
NORTH- HOLLAND

High Performance Algorithms for Toeplitz
and Block Toeplitz Matrices

K. A. Gal l ivan and S. Th i ruma la i

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
Urbana, Illinois

and

P. Van Dooren and V. Vermaut

Universitg Catholique de Louvain
Louvain, Belgium

Submitted by Andr6 Ran

ABSTRACT

In this paper, we present several high performance variants of the classical
Schur algorithm to factor various Toeplitz matrices. For positive definite block
Toeplitz matrices, we show how hyperbolic Householder transformations may be
blocked to yield a block Schur algorithm. This algorithm uses BLAS3 primitives
and makes efficient use of a memory hierarchy. We present three algorithms for
indefinite Toeplitz matrices. Two of these are based on look-ahead strategies
and produce an exact factorization of the Toeplitz matrix. The third produces
an inexact faetorization via perturbations of singular principal minors. We also
present an analysis of the numerical behavior of the third algorithm and derive a
bound for the number of iterations to improve the accuracy of the solution. For
rank-deficient Toeplitz least-squares problems, we present a variant of the gene-
ralized Schur algorithm that avoids breakdown due to an exact rank-deficiency.
In the presence of a near rank-deficiency, an approximate rank factorization of
the Toeplitz matrix is produced. Finally, we suggest an algorithm to solve the
normal equations resulting from a real Toeplitz least-squares problem based on
transforming to Cauehy-like matrices. This algorithm exploits both realness and
symmetry in the normal equations.

1. I N T R O D U C T I O N

Algor i thms to solve Toeplitz matr ices can be broadly classified into two
categories, namely, the Levinson type and the Schur type. The Levinson
type a lgor i thms produce factorizat ions of the inverse of the Toepli tz mat r ix

LINEAR ALGEBRA AND ITS APPLICATIONS 241 243:343 388 (1996)
© Elsevier Science Inc., 1996 0024-3795/96/$15.0(}
655 Avenue of the Americas, New York, NY 10010 SSDI 0024-3795(95)00649-4

344 K.A. GALLIVAN ET AL.

such as T -1 = L D L T and T -1 = QR, while the Schur type algorithms
produce factorizations of the Toeplitz matrix itself such as T = LDL T and
T = QR. In addition, the two approaches differ in the kinds of computa-
tional primitives used during the factorization.

In [30] Schur derived a fast recursive algorithm to check if a power se-
ries is analytic and bounded in the unit disc. Interestingly, the recursions
proposed in this algorithm provide a fast factorization of matrices with
displacement rank 2. It is well known that Toeplitz matrices have a dis-
placement rank of 2 [23]. More generally block Toeplitz matrices with a
block size of m have a displacement rank of 2m. In this paper we dis-
cuss several high performance variants of the classical Schur algorithms to
factor symmetric block Toeplitz matrices. Specifically we discuss routines
to factor symmetric positive definite, positive semidefinite, and indefinite
matrices. Algorithms to obtain the Q R factorization of exactly and nearly
rank deficient Toeplitz matrices are also discussed.

In this paper the classical Schur algorithm for obtaining the Cholesky
factorization of symmetric positive definite block Toeplitz matrices [8, 9] is
generalized to the block Toeplitz matrix case using a block generalization of
the hyperbolic Householder reflectors. The block generalization of the Schur
algorithm and various blocking schemes differing in the amount of storage
and computational primitives used are described in Section 2. Blocking
the hyperbolic Householder transformations allows us to apply these trans-
formations using BLAS 3 primitives rather than the BLAS 2 primitives
that are required for plain hyperbolic Householder transformations. On
machines with a memory hierarchy this provides us with a faster algorithm.

For symmetric indefinite block Toeplitz matrices the Schur algorithm
breaks down if the matrix has singular principal minors. A scheme to mod-
ify the block Schur algorithm by perturbing the generators and obtaining
an approximate factorization of the matrix is described in Section 3. The
approximate solution is then improved through iterative refinement. The
numerical behavior of this method to circumvent the singularities is studied.
If an exact factorization of the indefinite block Toeplitz matrix is desired,
then one would have to look ahead over the singular or near singular prin-
cipal minors. Look-ahead algorithms based on the Levinson algorithm have
appeared in the literature [4, 12] but suffer from the same reduced paral-
lelism relative to the Schur algorithm mentioned above and are limited to
point Toeplitz matrices. Look-ahead Schur algorithms based on orthogonal
polynomials exist [18] but are limited to point Toeplitz matrices. In Section
3 we present two look-ahead Schur algorithms for point and block Toeplitz
matrices and compare the two from a computational viewpoint.

The classical Schur algorithm can be generalized to obtain the Q R fac-
torization of block Toeplitz matrices [5]. If the Toeplitz matrix is rank

TOEPLITZ AND BLOCK TOEPLITZ 345

deficient, then we present a modification of the generalized Schur algorithm
in Section 4 to obtain the Q R factorization by pruning the generators of
the Toeplitz matrix. If the matr ix is nearly rank deficient, then this method
produces a low-rank approximation of the Toeplitz matrix.

Finally we discuss algorithms to factor Toeplitz matrices by converting
them to Cauchy type matrices. Toeplitz matrices can be converted using
the discrete Fourier transform into Cauchy type matrices that allow pivot-
ing during the factorization [15, 21]. These algorithms also have the same
complexity, O(n2), as the Schur algorithm. The problem with this method
is tha t any real-valued Toeplitz matr ix is converted to a complex Cauchy
type matr ix and the entire factorization algorithm proceeds in complex
arithmetic. This is computationally expensive. Similarly, any symmetry in
the Toeplitz matr ix is ignored in this algorithm. In Section 5 we present
a modification to this algorithm tha t allows us to work in real ari thmetic
and also exploit the symmetric structure of the matrix. This yields a rank
revealing algorithm for the factorization of a semidefinite block Toeplitz
matr ix that is computat ionally less expensive than the algorithm presented
in [15, 21].

2. SYMMETRIC POSITIVE D E F I N I T E BLOCK
T O E P L I T Z MATRICES

In this section we present a block generalization of the classical Schur
algorithm [8, 9] using block hyperbolic Householder reflectors. Block hy-
perbolic Householder transformations can be applied at the BLAS 3 rate
rather than plain householder transformations, which are applied at the
BLAS 2 rate. On machines with a memory hierarchy this provides us with
a significant improvement in performance. Various blocking strategies tha t
differ in the computat ional primitives required during the construction are
presented. The cost of applying these transformations is also discussed.

2.1. The Classical Schur Algorithm

Let T be an m p × m p symmetric positive definite block Toeplitz matr ix
with a block size of m × m whose first block row is given by [T1 T2 -. .
Tp-1 :Fp]. Let Z be a block right shift matrix. The Schur algorithm is based
on the fact tha t the displacement of a block Toeplitz matr ix T, defined as
T - z T T z , has a rank of at most 2m [23]. The derivation of the Schur
algorithm to compute the Cholesky factorization of a symmetric positive
definite block Toeplitz matr ix is outlined below.

Since 2r 1 is a symmet r i c positive definite matrix, we can find its Cholesky
factorization T1 = L1L T, where L1 is an m × m lower tr iangular matrix.

346 K.A. GALLIVAN ET AL.

Let Tj = Li-ITj . It is easy to see tha t T1 = L T. We now define two matr ices
e l (T) and G2(T) as follows [6, 23]:

G I (T) =

IT1 r2 T3 ... G
o T~ ?2 . . . Tp-~

• . o . .

0 ". ". ". T2

0 0 . . . 0 T~

G2(T) =

/o T2 T3 ... G /
o o T2 . . . Tp_~

• - " . . " . *

0 '. ". T2

0 0 .- . 0 0

(1)

from which it follows tha t

where

T = [GT(T) G~(T)] -Imp [GdT) (2)

[G2(T) -G, " (a)
If we can obta in a t ransformat ion matr ix U tha t satisfies the p roper ty

U T W m p U ~- Wmp such tha t UG = R, where R is upper tr iangular , then
we have

T = GTWrnpG .= G T U T W m p U G

01[? L][0
= R T R , (4)

which gives us the Cholesky factorizat ion of T [8]. The t ransformat ion
mat r ix U, which satisfies the proper ty u T W m p U = Wrap , is called a hyper-
bolic Householder t ransformat ion [26]. The basic properties of hyperbolic
Householder reflectors are discussed in Section 2.2. Since the mat r ix G com-
prises two upper t r iangular block Toeplitz matrix, we show in Section 2.4
tha t considerable computa t iona l savings can be obta ined by working with

TOEPLITZ AND BLOCK TOEPLITZ 347

a generator matr ix defined using the first block rows of G1 and G2 as

G e n = IT01 T2 ".. Tp-1 Tp] . (5)
T2 " " " Tp-1 T~

I t can also be seen tha t the above generator matr ix Gen is obtained by a
factorization of the displacement of the block Toeplitz matr ix into [i: 0]

T - Z T T Z = Gen T - L , Gen (6)

Note that when 2rl is not positive definite we can consider the more
general decomposition T1 = L1 E L y, where E is some signature matr ix
with +1 on diagonal. This will exist provided 2F1 has nonsingular leading
principal submatrices. The blocks Tj are obtained by Tj = (L 1 E) - I T j and
the Wrap matrix becomes

- z p " (7)

We then again use hyperbolic Householder transformations (now with re-
spect to the new signature matrix Wrap) to reduce G to an upper tr iangular
matrix. A detailed discussion of the Sehur algorithm for indefinite Toeplitz
matrices is presented in Section 3.

2.2. Hyperbolic Householder Transformations

In [8], Cybenko and Berry use hyperbolic Householder t ransformations
[26] to reduce the generator matr ix G of a scalar Toeplitz matr ix to an upper
tr iangular matrix. We extend their idea to block hyperbolic Householder
t ransformations (required in the block Schur algorithm), using representa-
tions very similar to those proposed in [2] and [29].

Let W be a diagonal matr ix whose entries are either +1 or - 1 . I t is easy
to verify tha t the matr ix W satisfies the equalities

W 2 = I and W T = W. (8)

Any matr ix U tha t satisfies the equation u T w u = W is called a W-
unitary matrix. Let x be a column vector such that x T W x ¢; 0. A hyper-
bolic Householder matr ix is defined as

2 x x T
Ux = W x T w : c. (9)

One easily checks [8, 27] that Ux is W-unitary, i.e., u T W U x = W . These
transformations can be used to map one vector to another as long as they
have the same hyperbolic norm, i.e., if a T W a = bTWb. In our algorithm, we

348 K. A. GALLIVAN E T AL.

reduce the generator matrix to an upper triangular matrix by successively
zeroing elements below the diagonal of columns of the G matrix in (3).
Given a column vector u, we would like to find a hyperbolic Householder
matrix Ux such that

Uzu = -o-e j , (10)

where e~ is a column vector whose j t h element is 1 and other elements
are 0 and a is a constant. We assume here that e T W e j = 1; i.e., the j t h
component corresponds to a +1 in W. Also the vectors u we consider will
have positive hyperbolic norm when the matrix T we decompose is positive
definite. Choosing

Uj u T w . = --v / ~ (11) lujl

then u and Gej have the same hyperbo l ic norm. I f we take x = Wu + Gej,
it can be shown that Ux is a hyperbolic Householder transformation that
maps u to -c~ej.

