factorization of an exactly
rank deficient block Toeplitz matrix. If the Toeplitz matrix happened to
be numerically rank deficient, then only a low approximation of the block
Toeplitz matrix could be obtained. This was because any form of pivoting
applied to the generalized Schur algorithm would destroy the displacement
structure of the block Toeplitz matrix.

In [15, 21] it was shown that if Toeplitz matrices were converted to
Cauchy type matrices, then the factorization of such matrices could be
carried out with pivoting. The drawbacks of the algorithins proposed in
[15, 21] were that complex-valued FFTs were used to convert a real valued
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Toeplitz matrix into a complex-valued Cauchy type matrix. The algorithms
were not able to exploit any symmetry in the Toeplitz or quasi-Toeplitz
matrix to reduce the computational complexity.

In this section we present a modification to the algorithms in [15, 21]
to factor a symmetric semidefinite quasi-Toeplitz matrix using only real
arithmetic and exploiting the symmetric property of the matrix. This al-
gorithm can be used to obtain a rank revealing factorization of the matrix
TTT, where T is a rank deficient Toeplitz matrix. Rank deficient Toeplitz
matrices arise in image reconstruction and system identification problems.

In [20] Hansen and Gesmar present a look-ahead-like algorithm for fast
orthogonalization of rank deficient Toeplitz matrices and in [11] Eldén and
Park present a modification to the algorithm proposed in [5], where they
delay the application of the ill-conditioned skew hyperbolic transforms to
obtain an approximate factorization. Both algorithms do not involve any
pivoting since they deal with Toeplitz matrices only. The algorithm pre-
sented in this section does not have this limitation due to the conversion
to Cauchy type matrices.

5.1. Rank Factorization of Positive Semidefinite Quasi-Toeplitz Matrices

Consider a symmetric positive semidefinite quasi-Toeplitz matrix T of
size N x N. Let the displacement equation of this matrix be given as

T - 7zT7T = G267, (121)

where Z is a circulant matrix of size N x N

[0 0 ... 0 17
1 0 . .00
0 0 ... 1 o]

Note that the matrix Z in (121) is a circulant matrix and not a lower shift
as used in Section 4.

A Cauchy type matrix can be defined as any matrix that has the follow-
ing displacement structure

D¢C — CDy = G1G3
or C—-D;CDy=GGY, (123)
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where Dy and D, are diagonal matrices. It was shown in [15, 21] that if
(121) is converted to (123) using the discrete Fourier transform, then Gaus-
sian elimination with partial pivoting can be applied to obtain a factoriza-
tion. The problem with this method is that the Fourier transform converts
the real-valued Toeplitz matrix into a complex-valued Cauchy type matrix
and increases the complexity of the algorithm.

If we can obtain a real-valued transform that block diagonalizes the
circulant matrix, then applying that transform to (121) would convert it to
(123), where Dy and Dy, are real-valued block diagonal matrices. A Hartley
transform H of size N converts the circulant matrix Z shown above into
a matrix with an X-shaped non zero structure. A permutation P can then
be applied to obtain a block diagonal matrix with 1 x 1 or 2 x 2 blocks.
Applying the transformation H = PH of the appropriate size to (121)
vields

HTHT — (HZHTYHTHYHZTH") = HGZGTH"
C - ACAT = G267, (124)

where C = HTHT is a Cauchy type matrix and A = HZHT is a block
diagonal matrix with 1 x 1 and 2 x 2 blocks. If we obtain a factorization
C = LDLT of the Cauchy type matrix, then the corresponding factorization
of the quasi-Toeplitz matrix T will be T = HTLDL"H. The next step in
this algorithm is obtaining a factorization of the form LDLY of the Cauchy
type matrix C in (124).

It must be noted that the Cauchy type matrix C is not explicitly com-
puted but is implicitly available from the matrices A, G, and ¥. Recon-
structing any column of the Cauchy matrix from (124) would require solving
the Lyapunov equations. Let the columns of the matrix C and G be par-
titioned conformally with the block structure of A. The ith column block
of the matrix C, denocted by ¢;, satisfies the equation

ci — Ac;al = Gugl, {125)
where a; is the ith diagonal block of the matrix A and g; is the corre-
sponding block row of the generator G. The above equation can then be
written as

AT¢; — ciat = ATGEgT. (126)
Any block row of ¢; given by c;; then satisfies the Lyapunov equation

aj cji —cua] = aj ;9] (127)
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If j # 4, then the matrices a; and a; have different eigenvalues and the
Lyapunov equation can be solved for ¢;;. For j = 4, the Lyapunov equation
cannot be solved. The diagonal blocks of C, therefore, cannot be computed
from A, G and ¥. We, therefore, need to precompute the diagonal blocks
of C from the original quasi-Toeplitz matrix.