2.3. Block Hyperbolic Householder Representations

If we have to perform a sequence of hyperbolic Householder transforma-
tions we could block these transformations together and then apply this
block to the appropriate matrices. This allows us to use level 3 BLAS
primitives rather than level 2 BLAS operations if we applied the transfbr-
mations sequentially. Storage efficient ways to block regular Householder
transformations are derived in [2] and [29]. We extend these methods to
hyperbolic Householder transforms.

Suppose U (r) = U r U r - I . . . U 2 U 1 is a product of r n × n hyperbolic
Householder matrices. The matrix U can be written in two forms corre-
sponding to the V Y form and the Y T Y T form derived in [2] and [29]. The
two forms of the V Y representation differ in the types of primitives they use.

LEMMA 1. Suppose U (k) = W k + V k Y T is a product o f k n x n hyper-
bolic Householder matrices, where Vk and Yk are n x k matrices. I f

T 9 ~ T Tr(k)
Uk+ 1 --- W 2xk3-1X-bl and zk+l --

T Xk+l WXk-t-1 XT+I WXk+I

then

where Vk_t_ 1 : [W V k
V Y form.

U (kq-1) = Uk_bl U(k) : W k-F1 ~_ Vk-FIYL1 ,

zk+l] and Yk+l [Yk T = zk+l]. We call this the f i rs t

TOEPLITZ AND BLOCK TOEPLITZ 349

Proof. If r = 1 then, U (H = U1 ~- W - 2XlXT1/(xTWxl) and we assign
V1 = Xl and Y1 = - - 2x l / xTWxl in order to have the desired form

(2xk+lxL1 "~ VkY£r) Uk+~U (k) = W ~ (W k+
Z k + l W X k + l]]

T (k)
= W k+l ~_ W V k Y [- 2 X k + l X k + l U

T X k + l W X k + l

_.~ w k + 1 _[_ W g k Y [n t- Xk+lZk+ 1

= Wk+l + [WVk xk+l] [YT]
[Zk+l

T = W k+~ + V k + W i + l .

LEMMA 2. Suppose U (k) = W k + VkY [is a product of k n × n hyper-
bolic Householder matrices, where Vk and Yk are n x k matrices. If

then

T k
Uk+l = W - 2xk+lxT+l and Z k + l - - - 2 x k + l W

zkT+l W X k + l T ' X k + l W X k + l

T
U (k+l) = Uk+IU (k) = W k+~ + Vk+~Yk+l,

where Vk+l = [Uk+lVk
second V Y form.

xk+l] and Yk+l [Yk T -- zk+l] . We call this the

Proof. If r = 1 then, U (1) = U 1 : W - 2XlXT/(xTWXl) and we assign
V1 = Xl and Y1 = - -2Xl /xTWxl in order to have the desired form

Uk+lU (k) = W 2Xk-t- 1XkL 1 / Vk]7[/
.T (Wk +

X k + l W X k + l
T k 2xk+lXk+lW

= W k + l + Uk+ 1 y k y T - T
X k + l W X k + l

= W k+l _[_ U k + l Y k Y [-~ Sgk_l_lZk+ 1

=Wk+l+[Uk+lVk Xk+l] [Ykr 1
Zk+l J

= Wk+l + Vk+IYL1.

350 K . A . GALLIVAN ET AL.

LEMMA 3. Suppose U (k) = W k + Yk Tk y T w k- 1 is a product of k n x n
hyperbolic Householder matrices, where Yk is a n x k matrix and Tk is a
k x k matrix. I f

Uk+l = W 2Xk+lXk_rlT 2
T W , ak+, = T (xT+I YkTk)

Xk+ 1 xk-[-1 Xk+lWXk+l

and

then

where

2
bk+l : T

Xk+lWXk+l

T rk U (k+~) = Uk+~U(k) = W k+~ + Yk+~Tk+~Yk+~I4 ,

Y k + I = [W Y k xk+l] and Tk+l= [Tkak+l bk+lO] .

Proof. For k = 1 it can be seen that U1 = W + Y 1 T I Y T, where Y1 = xl
and T1 = --2/xTIWxt.

U (k+l) -- (W 2Xk+lXkT+I) YkVkyTW k-l)
zkV+lWzk+l (wk +

(_ 2) T k (w Y k) T k (y T w k _ l) = wk+l -~Xk+l T (Xk+lW) -~-
Xk+lWXk+l

2
•

T k (W Y k) T k (y T w k - 1) : W k+l -t--xk+lbk+l (Xk+lW) -~-

+ ~k+lak+l (Y?W ~-1)

ak+l bk+l [xk+lWk
T k = wk+ 1 + Yk+ITk+IYf~+IW • •

The three blocking schemes discussed above differ in the computational
primitives employed (dotproducts or saxpys) and the amount of storage. A
detailed performance analysis of the three blocking schemes is presented
in [13].

TOEPLITZ AND BLOCK TOEPLITZ 351

2.4. The Factorization Algorithm

The following algorithm is used to reduce matr ix G (3) described in
Section 2.1 to an upper triangular matrix. This algorithm is essentially
the same as the one described in [8] except that we are dealing with blocks
instead of elements. We describe the algorithm using an example as follows.
Let T = GTWmpG, where G and W,~p are

IT1

0

0

0

G =
0

0

0

0

\ .

Wrap = (toP

T,2 T3 T4

T1 T2 T3

0 T1 ~2

0 0 T1

Tp_l

T;_2

t r i

0 iT2 T 3 ". rp-1
i I

~T, ". Tp-2 0 0 ?j

0 0 . ".

0). (12)
--Imp

The goal of this algorithm is to reduce G into an upper triangular matr ix
using block hyperbolic Householder matrices. Since the first column of the,'
generator is already in the right form we only use the generator matr ix from
the second row down. The first row of the upper submatr ix of the generator
is the first block row of the triangular factor of the Toeplitz matrix. The
first step in this algorithm therefore involves eliminating the first diagonal
in the lower half of the generator matr ix (the boxed T2 blocks in (12)).
If this is done while maintaining the Toeplitz s tructure of the remaining
port ion of the matr ix (the submatr ix from the third row downward), we
can repeat the process on the smaller generator till we triangularize G.

Consider the matr ix formed by stacking the second block row of the
upper submatr ix and the first block row of the lower submatr ix as

G'= (~ T1 T2 T3 ... T p - 1) , (13)
T2 T3 T4 ... Tp

352 K. A. GALLIVAN ET AL.

Let U1 be a block hyperbolic Householder transformation that eliminates
T2 using :/"1. Applying this to G' we get

U1G = . (14)
o o . . . T.

The matrix formed by stacking the third row of the upper submatrix
and the second row of the lower submatrix is just a shifted version of G'.
Similarly all matrices constructed by stacking the corresponding rows in
the two halves of the generator matrix are shifted versions of the G' matrix
in (13). Hence, all the work that was needed to zero out the diagonal row
of T2 in the lower submatrix was done in the first step. At this stage, the
generator matrix G has a Toeplitz submatrix in its upper half (from the
third row onward) and another Toeplitz submatrix in its lower half as

~T1 T.[T3 T4 . . . Tp

o " 5 - 1

o o .

0 0 0 ~Yl " . "

G = (15)
0 0 i '

0 O 0 i"~-i Tp-1 [......3...I "'"

0 0 0 0 "'. Tp-2

0 0 0 ". ".

-.. - /

The second row of the upper submatrix of G is the second block row of
the triangular factor of the Toeplitz matrix• The process is then repeated
on the two lower right submatrices of the generator in (15)• After p - 2
steps the generator is completely triangularized.

Note that in addition to being able to work with only two block rows,
we can work with the same two block rows because the reduced generator
in the next step has the same lower block row but the upper block row
is shifted by one block to the right• Before this shift is made the upper
block row must be stored in the right place in the triangular factor of the
original Toeplitz matrix• At the first step of the algorithm, this reduced

TOEPLITZ AND BLOCK TOEPLITZ 353

matrix, which we refer to as the generator matrix, is

G e n = (T 1 T2 T3 .-. T p) . (16)
0 T2 T3 . . . Tp

Also, we see that in the first step 771 is upper triangular because by
construction T1 = L T. The diagonal elements of T1 are sequentially used
to zero out all the elements in the corresponding column of the lower block
(T2). This implies that at each step of the algorithm the block hyperbolic
Householder matrices are computed using vectors that have one nonzero
element in their upper half and a non zero lower half. This means that the
If, Y matrices in the first two forms and the Y matrix in the third form
have more sparsity than usual. The sparsity patterns of the matrices V,
Y and Y, T and their performance implications can be found in [13]. In
this paper we provide a summary of the computational costs involved in
blocking the hyperbolic Householder reflector.

The blocking scheme described in Lemma 1 requires two reduction prim-
itives (matrix vector products) at each step. For a block Toeplitz matrix
with block size m, if the m hyperbolic Householder reflectors at each step
of the Schur algorithm are blocked, then the total flop count is 2.33m 3 +
3.75m 2 + 8m. Also, applying the blocked reflector to a generator of size
2m x mp requires 5m3p + 3m2p operations performed at the BLAS 3 (ma-
trix nmltiplication) rate.

If the blocking scheme described in Lemma 2 is used, one matrix vector
product and one rank I update are used at each step of the blocking process.
The total flop count to block the reflectors is 2m 3 + 3m 2 + 8rn and the cost
of applying the blocked reflector to the rest of the generator is 5m3p+2m2p.

The blocking scheme described in Lemma 3 requires two reduction prim-
itives like in Lemma 1 but the cost of blocking m reflectors is 1.33m a +
3.75m 2 + 8m, which is less than the two schemes mentioned above. On the
other hand, applying the blocked reflector in this form to the rest of the
generator is the most expensive, requiring 5m3p + 5rn2p flops.

From this discussion it can be seen that there are definite tradeoffs in
implementing the three blocking schemes and implementation choices must
be made following a detailed performance analysis taking into consideration
the architecture of the machine at hand.

2.5. LDL T Factorization of a s.p,d. Block Toeplitz Matrix

In this section we derive another form of the block hyperbolic House-
holder reflector that is used to obtain an LDL T factorization of a symmetric
positive definite block Toeplitz matrix as opposed to a Cholesky factoriza-
tion. This blocking scheme can be used if the matrix is symmetric indefinite
unless there is a breakdown. Modifications to the Schur algorithm in the

354 K. A. GALLIVAN ET AL.

presence of breakdowns are discussed in Section 3.
Consider a symmetric positive definite block Toeplitz matr ix T having

blocks Ti, i = 1 , . . . , p of dimension m x m. The generator for such a Toeplitz
matr ix can be writ ten as

I T2 T3 .. . r ip) (17)
G = o T2 T3 . . . Tp '

where T~ = : F [l ~ , i = 1 , . . . ,p. The generator matr ix shown above gives
us a factorization of the displacement of the Toeplitz matr ix T

T - Z T T Z = G T (~10 -TIO) G

= GTWG, (18)

where Z is the block right shift matr ix of size mp x rap. The first step of
the Schur algorithm for such a generator is trivial. After the shift at the
end of the first step, the generator for the second step is

G(2)= (I T2 T3 "" Tp-1). (19)
T2 T3 T4 . . . Tp

If we chooseAa block hyperbolic Householder reflector U such tha t UTWU =
W, where W is also block diagonal, then the factorization obtained is of
the form LDL T, where D is block diagonal. If Tsc is the Schur complement
of T w.r.t, the first leading m x m block and 2 is a block right shift matr ix
of size m (p - 1) x m (p - 1), then

) ~lsc _ 2TTsc~ = G(2)T 0A G (2)
-T1

= G(2)TuT(~oI ; 2) U G (2)

where o)
~3 ~ 4 - - . Tp 0 E~ "

From the above equations we see tha t if T = LDL T, then

L (m + l : 2 m , m + l : m p) - = (I T2 T3 "'" Tp-1)

D(m + l : 2m, m + l : 2m) = E l . (20)

TOEPLITZ AND BLOCK TOEPLITZ 355

From this discussion it is obvious that we need to construct a block hyper-
bolic Householder reflector U such that

0 9~2 u = ~2 (21)

The steps to construct the block reflector U are shown below. From (21)
and (22) it can be seen that

Et = E1 + X T E 2 X (23)

and

z] (24)

U-1 can be factored as

where Z = X Y + W and

Substituting for U, E, and E in (21) we get

E1 = Et + x T E 2 x (27)
- ~ I Y W -1 : xTE2 (28)

~-]2 = w - T (y T ~ " I ~ J- ~2) W - 1 . (29)
If we choose W = I, then we have

~1 = z l + (XTZ2)X (30)

z : -~ ,71(xTz~) (31)
E2 = E2 - Y T E 1 Y = E2 + (x T E 2) T y . (32)

It can be seen from the above description that the primitives used in
this blocking scheme are of the BLAS 3 type (matrix multiplication). The
cost of obtaining the block reflector in this form is 6.83m 3 4- m 2 flops.
This is substantially higher than the cost of the previous blocking schemes
but the operations are performed at a higher rate (BLAS 3 rate versus
BLAS 2 for the other schemes). The advantage of this scheme over the
others is that applying the block reflector to the rest of the generator of
size 2m × m p requires 4m3p flops, which is significantly less than that of
the other blocking schemes.

356 K. A. GALLIVAN ET AL.

3. SYMMETRIC I N D E F I N I T E BLOCK T O E P L I T Z MATRICES

In Section 2 we described the Schur algorithm to obtain a Cholesky
(LL T) factorization and an LDL T factorization of a block Toeplitz ma-
trix. In this section, we discuss modifications to the classical Schur to ob-
tain an LDL T factorization of a symmetric indefinite block Toeplitz ma-
trix. We begin by discussing a possible degeneracy for indefinite matrices
and then present a few techniques to overcome these degenerate steps in
the Schur algorithm.

The following theorem states tha t if the block Toeplitz matr ix T is pos-
itive definite, it can be shown that the block reflector U (22) always exists
at every step of the Schur algorithm.

THEOREM 4. Given a symmetric positive definite block Toeplitz T, at
every step of the Schur algorithm, one can always construct a block reflector
U, such that (21) and (22) are satisfied.

Proof. See [13]. •

3.1. Modifications to the Schur Algorithm for the Indefinite Case

If the block Toeplitz matr ix T is symmetric lad%finite, then the Schur
algorithm could break down because of a singular E1 (see (31)). Even if
E1 is badly conditioned the Schur algorithm would [roduce an inaccurate
factorization. If at any step of the Schur algorithm E1 is found to be well
conditioned, then one can proceed with the Schur algorithm exactly as
described in Section 2.5 to the next step.

There are two ways in which one can, in the event of degeneracy, avoid
the problem of near or total breakdown of the Schur algorithm. The first
method involves perturbing the pivot element of the generator such tha t the
matr ix E1 in (31) is invertible. This method of "boosting" the pivot block
provides an inexact factorization of the block Toeplitz matrix. I terat ive
refinement may be used to correct the solution of such a system. The other
method of avoiding degeneracy is to look ahead a few steps of the Schur
algorithm, till a well-conditioned principal minor can be obtained. These
two techniques are discussed in Sections 3.2 and 3.3.

3.2. Approximate Factorization of Indefinite Toeplitz Matrices
Using Perturbations

We outline a modification to the Schur algorithm to factor a symmetr ic
indefinite block Toeplitz matr ix with singular principal minors. As indi-
cated in the previous subsection, if the matr ix has a singular principal
minor, then the hyperbolic Householder reflector cannot be constructed

TOEPLITZ AND BLOCK TOEPLITZ 357

and the Schur algorithm breaks down. If the pivot block is per turbed such
tha t the matr ix E1 becomes nonsingular, then the Schur algorithm can
be continued. This provides an approximate factorization of block Toeplitz
matrix.

The blocking scheme used in this subsection is different from the one
discussed in the previous subsection. The scheme used is a modification
of the techniques discussed in Section 2. Consider a symmetric indefinite
block Toeplitz matr ix T with block size m x m whose first block row is
given as Ti, i = 1 , . . . ,p. If r l is nonsingular and :Yl = PL1EIL TPT (P is a
permutat ion matrix), then the generator for the Toeplitz matr ix is given as

C e n : (r01 Z 2 - . - Z p) and W : ("01 0) , (33)
r 2 " - - T p - -Z 1

where T~ = (L E 1) - I p T T i , i = 1 , . . . , p and E1 is a diagonal signature
matrix. If the leading block T1 is singular, then the generator is given as

= (0 . 5 (T l + I m) T2 "'" :Fp~ and
W = (/ ' ~

0) ,

Gen \ 0 ' 5 (T l - I r n) T2 "'" T p / 0 - I r a

where Im is an identity matr ix of size m.
At each step of the Schur algorithm, a block hyperbolic Householder

matr ix is constructed using the first block column of the generator at tha t
step. Let us consider the blocking schemes discussed in Section 2. A se-
quence of hyperbolic Householder matrices is constructed such tha t the
diagonal element of the upper block is used to zero out all the elements of
the column below it. At the j t h step of the process of zeroing out the lower
block, the vector u has the form [0 , . . . , 0, u j , . . . , u2m]. Let the hyperbolic
norm of u be uTWu. A hyperbolic Householder reflector can transform a
vector u to another vector b such that uTWu = bTWb. If we choose b to
be -ae j (using uj to zero out the column), then bTWb = W (j , j) a 2. If
sign(W(j, j)) ~ sign(uTWu), then one cannot obtain a reflector U such
tha t Uu = -ae j . We would have to look for an alternate nonzero pivot ele-
ment in the column of u tha t has the same signature as the sign of uTWu.
Let this be uk. The element uk can be permuted to the j t h position and
can be used as a pivot element to zero out the column below it.

Let us first assume tha t the hyperbolic norms of all the u vectors during
the block reflector generation process are nonzero. The case of a zero hy-
perbolic norm is discussed later. The blocking schemes discussed in Section
2 can be easily extended to the indefinite case in the presence of permuta-
tions of the kind described above. Let us consider the V Y blocking scheme.
A derivation of the Y T Y T form can be obtained similarly.

358 K . A . GALLIVAN ET AL.

Let us consider a particular step in the Schur algorithm. Let the gener-
ator and signature matrix Gen and W satisfy the following displacement
equation

T - 2"~2 = GenTW Gen. (34)

Consider the first step of the blocking process. Let P1 be the permutation
matr ix to get the correct pivot element in place. The hyperbolic reflector
U1 is given as

2 ~ 1 ~ r
u 1 = w 1 _ , (3 5) 2TW1~1

where WI = PIW1P T (where W1 = W) and "Xl = Plx. Let us denote
the first block column of the generator Gen that is used to produce the
block reflector as A. The reflector U1 is applied to a permuted version
of A,

U1P1A = W1 2"x12 T1 P1A
~W,~l

U(1) A = (P1Wl + (PlXl) ~ 2xT1
X ~ l ~ l)) ~

U(')A = (P1W1 + vlyT1)A. (36)

The reflector U (1) shown above is W-unitary in the following sense

U(1)rWIU (1) = W, (37)

where W1 = P1WP1T. This result is derived as follows:

UO)rWIU (') = (P, W1 + vlyT)T~z1(P1W1 + Vly T)

= W1pITW1P, W, -+- ylxTpTW1PlX,y T

+ p, Wl + Wlpl lelXl l
If p~ W~ pl = Wl

g(ll lU = Wl + + ylXf + . l yF

= w l . (3 8)

Let C (1) = PIW1, V (1) = Vl and y(1) = Yl, we show by induction that
at the (i + 1)th step the block relector has the form U (i+l) = C (i+1) +

TOEPLITZ AND BLOCK TOEPLITZ 359

V(i+I)Y (i+l)r, where C (i+1) = P(i+l)W(i+l). At the first step p(1) = /)1 ,
W (1) = W1 and U (1) = U1. Assume tha t U (i) has been obtained in the
correct form. We show tha t U (i+t) can be obtained in the correct form.

At the (i + 1)th step Wi+l is given by

and

where

~i+1 = pi+l (Ii 0) o P51

T = Pi+lWi+lPi+l (39)

U(i+ 1) _ Ui+lPiTiU (i)

T (C(~) v(~)y(~) ~) = (Pi+lWi+l -F Pi+lXi+lYi+l) +

= Pi_F1Wi+l C(i)

-F (Pi+lWi+lV(i) l Pi+lXi_F1)

= C (i+1) -F v(i+I)Y (i+l)T,

y(~)T .)
Yi+IT (C(i) + V(i)y(i) r)

C(~+ 1) = P~+IWi+IC (~)

= P~+IWi+IP(~)W (~)

= (P~+IP (~)) (P(~)rW,+,P(~)W(~))

= p(i+l) W(~+I). (40)

The block hyperbolic Householder t ransformation at the end of m steins
has the form U ('~) = C (m) +V('~)Y ('~)T. From (37) we know that U(1)~'Vv1
U (1) = W, where W1 = PIWP~I ~. It can be shown by induction tha t

U (m)TWnextU (m) : W
Wnext = Pm... P1WPIT... pTm

= P(m)WP(m), (41)

where Wnext iS the signature matr ix for the next Schur step.
If the hyperbolic norm of any column is zero, then the Schur algorithm

breaks down. The column of the generator is per turbed such tha t the hy-
perbolic norm of the column is of the order of 161. An algorithm for the

360 K. A. GALLIVAN ET AL.

per turbat ion of such a column of the generator is:

i f (u T W j _ I u = O) then
uj --~ pivot element
a = (0 , . . . , 0 , u j + l , . . . , U 2 m)

i f (W j - I (j , j) = 1) then

Uj = V/~Zj_l (j,j)([~[-- aT~ ' j_ la)
else

I

- - a T W j _ I a)

end

else if (urWj_lu > o) then (+1~1 say)
i f (W j - I (j , j) = 1) then

uj --~ pivot element
a = (O, . . . ,O, u j + l , . . . , u 2 m)

uj = v/Wj_I(j , j) (IS[- t - [e l ~ a r W j ~ l a)

else

uk ~ pivot element (Wj_l(k , k) = 1 say)
a = (0 , . . . ,O, u y , . . . ,Uk_l ,O, U k + l , . . . , U2rn)
uk = V / - ~ - ~ (k , k)(lel + I~f - a ~ j _ l a)

end

else (u r ~ / j _ l U = - I t I say)

if (W j - I (j , j) = 1) then

uk ~ pivot element (Wj - l (k , k) = - 1 say)
a = (0 , . . . , O, u s , . . . , Uk-1, O, U k + l , . . . , U2m)

Uk : v / W j - l (k , k) (- [(~ [- I ~] - a T W j - l a)
else

uj --* pivot element
a = (O,. . . ,O, Uj+l , . . . ,U2r~)

"ttj = v /Wj_I (j , j) (-]~[- [~l - - (tTwj_ I a)
end

end

The per turbat ion of a column of the pivot block column of the gen-
erator with zero hyperbolic norm allows us to continue the factorization
process but introduces numerical instability into the algorithm. One way
to circumvent the possible numerical instability of the Schur algorithm is to
use iterative refinement on the system of equations. A similar per turbat ion
technique has been used in [7] for the Levinson algorithm. They use the
approximate factorization as a preconditioner in the conjugate-gradient al-

T O E P L I T Z A N D B L O C K T O E P L I T Z 361

gorithm. The iterative refinement technique we propose requires less work
than the preconditioned conjugate-gradient algorithm per iteration.