Having outlined the method to compute any column and the diagonal
block of the Cauchy type matrix, we now proceed to describe the algorithm
to obtain the factorization of C.

Let the block diagonal of the Cauchy matrix C be denoted by D. Since
the matrix T is positive semidefinite, it can be argued that searching for
the diagonal block d; with the highest determinant is sufficient to locate a
pivot block. Let P, be the permutation matrix to get the diagonal block d;
to the pivot position d;. Also, let PlCPlT be partitioned as

dy |17
P,CP} = . (128)
h|Cy
Let us define the matrix X,
X 1 0 (120)
= ; 129
~lLdrt I
then applying X (1) X7 to
pP.CPT — (P APT)(PiCPT) (P ATP]) = PLGEGT PT
C - ACAT = G=GT (130)
yields
T | AT
d1|0 A11|0Jl:d1l0:| AllIA21 A AT vT .
- - = XGLG' X+ (131
oten] - [t o] - | 3, (131)

If we obtain a generator for Cy. that satisfies the displacement equation of
the form
Csc - AQQCSCAgQ = GSCESCGZ;') (132)
then we would have finished the first step of the factorization algorithm.
It can be seen that the above equation is identical in form to (76) and
hence the procedure developed in Section 3.3.2 can be used to obtain the
generator of Cy..
Alternately, another technique to update the generators can be used.
Partitioning G¥ conformally as G = [GT GY] and equating the (2,2)
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position in (131) we have
Cuc — AnaCocAL, = (Gy — 1d7'G))S(Ga - hid7'Gh)T + Anidi AT, (133)

where Ao = Agglldl_l — lldflAll. The last term of (133), Ag;d; AL}, can
be expanded as
= (Apehidy! — hdy An)di (d7 T A, — AT dr ')
= (Al AT} — LdT"Andi AT AT dTH AT
X (Alll?Agz — AlldlA{ldl—ll?>. (134)

Equating the (1,1), (1,2), and (2,1) positions of (130) we have

dy — Andy AT, = G 2GT (135)
Iy — Al AT, = Go3GT. (136)

Inserting the above equations in (134) yields

Apdy A, = (Go—11d7 G SGT AT AT Gy B (Go - 1d ' Gy) T (137)
Substituting (137) in (133), ACs. = Csc — AZZCSCAQ has the form

Cec = (Go—11d7 1) (B +5GT AT dT AT GiE) (Go - 1id 'Gy) T (138)

Using the Sherman—Morrison-Woodbury formula and (135) it can be shown
that

(2 +SGTATTd AT GY) = (371 - GRd7'Gy) ™ (139)

Hence, the update equations for the generator and the signature matrices
are
Gye = Gy — 11d7'Gy (140)
ol =571 - GTd Gy (141)

Having obtained the generator for the next step, we update the diagonal
matrix D as

Dhext = D — llDl_ll? (142)

This defines all the information to proceed with the next step of the fac-
torization. Carrying the factorization to completion in a similar manner,
one obtains a factorization of C of the form LDLY and a factorization of
T for the form HTLDLTHT .
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5.2. Extensions of the Algorithm

The above algorithm extends very easily to block Toeplitz matrices be-
cause the block circulant matrix Z can also be diagonalized by a permuted
version of the Hartley transform.

The pivoting strategy used in the above algorithm was block diagonal
pivoting. In some cases this may not be sufficient. If at any stage of the
algorithm all the diagonal pivots of the Schur complement are ill condi-
tioned, it is possible to revert to the complex arithmetic version without
too much overhead and continue the factorization.

6. CONCLUSIONS

In this paper we have presented several high performance variants of
the Schur algorithm to solve block Toeplitz matrices. Based on the existing
Schur type algorithms and the algorithms discussed in this paper a high
performance library is currently being developed. In the past there have
been efforts to develop libraries for point Toeplitz matrices [1, 19] on se-
rial machines using the Levinson algorithm. The proposed library can be
used to solve point and block Toeplitz matrices on parallel machines. On
parallel machines, the Levinson algorithm suffers from reduced parallelism.
The Schur algorithm-based library will be developed for distributed mem-
ory machines such as the Cray T3D and shared memory/vector-pipeline
machines such as the Cray C90. A detailed performance analysis of the
algorithms on the various high performance architectures will impact the
implementation choices.
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