Let us consider the system of equations T z = b, where T is an indefinite
symmetric block Toeplitz with singular principal submatriees. Using the
perturbat ion technique described above we obtain an approximate factor-
ization

T + 5T = L D L y . (42)

We solve the system of equations to get Xl

L D L T x l = b (43)

and then compute the residual r l

r l = - T x l + b. (44)

Using the correction term AZl obtained from

L D L T A x l = r l (45)

we improve the estimated solution by

X 2 : 2;" 1 ~- A X 1 . (46)

The algorithm then becomes

Construct L D L T = T + 5T using the Schur algorithm.
Solve LDLT x l = b, and set rl = - T x l + b.

f o r i = 1, . , .
Solve LDLT A x i = ri

i f IIAxill < tol IIxill then stop
else

Xi+l ~- Xi Jv AXi
ri+l = - T X i + l + b

endi f
endfo~"

From the error analysis of [32] we know that the computed quantities
5i, A~i, and Yi satisfy the following identities

~i = - T ~ i + b + 5~i = r~ + 5~i with 115~i11 _< e~llTtl II~iII (47)

(LDL T + 5Ti)AYi = gi with ll6Zill <_ wlILII 2 IIDlI, (48)

where ci, 7/i are of the order of the machine precision of the computer.
From these equations we obtain

(T + 5T + 5T{)AZ{ = b - T~{ + 5~{ (49)

and after some rewriting

ri+l = b - T (X i + A S i) = (ST + 6 T ~) A Z i - 6 ~ {

362 K.A. GALLIVAN ET AL.

or also

ri+l = (6T + 6Ti)(T + 6T + 6Ti) - l (r i + ~) - 6~i

= AT{(T + A T i) - l r i - T(T + ATi)-16~i,

where the terms 6T and 6Ti, which are typically of the same order, have
been grouped together in ATi. Defining Mi = ATi T -1 we have

ri+l = Mi (I + M i) - l r i - (I + Mi)-16~i . (50)

If we can now obtain that max~ [[ATi T-1[I = 7 << 1 then the above
equation is a difference equation that will converge linearly, with a factor

= 7(1 - ~'), to a steady-state value of

1 1 II~rmaxll = 1 5max
IIr~[I ~ 1 ~ 1 ~ 2-----~] l h r m a x l [1 < l[TIt[]xll. (51)

- - _ _ - - l - 2 - y

Since our assumption is that 0/ is small, this final residual is about what
one can expect from a stable algorithm. If we obtain that 7 = ~fe then the
number of iteration steps to get "convergence" to this result would be k.

As shown above it is important to bound 116T T- i l l in the construction
of the factorization. Since LDL T is only an approximate decomposition
of T (but an exact decomposition of T + 6T), we have the freedom to
perturb T so as to obtain a better bound for 6T T -1. In this subsection
we show how to obtain this by selective perturbations introduced in the
Schur algorithm. Similar ideas have been developed independently for the
Levinson algorithm by Concus and Saylor [7].

At the i th step of the Schur algorithm we apply a block hyperbolic
Householder transformation U~ to the generator G'(i) to get G'(i + 1), i.e.,
UiG'(i) = G'(i + 1). The corresponding decomposition for the Toeplitz ma-
trix is

T : [aT(i) [c1(i)]
LG2(i)J

w [G I (i + I)]
= [oT(i + 1)GT(i + 1)] LG2(i + I) '

where Ui is essentially a block arrangement of identity matrices and Ui
blocks. Hence,

IIU, H2 = flU, H2 and II0,- ll= --IIu,-~ll~. (52)
If we now perturb the generator matrix G'(i) by a perturbat ion of norm
6[[G(1) [[2 then the equivalent perturbation HAG(l)[[of G(1) is bounded by

II~C(1)tl _< llu -'ll . - - IIc,-_hll IIO(1)ll

and that of T is proportional to ~11U~-1112.-. IIUV-~II~IITII. In other words,
the norms of the inverses of the block transformations performed thus far

TOEPLITZ AND BLOCK TOEPLITZ 363

act as a growth factor in the back transformations of the per turbat ion to
the original matrix. Another factor tha t we have to be concerned about is
tha t the t ransformation Ui for which the 6 per turbat ion was done will have
a norm of approximately 1/6 and the norm of the next generator G(i + 1)
will be increased by tha t amount. Numerical errors in subsequent steps will
thus be proportional to this value and when transforming these back to the
original matr ix T we find again that we have to keep

£IIU1H." HUn_ill
bounded. Experience has shown tha t for each per turbat ion 6 performed at
a certain step i, there will be two block transformations of norm approx-
imately 1/6. For hyperbolic Householder transformations, IIUtl = l i e - l I!
Hence, the total error due to one per turbat ion is

IIATII _ 6 + - - (sa)
]ITll 6 2.

We choose 6 so as to minimize the above expression. The value of 6 that
minimizes the above expression is ~ or 6 ~ {yT. This gives us

= IILxT T -1 II

< IIATll IIr-~l l

< IIATII condCT)
- I l r l l

-~ 6 + ~ (if T is well conditioned)

,,~ ~ (if we set 6 = ~) . (54)

The subsequent number of steps of iterative refinement would be three.
The above analysis holds true if we perturb the generator matr ix just once.

Let us consider the case when we need to per turb twice. Let 61 and 62 be
the two perturbat ions at steps i and j respectively. The total per turbat ion
to the original Toeplitz matr ix can be expected to be of the following order

116TII = (6111U~-tll - . - ltU/_~ll + 6211U~-111 . ' . IIU/_~,II) IITII

(< + (55)
The numerical error due to the block transformations of norms approxi-
mately equal to 1/61 and 1/6 2 is

Numerical errors = ellUlll..-llU,~-lll IITll
C

= u 2" (56~
6162

The total error due to the two factors is
62 e IIATII -- 6a + - - + (57)

IITII 6~ 6126e2"

364 K.A. GALLIVAN ET AL.

The above expression is minimized by choosing 61 = ~/~ and 52 = ~/e. This
means that we would require nine iterations to get to machine precision. It
is impossible to know ahead of time how many perturbations one requires to
carry on with the Schur algorithm. If, upon performing one perturbation of
~/e, we see during the Schur algorithm that another perturbation is needed,
we would have to backtrack to the first perturbation and change the value
of 51 from ~/e to ~/-~. This is usually very wasteful of computation. Also,
if the number of times the generator needs to be perturbed increases, the
accuracy is lost very quickly and we might have to look for other ways to
handle such cases. From our experiments with Toeplitz matrices, we have
observed that even for Toeplitz matrices with several singular minors one
perturbat ion is sufficient. So, in practice, it might be safe to assume that
a large number of systems can be solved by perturbing the generator only
once and the above analysis holds. For systems where this is not the case
the algorithms discussed below are applicable.

We now present an example of a symmetric Toeplitz matrix with a sin-
gular principal minor. Consider the following block Toeplitz matrix T with
a block size of 2.

T (I : 2 ,1 : 2) = ("0.04324379151529 0.29158091418984~

\0.29158091418984 0.67982106506507]

T (I : 2 ,3 : 4) = (0.00769818621115 0.06684223751856~

\0.38341565075489 0.41748597445781 /

T (I : 2 ,5 : 6) = /0"68677271236050 0.93043649472782

\ 0.58897664285683 0.84616689050857.]

T (I : 2, 7: 8) = (0.52692877758617 0.65391896229885~

\0.09196489075756 0.41599935685098]

This matrix has a singular principal minor (T(1 : 4, 1 : 4) is singular). At
the second step of the Schur algorithm, while blocking the two hyperbolic
Householder transformations, the second column of the pivot block col-
umn of the generator has zero hyperbolic norm. We introduce a pertur-
bation of ~ ~ 10 -5. The norm of the block hyperbolic Householder
after perturbation is 2.2172e+07 and the norm of U4 is 2.821e+07. This in-
dicates that a single perturbation of 5 produces two block hyperbolic House-
holder transformations of norm approximately equal to 1/5. The norm of
6 T . T -1 is 5 . 5761e - 04. If we consider x = (1 1 1 1 1 1 1 1) T, then
b = (3 . 2 0 7 4 3.7154 2.4177 3.6918 2.0762 4.0332 2.6206 4.3022).
We find [Ix - Xll] = 3 .1699e- 04. Using iterative refinement, we find that
after one step IIx-x211 =9.7515e - 08, after the second step IIx-x3H =
3.2389e - 11, and after the third step IIx-x4U =3.5231e - 15, which is
approximately equal to the machine precision. Note that this is consistent
with the analysis above.

TOEPLITZ AND BLOCK TOEPLITZ 365

3.3. Look-Ahead Schur Algorithms

Perturbing the generators in the event of singularities during the Schur
algorithm produces an approximate factorization of the block Toeplitz ma-
trix. Iterative refinement is needed to improve the accuracy of the solution•
If an exact factorization of a symmetric indefinite block Toeplitz matrix is
desired, then we would have to deal with the singular principal minors of
the Toeplitz matrix in a different way.

One important way of avoiding the singular principal minors during the
Schur algorithm is to look ahead over the singularities. This technique may
also be used when the principal minors are badly conditioned. Look-ahead
techniques were originally proposed to improve the numerical robustness
of the Lanczos algorithm applied to an indefinite matrix T in the presence
of singular and nearly singular leading principal minors in T [25]. Most of
the techniques related to these developments are based on the theory of
orthogonal polynomials [17] or equivalently on that of T conjugate direc-
tions. This theory is in turn closely connected to that of Hankel matrices
and the Pad~ algorithm [3] and of Toeplitz matrices and the Levinson algo-
ri thm [12]. In both cases one constructs the decomposition L - 1 T L -T = D
where T is the given Toeplitz matrix. The rows of L -1 are the conjugate
directions or also contain the coefficients of the orthogonal polynomials.
Look-ahead techniques have been proposed and yielded algorithms with
satisfactory numerical behavior [3, 4, 12, 18, 25].

The look-ahead Schur algorithm proposed in [18] is based on orthogonal
polynomials and does not extend to block Toeplitz matrices. Look-ahead
Schur algorithms for Toeplitz systems with exactly singular principal mi-
nors have been proposed in [10, 24].

In Sections 3.3.1 and 3.3.2 we discuss two look-ahead Schur algorithms
that are based entirely on matrix operations and hence extend easily to
block Toeplitz matrices.

3.3.1. Algorithm 1. Consider a m p x mp block Toeplitz or quasi-block
Toeplitz matrix T with a block size of m x m. Let the displacement equation
of this matrix be

T - Z T T Z = GoTEoGo

where

and

(HOo
G = \Goo

~o = (~ 1

Hol Ho2

Go1 Go2

• " " H O p - 1

• . • G o p - l)

366 K. A. GALLIVAN ET AL.

The Schur algorithm proceeds by applying a E-unitary transformation Uo
(UoTE1Uo = Eo) to Go such that

 0 o=(00o
Go1 "" Gop-1 '

~1~ (~110 ~120).

It was shown earlier that if H~EolHoo + G~oEo2Goo is singular, then the
Schur algorithm breaks down. If it is badly conditioned, the factorization
would have significant numerical errors. It can be seen that Ho~EolHoo +
Go~oEo2Goo is the (1, 1) block of the Toeplitz or quasi-Toeplitz matrix.
More generally, if the 2m, am,... , (k- 1)m principal minors are singular or
badly conditioned and the km principal minor is well conditioned, then to
preserve numerical accuracy we would have to look ahead over the (k - 1)m
steps of the Schur algorithm. Let the matrix T be partitioned as

[Tll T12] (59)
T = [TT T22J'

where Tll is the km x km principal minor of T that is well conditioned.
If we are to "jump" over (k - 1)m steps of the Schur algorithm, we also
require that the off-diagonal entries of T~lT12 not be too large. A detailed
discussion on the determination of the look-ahead step size (denoted here
by k) can be found in [4] and [12]. We restrict our discussion to the look-
ahead scheme after the determination of the step size k.

The first step in this look-ahead scheme is the computation of the first
km rows of the Toeplitz or quasi-Toeplitz matrix given by [Tll] T12]. From
this we obtain the diagonal block and the upper triangular factor of the
Toeplitz or quasi-Toeplitz matrix by an O(n 3) "slow" algorithm such as
the Bunch-Kaufman for symmetric indefinite matrices. The first km rows
of the block Toeplitz matrix can be obtained from the generator matrix
and the signature in O(rn2p) flops.

Let the matrix [Tll [T12] be factored into

[Tll I T12] = DkL T, (60)

where Dk = Tll and L~ is a k m x mp matrix with a leading identity matrix
of size km

L T = (Ikm I T~lT12)

: (I m r (61)

T O E P L I T Z A N D B L O C K T O E P L I T Z 367

The Schur complement of the Toeplitz matr ix T w.r.t, the k m t h principal
minor is

T(c k) T (k r n + 1 : rnp, k m + 1 : mp) ~ ~ T = - L k D k L k . (62)

The Schur algorithm can be continued if we obtain a factorization of Ts([)
tha t is of the form shown in (58). Since the displacement rank of the Schur
complement of a block Toeplitz matr ix is 2m, such a factorization exists.
We now proceed to show how such a factorization can be obtained.

Let us denote the matr ix T (k m + 1 : rap, krn + 1 : rnp) as T. Let Z be
a block right shift matr ix of size (p - k)m . The displacement of the Schur
complement T~(~) is given as

T(~:) - 2 ~ T ~) 2 = ~ - 2 ~ 2 - LkDkI . T + 2T~kDk~2. (63)

If the generator Go is parti t ioned as

[" H o o " ' " H o k - 1 I H o k

G o = !\ Goo . . . Gok - l l Gok

= (& ~do),

" " Hop-1)
• "" G o p - 1

(64)

then

and

(65)

T(~?) - 2rT(sck)2 : ~ T Z o d o _ LkDkLkA AT + 2 T Z ~ D ~ 2 2 . (66)

Factoring Dk = LDkED~LTk , where EDk is a diagonal matr ix with 4-1
entries, the right-hand side of the above equation can be rewritten as

(d r LkLD~

(oo o)(o
2~Z~L~) o - z ~ o L ~

o o r ~ L ~ Z ~ 2 /

Hence, we have

(67)

This indicates tha t we can readily obtain a generator for the Schur com-
plement. The problem with (67) is tha t the generator d has a rank of at
most 2krn + 2m. We know tha t the minimal generator of a block Toeplitz
matr ix has rank 2m. We, therefore, have to reduce the generator shown

368 K.A. GALLIVAN ET AL.

above so tha t a minimal is (k generator obtained. The displacement of the
Schur complement, ATsc), is a symmetric indefinite matr ix of rank 2m. To
obtain a rank 2m factorization of this matr ix one would have to use the
Bunch-Kaufman algorithm. A brief description of a delayed update ver-
sion of the algorithm follows. Consider the i th step of the Bunch-Kaufman
algorithm, and let the partial factorization of the matr ix A T (k) be

(68)

where d is a block diagonal matr ix with 1 × 1 or 2 × 2 blocks. The next
step is the computat ion of the first row of the matr ix X. This can be
obtained by computing the corresponding row of A T (k) and updat ing it
with uTdu. I t must be noted tha t the matr ix A T (k) can be stored in its
factored form and when a certain row is needed it can be computed using
the factorization in (67). For example, the j t h row of A T (k) is given by
~ T W G and requires O(mkn) flops where m is the block size, k is the look-
J

ahead step size, and n is the number of columns of G. After obtaining
the first row of X, the maximum element of this row is computed. If the
(1, 1) element of X can be used as the pivot (for a detailed description
of the Bunch-Kaufman algorithm see [16]), then this row can be used to
compute the next row of the factorization. If the (1, 1) element cannot be
used as a pivot, another row of the matr ix X needs to be computed in
the same way as described above. In some cases this new row becomes the
pivot row. In others the first row and the new row are used to define a
2 × 2 pivot block, which is used in the elimination. After ~ steps with
si × si pivot blocks, where ~ = 1 s~ = 2m, the generator of the AT(k) is
obtained.

This look-ahead algorithm requires 2kin + 2m of storage for the gener-
ator G. In addition, during the reduction of G to Gk a Bunch-Kaufman
like pivoting s t ra tegy is applied to obtain 1 × 1 or 2 × 2 pivot blocks tha t
are used to compute the hyperbolic Householder transforms. The pivot
search s t ra tegy requires reduction primitives to find the column with max-
imum hyperbolic norm. In Section 3.3.2 we present an alternate look-ahead
Schur algorithm tha t requires less storage and in some cases less computa-
tion than this method and avoids the Bunch-Kaufman pivoting s t rategy all
together. Hence, reduction primitives tha t perform poorly on distributed
memory machines are avoided.

3.3.2. Algorithm 2. In this section we discuss another look-ahead Schur
algorithm tha t requires less storage than the previous scheme and avoids the
reduction primitives used in the Bunch-Kaufman pivoting strategy. A simi-
lar algorithm has been developed independently by Sayed and Kailath [28].

TOEPLITZ AND BLOCK TOEPLITZ 369

Let T be a general symmetric, block Toeplitz matrix of dimension N x N
and block size m x m, i.e., row of T be given as

I To 71 ... Tp-1

T = T ~ To "'. Tp-2 , T o = T o T, N = m x p. (69)
• . , " . •

LTL1 fY-2 ... To

Let Z be a block right shift matrix of size rap; then the displacement
equation of the matrix T can be written as

T - Z T T Z = G T E G . (70)

Let us assume that To is ill conditioned. A look-ahead Schur step would be
needed to preserve numerical accuracy of the factorization. In addition, let
us assume that the m, 2 m , . . . , (k - 1)m principal minors are ill conditioned
and that the k m principal minor is well conditioned. Parti t ion T and Z
eonfornlally as

T : , Z : , (71)
L T21 I T22 J Z22 J

where Tll and Zll are of dimension m k × m k (a multiple of the block size)
and Tll is assumed to be invertible (this is always possible by choosing k
large enough). Let us also assume that all the conditions for determining
the look-ahead step size of k as discussed in [12] are satisfied. We now
derive updating formulas for the Schur complement of a matrix T with
low displacement rank and show that it also has low displacement rank•
The rank 2 m factorization of the displacement of the Schur complement
provides the generator for the subsequent steps of the Schur algorithm.
This part is related to the work of [22], but is not contained in it.

Define

X T~llT12, X T T -1 [~ j X] = = T12Tll , U = ; (72)

then it follows that

L ITscJ
where Tsc is the Schur complement of T with respect to Tll . Applying
uT(.)U to (70) yields

U T T U -- (u T z T u -T) U T T U (U - 1 Z U) = u T G T E G U . (74)

370

Note that

K. A. GALLIVAN ET AL.

 1z :[z111 121z2 ,75,
Using (73) and (75) we can reduce (74) to

I~Tsc] - [Z1T1] I T l l ~ ---] [Zll Z121=uTGT~,GU. (76)
J z T [IT~oJ Z22J

Equating the (1, 2) and (2, 2) positions in the above equation we have

M=ZTT11ZI2+[I,O]GTZG[~I] =0,

/',Ts~ = T ~ - Z ~ T ~ c Z 2 2

= 2~T~121,~ + [- x f l ,] GT~G[Z-~]. (77)

Substituting for Z12 from (75) we can further simplify M and ATsc to

M = [I] 0] Z T Tll[I I X]Z + ar~a = 0 (7s)

Substituting for X in the matrix in the middle of the above equations we
get

[TTj T111[Tll [T12]Z q- GT~G

This expression can now be further simplified to prove that the rank of
ATsc is at most a. To prove this we first need the following lemma.

LEMMA 5. Let

W= IF r FTj [~01 y]21 IF21 F22] , (81)

TOEPLITZ AND BLOCK TOEPLITZ 371

where E1 and Wll = FT E, F u + F72t E2 F21 are invertible. Then there always
exists a transformation H such that

H T 1 0 E1 0 (82)
E2 H = 0 E2

[Fll FI2] I ~ 1 t~12 1
HLF2, F22 = ~ e J (83)

Proof. See [1.4]. •
To simplify (80) we now must apply this lemma to construct a transforma-
tion H such that

Lo]d~J '

(84)

(85)

where_. Tu and T n are matrices of size mk x ink, G has dimensions a x N,
and G2 has dimensions ee x (N - ink). To apply the above lemma we only
need to show that W u is invertible since Tn is invertible by assumption.
From (76) it follows that

Tll = zT11T11Z11 4- GTEG1,

From (80), l~Zll equals

where G1 = G [/] .

kr~j TI~I [Tll I T12]Z + a z z a

and since

we have

Wll r -1 GT~G1 2/711, = Z l l T l l T l l TllZll 4- z

which thus shows that W u is invertible as well.
Applying (84) and (85) to (80) we obtain

w=L~?~ d~ L o I x j o d~ "

(86)

(87)

(88)

(89)

(90)

372 K. A. GALLIVAN ET AL.

Inserting this in (78) and (79) yields

AT~¢ = GTEd2

L[~TJ Z111[rll 1712]

Since M = 0 and T n and :Fll are invertible, we have

[+] :0
which yields,

= 0

(91)

= = 0

partitioned as

1
R =

R22

From (93), it can be seen that H must satisfy

(95)

(96)

0 O~ J (93)

1 1 ,94,

Let H -- RQ, where R is upper block triangular and Q is unitary. Let G
be parti t ioned as [G1 I G2], where G1 has dimensions c~ x ink. Let R be

~Tsc -- d ~ d 2 . (92)

This establishes a new displacement identity where E and G2 are obtained
from (84)-(85).

The above description of the algorithm did not provide a method to
construct the transformation H. We now outline one method to construct
the matrix H. Assuming that Tll is invertible, we know that the matrix H
satisfies the following

TOEPLITZ AND BLOCK TOEPLITZ 373

The first step involves a QR faetorization:

a l J = = = Q1 " (97)

From (96) and (97), we obtain

[21 ~12] [Bo] : [T101] :::~ ~11B : Tie =:~ t~11 (98)

Substi tuting for H in (94) we obtain,

R*1,T~l R11
R~2TI~IRll

R* [T51

R~1Tu1R12
R~2Tl~1R12 -t- R~2ER22

Equating the (1, 2) position in the above matr ix equation after some sim-
plification we obtain

[Zll]
R;2 = Q u [E G I " (100)

Equating the (2, 2) position in (99) and rearranging the terms, we have

R~2ER~2=Q2I"~I] (~, ; -- R;2Tlll R12. (101)

The matr ix H is then computed as a product of R and Q.
This algorithm is of course only conceptual. It does not describe how to

track the condition number of T1J. For this we refer to techniques as those
described in [4, 12, 18]. If no look ahead is necessary, then the blocking
scheme discussed in Section 2.5 can be used to compute H. If a look ahead
of size km is required, then H can be computed as shown in Lemma 5. It
should be pointed out tha t when Tll is well conditioned then the transfor-
mat ion H and its construction should give no numerical problems.

3.3.3. Comparison of the two algorithms. In this section we compare
the two look-ahead algorithms from a computat ional and numerical stand
point. Consider a block Toeplitz matr ix with a block size of rn. Further,
let us consider a look-ahead step size of krn at some stage of the Schur

(99)

374 K.A. GALLIVAN ET AL.

algorithm. Let the size of the Schur complement following the look-ahead
step be l m × lm.

In Algorithm 1, the Bunch-Kaufman pivoting strategy would have to
be applied to obtain the generator for the Schur complement. In the worst
case, we would have 2m steps with each step requiring two rows of ATsc
be computed and contributing a 1 x 1 pivot. This would mean tha t a total
of 4m reduction operations, each of length lrn are done throughout the
algorithm. Comput ing one row of ATsc for example, say the i th row is
done as ~ T w G . I t can be seen tha t computing one row of ATsc costs

total flops = 8m 2 + 4m2k 2 + 4m2(k + 1)/. (102)

As mentioned earlier, in the worst case there are 2m steps requiring two
rows at each step. Also, at each step the rows computed need to be updated
with the factorization computed till the previous step. At the j t h step
this requires 2(j - 1)lm operations. Hence, the total cost of the entire
algorithm is

2m
= 2m 2 (8m 2 + 4m2k 2 + 4 m 2 (k + 1)/) + 2 m E 2 2(j - 1)lm

j = l

= 16m41 + 8m31 + 16m3kl + 16rn3k 2 + 32m 3. (103)

In comparison, if we use Algorithm 2, the computat ion of the matr ix H
(described in (93 through 101)) requires a QR factorization of the matr ix

T l l Z l l] (104)
G 1 J '

which has a dimension of m (k + 2) × krn. The cost of QR factorization of
an M × N matr ix is 4 M 2 N - 2 M N 2 + 2N3/3. For the matr ix in (104) the
computat ional cost would be

= 4m2(k + 2)~mk - 2(.~k)2(k + 2)m + (2~3)(ink) 3

= 2 .67m3k 3 + 12m3k 2 + 16m3k. (105)

We then have to compute R12 from (100). The total number of operations
to compute R12 is

8m3k + 16m 3 + 2m2k. (106)

If we assume R22 = I , then the number of operations required to compute
E from (101) is

= 2m3k 2 + 16m3k + 16m 3 + 8m 2. (107)

TOEPLITZ AND BLOCK TOEPLITZ 375

The cost of applying H to the generator of size m (k + 2) x l m is just the
cost of applying Q2 to the generator. This cost is

= 4rn3kl + 8real, (108)

The total cost of this method is found by adding (105, 106, 107, 108)
together. This gives us

= 4 m a k l + 8 m 3 1 + 2 . 6 7 m 3 k 3 + 1 4 m : ~ k 2 + 4 0 m 3 k + 2 m 2 k + 3 2 m a + 8 r r ~ 2. (109)

Comparing (109) and (103) and factoring the common multipliers we have

2mak ~ + 12makl + 16m4/

k 2 + 6kl + 8ml

vs. 2.67m3k 3 + 40m3k + 2m2k + 8m, 2

k 4
vs. ----1.33k 3 + 20k + - - + - - . (110)

Consider an example where m = 4 and l = 100. It can be seen from (110)
tha t for look-ahead step sizes greater than 24 Algorithm 1 is less expensive
than Algorithm 2.

Hence for small block sizes, if the look-ahead step size is large, the
Bunch-Kaufman-based look-ahead algorithm is faster than the one without
pivoting. Note tha t in this calculation the cost of the reduction operation
has not figured in. The results are not very different for serial machines.
For parallel machines, the reduction operations give rise to several syn-
chronization points but the reduction is done in parallel. For Algorithm 2
the computat ion of H is a serial bottleneck. I t is possible on some par-
allel machines that Algorithm 1 will have a wider range of applicability
than on a sequential machine. From this it is clear that the two algo-
r i thms have distinct ranges of applicability. The performance implications
of these algorithms on serial and parallel machines is currently being in-
vestigated.

It has been shown tha t in certain pathological cases, the Bunch-Kaufinan
algorithm may not be able to detect, accurately, the rank of a low rank
matr ix [31]. Algorithm 1 relies on obtaining a rank 2 factorization of the
displacement of the Schur complement after each look-ahead step. The pro-
cess is s topped after one or two steps of the Bunch-Kaufman algorithm. In
such cases, Algorithm 1 would produce only an approximate factorization
and the exact solution would have to be obtained using iterative refine-
ment. I terat ive refinement may also be used to improve the accuracy of the
solution in the second look-ahead algorithm, if the solution is inaccurate.

376 K. A. GALLIVAN E T AL.

4. QR FACTORIZATION OF BLOCK TOEPLITZ MATRICES

The Schur algorithm can be generalized to obtain the QR factorization
of block Toeplitz matrices due to the low displacement rank of the matrix
TTT. This generalized Schur algorithm has been outlined in [5] for scalar
Toeplitz matrices and can be trivially extended to block Toeplitz matrices.
In this section we present a modification of the generalized Schur algorithm
for rank deficient Toeplitz matrices. It is shown that for exactly rank deft-
cient block Toeplitz matrices, in the event of a degeneracy, the rank of the
generator matrix can be dropped by 2. This reduces the complexity of the
generalized Schur algorithm. For numerically rank deficient block Toeplitz
matrices this algorithm yields a low-rank approximation.

The generalized Schur algorithm described in [5] was applied to block
Toeplitz systems with full column rank. In several applications in signal
and image processing the Toeplitz systems are related to rank deficient
least-squares problems and hence regularization has to be applied to yield
an acceptable solution.

A standard approach would be to apply Tikhonov regularization which
still yields a matrix in the same class of matrices. If T is a N × N Hermitian
(and semidefinite) Toeplitz matrix, then both T and T + a I are Toeplitz
Hermitian and hence of displacement rank 2. Similarly, if T is a general
M z N Toeplitz matrix, then both T*T and T*T+aI have a displacement
rank of at most 4. The complexity of this approach would thus be that of
a Toeplitz solver, i.e., O(N2).

For some applications, T is a large matrix, and its rank r is small com-
pared to the dimensions o f t (r << min{M, N}). This fact is not exploited in
the standard approach because the regularized problems yield full-rank ma-
trices. One would expect that the Toeplitz algorithms should only require
O(Nr) operations instead since the Cholesky decomposition of a low-rank
semidefinite matrix A is

A=U;U~,

where U, in a r × N "upper-triangular" matrix or rank r. Depending of
the given matrix, the rank profile of U~ will be of the type

o r

\ I

\ \ I
Matrices of displacement rank 2 are always of the first type, whereas ma-
trices of displacement rank 4 can be of both types.

TOEPLITZ AND BLOCK TOEPLITZ 377

Consider a co lumn rank deficient point Toepli tz ma t r i x T of size M x N.
Let the m a t r i x have l consecutive l inearly dependen t columns T(: , k) , . . . ,
T(: , k + l - 1). We show tha t in this case a very par t icular p rope r ty holds
in the genera tor ob ta ined at the s ta r t of the kth s tep of the general ized
Schur a lgor i thm. As seen in [5], the genera tor for the ma t r i x T T T is of
the form

A T T T = [G T I a T I c T I c T]
[oo, o

0 - I G3

0 0

(111)

where G~, i = 1 , . . . , 4 is of size 1 x N. Let us denote the genera tor of TTT,
at the i th s tep of the generalized Schur a lgor i thm by

G (~) = /G(+) | , (112)

/ ° 1

Lo?J
where G (i) is of size 4 x (N - i + 1). Since the m a t r i x TTT is pos i t ive
semidefini te and since the ma t r ix T has I l inearly dependent columns k , . . . ,
k + l - 1, the Schur complemen t of TTT w.r.t , the (k - 1)th pr incipal minor
has the form

where X is a (N - k - l) x (N - k - l) ma t r ix wi th nonzero entries. T h e
d isp lacement of the Schur complement , T~(c k - t) also has the same spars i ty
pa t t e rn . The genera tor a t the s t a r t of k th s tep of the general ized Schur
a lgor i thm is (the superscr ip t indicat ing the kth s tep has been d ropped for
convenience)

911 g12 .. . gl(N-tc+l)

g22 .- . g2(N-k+l) (114)

/

Lg41 942 . . . g4(N-k+l)

Ins t ead of apply ing a hyperbol ic Householder t r ans fo rm to zero out the
first co lumn using g11, we first app ly two or thogona l t r ans fo rms to zero

378 K . A . G A L L I V A N E T AL.

out g21 and g41 using gll and g31 respectively. Let Q1 and Q3 be those
transforms. The sparsity pattern of the generator will then be as shown:

• . - g l l g1 (/+1)

0 g2(/q-1)

g31 g3 (/+1)

0 g'4(/4-1)

• "- g l (N - k + l)

• -- g 2 (N - k + l)

" ' " g 3 (N - k + l)

• - ' g 4 (N - k + l)

Since the (1, 1) element of the Schur complement is 0, we have

(115)

g21 -- g21 ~--- 0 (1 1 6)

and since the first row of the displacement of the Schur complement is zero
we have

(117)

The above equations yield

[g]l g]2 . . . g1(N-k+1)]=[g31 g32 .-. g3(N-k+l)]- (118)

Hence, the first and third rows of the generator shown in (115) can be
dropped. Also, since the first l colmnns of the reduced generator are "zero"
we can skip the next l steps of the generalized Schur algorithm. The gen-
erator at the start of the (k + /) t h step of the generalized Schur algo-
r i thm is

[~2(1+1) " " ~2(N-k+l)
g4(z+l) " " g4(N-k+l)l" (119)

Since the matrix TTT is a positive semidefinite matrix, if the pivot
column of the generator has a zero hyperbolic norm, then the (1, 1) element
of the displacement of the Schur complement will be zero and the entire row
will also be zero. A detection of a zero hyperbolic norm of the pivot column
of the generator is therefore sufficient to drop the rank of the generator.
The next time the pivot column of the generator has zero hyperbolic norm,
the rank of the generator again drops by two causing the Schur algorithm
to terminate with an upper triangular factor of the form

\
\

TOEPLITZ AND BLOCK TOEPLITZ 379

This reduction in the generator size and rank avoids breakdowns. The
algorithm has as many steps as the number of linearly independent colunms
in T. The complexity of the algorithm therefore is O(Nr) (where r is the
column rank of T) as opposed to O(N 2) for matrices with full column
rank.

If the matrix T has columns that are nearly linearly dependent on the
other columns, i.e., it is nearly rank deficient, then the hyperbolic norm of
the pivot column of the generator at those steps will be nonzero. In this
case a simple thresholding mechanism applied to the above algorithm can
be used to obtain an approximate low-rank decomposition of the matrix
TTT

A + ~A = U:U,.. (120)

In case one is solving least-squares problems, it is easy also to use the
obtained decomposition to perform a few steps of iterative refinement oil
the seminormal equations.

If the matrix T is a block Toeplitz matrix of block size m, then the gen-
erator at the start of the generalized Schur algorithm has rank 4m. Again,
if the hyperbolic norm of the generator is zero, then the Schur complement
will have a leading "zero." Also since the matrix TTT is semidefinite, the
entire row of the displacement of the Schur complement will be zero and the
rank of the generator can be dropped by two by dropping the two identical
rows with opposite signatures.

The algorithm proposed in this section is a significant simplification over
a similar approach proposed in [20], which uses the Levinson algorithm
with look ahead. We include an example to illustrate the above algorithm.
Consider a Toeplitz matrix T

T =

5 4 3 2 1 2 2 3"

6 5 4 3 2 1 2 2

7 6 5 4 3 2 1 2

8 7 6 5 4 3 2 1

9 8 7 6 5 4 3 2

10 9 8 7 6 5 4 3

11 10 9 8 7 6 5 4

12 11 10 9 8 7 6 5

13 12 11 10 9 8 7 6

14 13 12 11 10 9 8 7

15 14 13 12 11 10 9 8

380 K.A. GALLIVAN ET AL.

Columns 3, 4, and 5 are linearly dependent of the first two columns, while 6,
7, and 8 are again linearly independent. The (generalized) Schur algorithm
uses the following generator for the matrix A = T ' T :

G(0)(:, 1 : 4) =

-34.7851 31.6228 28.4605 25.2982]

0 4.0000 3.0000 2.0000~

0 31.6228 28.4605 25.2982[

0 15.000 14.000 13.000 J

G(0)(:, 5 : 8) =

-22.1359 19.2611 16.5876 14.2877]

1.0000 2.0000 2.0000 3.0000~ .

22.1359 19.2611 16.5876 14.2877[

12.000 11.000 10.000 9.0000J

Two steps of the (generalized) Schur algorithm generate the first two rows
of the upper triangular factor of T * T . At the beginning of the third step
the first column of the generator has a E-norm equal to zero

G(2) --

1.0000 2.0000 3.0000 4.0000 3.9091 3.4545-

-0.7583 -1.5166 -2.2749 -0.9113 -0.5391 0.9020

-1.2515 -2.5030 -3.7545 -3.7545 -3.4860 -2.2985

-0.0936 -0.1873 -0.2809 0.0827 0.4783 1.1324

We then use Householder transformations to eliminate G(2)(2,1) using
G(~)(1, 1) and G(2)(4, 1) using G(2)(3, 1). This gives us the generator

(~(2) =

-1.2550 -2.5100 -3.7650 -3.7379 -3.4406 -2.2076-

0 0 0 1.6908 1.9324 2.8060

-1.2550 -2.5100 -3.7650 -3.7379 -3.4406 -2.2076

0 0 0 -0.3626 -0.7370 -1.3008

Since the first and third rows of the generator are equal and have signatures
of opposite signs, they can be removed and the generator for the next
step will have only two columns. Also, it can be seen that the first three
columns of this generator are zeros and this means that we can skip the
corresponding rows in the upper triangular factor Ur. The next step would
use the generator

I 1.6908 1.9324 2.8060J
G(5) = -0.3626 -0.7370 -1.3008 '

TOEPLITZ AND BLOCK TOEPLITZ 381

and the factorization process continues. This finally yields the triangular
factor U~ as

U~(:, 1: 4) =

u~(: , 5 : 8) =

--34.785 -31.623 -28.461 -25 .298]

1.000 2.000 3.000 /

J
--22.136 -19.261 -16.588 -14 .288]

4.000 3.909 3.455 2.182|
-1.651 -1.817 - 2 . 5 8 7 | .

1.618 1.708|
-1 .578J

The backward error ~A of the matrix A = T*T defined as

I I ~ A l l - I{A - g ;U~l l
IIAll

is 3.57 x 10 -15, which is of the order of the machine precision (e ~ 2.22 x
10-16). This shows the good numerical behavior of the regularization
algorithm.

The numerical behavior of this algorithm was good because the above
example was exactly rank deficient. If there is a sharp drop in the singular
values of the matrix, this algorithm will yield accurate results. However, if
there is no sharp drop, then this algorithm may produce an inaccurate fac-
torization due to the sensitivity of Schur complements [31]. The algorithm
discussed in the next section addresses this issue.

5. CONVERSION TO CAUCHY TYPE MATRICES

In Section 4, we discussed modifications to the QR factorization algo-
r i thm for block Toeplitz matrices proposed by Chun et al. [5]. The modi-
fied algorithm could be used to obtain the QR factorization of an exactly
rank deficient block Toeplitz matrix. If the Toeplitz matrix happened to
be numerically rank deficient, then only a low approximation of the block
Toeplitz matrix could be obtained. This was because any form of pivoting
applied to the generalized Schur algorithm would destroy the displacement
structure of the block Toeplitz matrix.

In [15, 21] it was shown that if Toeplitz matrices were converted to
Cauchy type matrices, then the factorization of such matrices could be
carried out with pivoting. The drawbacks of the algorithms proposed in
[15, 21] were that complex-valued FFTs were used to convert a real vahmd

382 K.A. GALLIVAN ET AL.

Toeplitz matr ix into a complex-valued Cauchy type matrix• The algorithms
were not able to exploit any symmetry in the Toeplitz or quasi-Toeplitz
matr ix to reduce the computat ional complexity.

In this section we present a modification to the algorithms in [15, 21]
to factor a symmetr ic semidefinite quasi-Toeplitz matr ix using only real
ari thmetic and exploiting the symmetric property of the matrix• This al-
gori thm can be used to obtain a rank revealing factorization of the matr ix
T T T , where T is a rank deficient Toeplitz matrix• Rank deficient Toeplitz
matrices arise in image reconstruction and system identification problems.

In [20] Hansen and Gesmar present a look-ahead-like algorithm for fast
orthogonalization of rank deficient Toeplitz matrices and in [11] Eld6n and
Park present a modification to the algorithm proposed in [5], where they
delay the application of the ill-conditioned skew hyperbolic transforms to
obtain an approximate factorization. Both algorithms do not involve any
pivoting since they deal with Toeplitz matrices only. The algorithm pre-
sented in this section does not have this limitation due to the conversion
to Cauchy type matrices•

5.1. Rank Factorization of Positive Semidefinite Quasi-Toeplitz Matrices

Consider a symmetric positive semidefinite quasi-Toeplitz matr ix T of
size N x N. Let the displacement equation of this matr ix be given as

T - Z T Z T = G E G T, (121)

where Z is a circulant matr ix of size N x N

Z =

rO 0 . . . 0 1

1 0 ". ". 0

0 1 ' . ".

• • , • •

0 0 . . . 1 0

(122)

Note tha t the matr ix Z in (121) is a circulant matr ix and not a lower shift
as used in Section 4.

A Cauchy type matr ix can be defined as any matrix that has the follow-
ing displacement s tructure

D f C - C D b = G 1 G T

or C - D f C D b = G I G T, (123)

TOEPLITZ AND BLOCK TOEPLITZ 383

where D I and D b are diagonal matrices. I t was shown in [15, 21] tha t if
(121) is converted to (123) using the discrete Fourier transform, then Gaus-
sian elimination with partial pivoting can be applied to obtain a factoriza-
tion. The problem with this method is tha t the Fourier t ransform converts
the real-valued Toeplitz matr ix into a complex-valued Cauchy type matr ix
and increases the complexity of the algorithm.

If we can obtain a real-vMued transform that block diagonalizes the
circulant matrix, then applying that t ransform to (121) would convert it to
(123), where Df and Db are real-valued block diagonal matrices. A Hart ley
t ransform H of size N converts the circulant matr ix Z shown above into
a matr ix with an X-shaped non zero structure. A permutat ion P can then
be applied to obtain a block diagonal matr ix with 1 x 1 or 2 x 2 blocks.
Applying the t ransformation H = P H of the appropriate size to (121)
yields

~ I T ~ I T - (f I Z ~ I T) (I I T ~ I T) (~ I Z T f i I T) = I ? I d E d T f-I T

C - A C A T = G E G T, (124)

where C = ~ I T ~ I T is a Cauchy type matr ix and A = FIZ!~I T i s a block
diagonal matr ix with 1 x 1 and 2 x 2 blocks. If we obtain a factorization
C = L D L r of the Cauchy type matrix, then the corresponding factorization
of the quasi-Toeplitz matr ix T will be T = ~ I T L D L T f i I . The next step in
this algorithm is obtaining a factorization of the form L D L T of the Cauchy
type matr ix C in (124).

It must be noted tha t the Cauchy type matrix C is not explicitly com-
puted but is implicitly available from the matrices A, G, and E. Recon-
structing any column of the Cauchy matrix from (124) would require solving
the Lyapunov equations. Let the columns of the matr ix C and G r be par-
titioned conformally with the block structure of A. The i th column block
of the matr ix C, denoted by ci, satisfies the equation

(125)

where ai is the i th diagonal block of the matrix A and g~ is the corre-
sponding block row of the generator G. The above equation can then be
writ ten as

A T ci -- eiCt T = A T G Z g T. (126)

Any block row of ci given by cj~ then satisfies the Lyapunov equation

T c j iaT T T aj cj~ -- = aj gjEg~. . (127)

384 K.A. GALLIVAN ET AL.

If j ¢ i, then the matrices aj and ai have different eigenvalues and the
Lyapunov equation can be solved for cij. For j = i, the Lyapunov equation
cannot be solved. The diagonal blocks of C, therefore, cannot be computed
from A, G and E. We, therefore, need to precompute the diagonal blocks
of C from the original quasi-Toeplitz matrix.

Having outlined the method to compute any column and the diagonal
block of the Cauchy type matrix, we now proceed to describe the algorithm
to obtain the factorization of C.

Let the block diagonal of the Cauchy matrix C be denoted by D. Since
the matrix T is positive semidefinite, it can be argued that searching for
the diagonal block di with the highest determinant is sufficient to locate a
pivot block. Let P1 be the permutation matrix to get the diagonal block di
to the pivot position dl. Also, let P1CP1T be partitioned as

L z, IC,.J
Let us define the matrix X,

[, :]
X = _ l ld~ l ;

then applying X (.) X r to

P1C P T - (p1ApT) (P1C pT) (p1A T pIT) = P1GEGT p1 T

d - .~A'T = d E ~ T (130)

yields

[dl_~_O_] _ JAil 0] [dl_~p__]- [A01T1 A T 1] = X ~ T x T (131)
k 0 I CscJ [A21 A22 L 0 I CscJ AT

If we obtain a generator for Csc that satisfies the displacement equation of
the form

Csc - A22CscAT2 = G ~ E ~ G T, (132)

then we would have finished the first step of the factorization algorithm.
It can be seen that the above equation is identical in form to (76) and
hence the procedure developed in Section 3.3.2 can be used to obtain the
generator of Csc.

Alternatelyj. another techniqueto update the generators can be used.
Partitioning G T conformally as G T = [~T ~T] and equating the (2, 2)

TOEPLITZ AND BLOCK TOEPLITZ 385

position in (131) we have

Csc - A22CscAT2 = (G2 - / l d i - l G O E (G 2 - I ld - l lG1) T + A21dlAT1, (133)

where A21 = A221ld~ 1 - l l d [1 A n . The last term of (133), A21dlAT1, can
be expanded as

= (A2211d~l _ l l d l l A u) d l (d 1-1 lit A22T _ Audit -1 llT)

= (A2211AT1 - l l d {1Aud lAT1)A~ITd~IA~I 1

× (AuITAT2 - AudlATld-~ll~'). (134)

Equating the (1, 1), (1, 2), and (2, 1) positions of (130) we have

dl - AudlAT1 = GIEG T (135)

11 - A221lAT1 = G2EG1T. (136)

Inserting the above equations in (134) yields

A21dlAT1 = (G 2 - l l d l l G 1) E G T A { ? d l l A l l l S 1 E (G 2 - l l d l l G 1) T. (137)

Substituting (137) in (133), ACsc = Csc - A22CscAT2 has the form

Csc = (G 2 - / l d l l G 1) (E + E G T A l l T d l l A l l G 1 E) (5 2 - l l d l l G 1) T. (138)

Using the Sherman-Morrison-Woodbury formula and (135) it can be shown
that

(E + r G T A ~ T d ~ I A - ~) G l r) = (~ - 1 _ ~Td~- l~ l) - i " (139)

Hence, the update equations for the generator and the signature matrices
are

Gsc = 5 2 - - / l d 1 1 G 1 (140)

~ c 1 = ~ - 1 _ ~ T d 1 1 5 1 " (141)

Having obtained the generator for the next step, we update the diagonal
matrix D as

Dne×t = D - l l D l l I T 1 . (142)

This defines all the information to proceed with the next step of the fac-
torization. Carrying the factorization to completion in a similar manner,
one obtains a factorization of C of the form LDL T and a factorization of
T for the form HTLDLT~I T.

386 K.A. GALLIVAN ET AL.

5.2. Eztensions of the Algorithm

The above algorithm extends very easily to block Toeplitz matrices be-
cause the block circulant matrix Z can also be diagonalized by a permuted
version of the Hartley transform.

The pivoting strategy used in the above algorithm was block diagonal
pivoting. In some cases this may not be sufficient. If at any stage of the
algorithm all the diagonal pivots of the Schur complement are ill condi-
tioned, it is possible to revert to the complex arithmetic version without
too much overhead and continue the factorization.

6. CONCLUSIONS

In this paper we have presented several high performance variants of
the Sehur algorithm to solve block Toeplitz matrices. Based on the existing
Schur type algorithms and the algorithms discussed in this paper a high
performance library is currently being developed. In the past there have
been efforts to develop libraries for point Toeplitz matrices [1, 19] on se-
rial machines using the Levinson algorithm. The proposed library can be
used to solve point and block Toeplitz matrices on parallel machines. On
parallel machines, the Levinson algorithm suffers from reduced parallelism.
The Sehur algorithm-based library will be developed for distributed mem-
ory machines such as the Cray T3D and shared memory/vector-pipeline
machines such as the Cray C90. A detailed performance analysis of the
algorithms on the various high performance architectures will impact the
implementation choices.

The authors thank Michael Stewart for some useful suggestions on Section
3.2 of the paper. The authors also thank Cray Research Inc. for summer sup-
port provided to Srikanth Thirumalai. The work of the first three authors is sup-
ported by the National Science Foundation under Grants NSF CCR-9120105 and
CCR-92093~9, and by ARPA under a subcontract of Grant No. A R P A / N I S T
60NANB2D1272. V. Verrnaut is supported by an FDS-9d grant of the Universitd
Catholique de Louvain.

REFERENCES

1 O.B. Arushanian, M. K. Samarin, V. V. Voevoedin, E. E. Tyrtyshnikov,
B. S. Garbow, J. M. Boyle, W. R. Cowell, and K. W. Dritz, The Toeplitz
Package Users' Guide, Technical report, Argonne National Laboratory, 1983.

2 C. Bischof and C. Van Loan, The WY representation for products of House-
holder matrices, SIAM J. Sci. Stat. Comput. 8:s2-s13 (1987).

TOEPLITZ AND BLOCK TOEPLITZ 387

3 S. Cabay and R. Meleshko, A weakly stable algorithm for Pad~ approximants
and the inversion of Hankel matrices, SIAM J. Matrix Anal. Appl. 14:7:35
765 (1993).

4 T.F. Chan mid P. C. Hansen, A look-ahead Levinson algorithm for indefinite
Toeplitz systems, SIAM J. Matrix Anal. Appl. 13:490-506 (1992).

5 J. Chun, T. Kallath, and H. Lev-Ari, Fast parallel algorithms for QR and
triangular factorization, SIAM J. Sci. Stat. Comput. 8:899-913 (1987).

6 J. Chun and T. Kallath, Generalized Displacement Structure for Block
Toeplitz, Toeplitz Block and Toeplitz Derived Matrices, Informations Sys-
tems Lab., Stanford University, CA, 1988.

7 P. Concus and P. Saylor, A modified direct preconditioner for indefinite
symmetric Toeplitz systems, Linear Algebra Appl., to appear.

8 G. Cybenko and M. Berry, Hyperbolic Householder algorithms for factoring
structured matrices, SIAM J. Matrix Anal. Appl. 11:499-520 (1990).

9 J.-M. Delosme, I. C. F. Ipsen, and C. C. Paige, The Cholesky Factorization,
Schur Complements, Correlation Coefficients, Angles between Vectors, and
the QR Factorization, Technical report, Yale University, 1988.

10 Ph. Delsarte, Y. Genin, and Y. Kamp, Pseudo-Carathfiodory functions and
Hermitian Toeplitz matrices, Philips J. Res. 41:1-54 (1986).

11 L. Eld~n and H. Park, Accurate Least Squares Solutions for Toeplitz Matri-
ces, Technical report, Linkoping University, Sweden, 1994.

12 R.W. Freund and H. Zha, Formally biorthogonal polynomials and a look-
ahead Levinson algorithm for general Toeplitz systems, Linear Algebra Appl.
188:255 (1993).

13 K. Gallivan, S. Thirumalai, and P. Van Dooren, On Solving Block Toeplitz
Matrices Using a Block Schur Algorithm, Technical report, CSRD, University
of Illinois at Urbana-Champaign, 1994 [a shorter version appears in Proceed-
ings, 1994 International Conference on Parallel Processing, pp. 274-281].

14 K. Gallivan, S. Thirumalal, and P. Van Dooren, A block Toeplitz look-ahead
Schur algorithm, in SVD in Signal Processing III, Algorithms, Architectures
and Applications (M. Moonen and B. De Moor, Eds.), pp. 199-206, Elsevier,
Amsterdam, 1995.

15 I. Gohberg, T. Kailath, and V. Olshevsky, Gaussian Elimination with Par-
tial Pivoting for Structured Matrices, Technical report, Information Systems
Lab., Stanford University, 1994.

16 Gene H. Golub and Charles F. Van Loan, Matrix Computations, John
Hopkins Univ. Press, 1989.

17 M. Gutknecht, A completed theory of the unsymmetric Lanczos process and
related algorithms, ii, SIAM J. Matrix Anal. Appl. i5:15 58 (1994).

18 M. Gutknecht and M. Hochbruck, Look-Ahead Levinson and Schur Algo-
rithms for Non-Hermitian Toeplitz Systems, Technical report, IPS, ETH
Zurich, i994.

19 P.C. Hansen and T. F. Chan, FORTRAN subroutines for general Toeplitz
systems, ACM Trans. Math. Software 18(3):256-273 (1992).

20 P. C. Hansen and H. Gesmar, Fast orthogonal decomposition of rank defi-
cient Toeplitz matrices, Num. Algorithms 4:151-166 (1993).

388 K.A. GALLIVAN ET AL.

21 G. Heinig, Inversion of generalized Cauchy matrices and other classes of
structured matrices, in Linear Algebra for Signal Processing, The IMA Vol-
umes in Mathematics and its Applications, Vol. 69, (A. Bojanczyk and
G. Cybenko, Eds.), Springer-Verlag, 1995.

22 T. Kailath and A. Sayed, Fast algorithms for generalized displacement struc-
tures, in Recent Advances in Mathematical Theory of Systems, (H. Kimura
and S. Kodoma, Eds.), pp. 27-32, Proc. MTNS-91, 1992.

23 T. Kailath, S.-Y. Kung, and M. Morf, Displacement ranks of matrices and
linear equations, Y. Math. Appl. 68:395-407 (1979).

24 D. Pal and T. Kailath, Fast triangular factorization and inversion of Hermi-
tian, Toeplitz related matrices with arbitrary rank profile, SIAM J. Matrix
Anal. Appl. 14(4):1016-1042 (1993).

25 B. Parlett, Reduction to tridiagonal form and minimal realizations, SIAM
J. Matrix Anal. Appl. 13:567-593 (1992).

26 C.M. Rader and A. O. Steinhardt, Hyperbolic Householder transformations,
IEEE Trans. Acoust. Speech Signal Process. 34:1589-1602 (1986).

27 C. M. Rader and A. O. Steinhardt, Hyperbolic Householder transforms,
SIAM J. Matrix Anal. Appl. 9:269-290 (1988).

28 A. Sayed and T. Kailath, A look-ahead block Schur algorithm for Toeplitz-
like matrices, SIAM Y. Matrix Anal. Appl. 16(2) (1995).

29 R. Schreiber and C. Van Loan, A storage-efficient WY representation
for products of Householder transformations, SIAM J. Sci. Star. Comput.
10(1):53-57 (1989).

30 I. Schur, Uber potenzreihen die im Inneren des Einheitskreises beschrankt
sind, J. Reine Angew. Math. 147:205-232 (1917).

31 M. Stewart and P. Van Dooren, Stability Issues in the Factorization of Struc-
tured Matrices, Technical report, CSRD, University of Illinois at Urbana-
Champaign, 1994, Submitted for publication.

32 J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford Univ. Press,
Oxford, England, 1965.

Received 9 December 199~{; revised 27 June 1995

