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ABSTRACT 

In this paper, we present several high performance variants of the classical 
Schur algorithm to factor various Toeplitz matrices. For positive definite block 
Toeplitz matrices, we show how hyperbolic Householder transformations may be 
blocked to yield a block Schur algorithm. This algorithm uses BLAS3 primitives 
and makes efficient use of a memory hierarchy. We present three algorithms for 
indefinite Toeplitz matrices. Two of these are based on look-ahead strategies 
and produce an exact factorization of the Toeplitz matrix. The third produces 
an inexact faetorization via perturbations of singular principal minors. We also 
present an analysis of the numerical behavior of the third algorithm and derive a 
bound for the number of iterations to improve the accuracy of the solution. For 
rank-deficient Toeplitz least-squares problems, we present a variant of the gene- 
ralized Schur algorithm that avoids breakdown due to an exact rank-deficiency. 
In the presence of a near rank-deficiency, an approximate rank factorization of 
the Toeplitz matrix is produced. Finally, we suggest an algorithm to solve the 
normal equations resulting from a real Toeplitz least-squares problem based on 
transforming to Cauehy-like matrices. This algorithm exploits both realness and 
symmetry in the normal equations. 

1. I N T R O D U C T I O N  

Algor i thms to solve Toeplitz matr ices  can be broadly classified into two 
categories, namely,  the Levinson type and  the Schur type. The  Levinson 
type  a lgor i thms produce factorizat ions of the inverse of the Toepli tz mat r ix  
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such as T -1 = L D L  T and T -1 = QR, while the Schur type algorithms 
produce factorizations of the Toeplitz matrix itself such as T = LDL T and 
T = QR.  In addition, the two approaches differ in the kinds of computa- 
tional primitives used during the factorization. 

In [30] Schur derived a fast recursive algorithm to check if a power se- 
ries is analytic and bounded in the unit disc. Interestingly, the recursions 
proposed in this algorithm provide a fast factorization of matrices with 
displacement rank 2. It is well known that  Toeplitz matrices have a dis- 
placement rank of 2 [23]. More generally block Toeplitz matrices with a 
block size of m have a displacement rank of 2m. In this paper we dis- 
cuss several high performance variants of the classical Schur algorithms to 
factor symmetric block Toeplitz matrices. Specifically we discuss routines 
to factor symmetric positive definite, positive semidefinite, and indefinite 
matrices. Algorithms to obtain the Q R  factorization of exactly and nearly 
rank deficient Toeplitz matrices are also discussed. 

In this paper the classical Schur algorithm for obtaining the Cholesky 
factorization of symmetric positive definite block Toeplitz matrices [8, 9] is 
generalized to the block Toeplitz matrix case using a block generalization of 
the hyperbolic Householder reflectors. The block generalization of the Schur 
algorithm and various blocking schemes differing in the amount of storage 
and computational primitives used are described in Section 2. Blocking 
the hyperbolic Householder transformations allows us to apply these trans- 
formations using BLAS 3 primitives rather than the BLAS 2 primitives 
that  are required for plain hyperbolic Householder transformations. On 
machines with a memory hierarchy this provides us with a faster algorithm. 

For symmetric indefinite block Toeplitz matrices the Schur algorithm 
breaks down if the matrix has singular principal minors. A scheme to mod- 
ify the block Schur algorithm by perturbing the generators and obtaining 
an approximate factorization of the matrix is described in Section 3. The 
approximate solution is then improved through iterative refinement. The 
numerical behavior of this method to circumvent the singularities is studied. 
If an exact factorization of the indefinite block Toeplitz matrix is desired, 
then one would have to look ahead over the singular or near singular prin- 
cipal minors. Look-ahead algorithms based on the Levinson algorithm have 
appeared in the literature [4, 12] but suffer from the same reduced paral- 
lelism relative to the Schur algorithm mentioned above and are limited to 
point Toeplitz matrices. Look-ahead Schur algorithms based on orthogonal 
polynomials exist [18] but are limited to point Toeplitz matrices. In Section 
3 we present two look-ahead Schur algorithms for point and block Toeplitz 
matrices and compare the two from a computational viewpoint. 

The classical Schur algorithm can be generalized to obtain the Q R  fac- 
torization of block Toeplitz matrices [5]. If the Toeplitz matrix is rank 
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deficient, then we present a modification of the generalized Schur algorithm 
in Section 4 to obtain the Q R  factorization by pruning the generators of 
the Toeplitz matrix. If the matr ix  is nearly rank deficient, then this method 
produces a low-rank approximation of the Toeplitz matrix. 

Finally we discuss algorithms to factor Toeplitz matrices by converting 
them to Cauchy type matrices. Toeplitz matrices can be converted using 
the discrete Fourier transform into Cauchy type matrices that  allow pivot- 
ing during the factorization [15, 21]. These algorithms also have the same 
complexity, O(n2),  as the Schur algorithm. The problem with this method 
is tha t  any real-valued Toeplitz matr ix  is converted to a complex Cauchy 
type matr ix  and the entire factorization algorithm proceeds in complex 
arithmetic. This is computationally expensive. Similarly, any symmetry  in 
the Toeplitz matr ix  is ignored in this algorithm. In Section 5 we present 
a modification to this algorithm tha t  allows us to work in real ari thmetic 
and also exploit the symmetric structure of the matrix. This yields a rank 
revealing algorithm for the factorization of a semidefinite block Toeplitz 
matr ix  that  is computat ionally less expensive than the algorithm presented 
in [15, 21]. 

2. SYMMETRIC POSITIVE D E F I N I T E  BLOCK 
T O E P L I T Z  MATRICES 

In this section we present a block generalization of the classical Schur 
algorithm [8, 9] using block hyperbolic Householder reflectors. Block hy- 
perbolic Householder transformations can be applied at the BLAS 3 rate 
rather  than  plain householder transformations,  which are applied at the 
BLAS 2 rate. On machines with a memory hierarchy this provides us with 
a significant improvement in performance. Various blocking strategies tha t  
differ in the computat ional  primitives required during the construction are 
presented. The cost of applying these transformations is also discussed. 

2.1. The Classical Schur Algorithm 

Let T be an m p ×  m p  symmetric positive definite block Toeplitz matr ix  
with a block size of m × m whose first block row is given by [T1 T2 -. .  
Tp-1 :Fp]. Let Z be a block right shift matrix. The Schur algorithm is based 
on the fact tha t  the displacement of a block Toeplitz matr ix  T, defined as 
T - z T T z ,  has a rank of at most 2m [23]. The derivation of the Schur 
algorithm to compute the Cholesky factorization of a symmetric positive 
definite block Toeplitz matr ix  is outlined below. 

Since 2r 1 is a symmet r i c  positive definite matrix, we can find its Cholesky 
factorization T1 = L1L T, where L1 is an m × m lower tr iangular matrix. 
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Let Tj = Li-ITj .  It  is easy to see tha t  T1 = L T. We now define two matr ices  
e l ( T )  and G2(T) as follows [6, 23]: 

G I ( T )  = 

IT1 r2 T3 ... G 
o T~ ?2 . . .  Tp-~ 

• . o . . 

0 ". ". ". T2 

0 0 . . .  0 T~ 

G2(T)  = 

/o T2 T3 ... G / 
o o T2 . . .  Tp_~ 

• - " . .  " .  * 

0 '.  ". T2 

0 0 .- .  0 0 

(1) 

from which it follows tha t  

where 

T = [GT(T) G~(T)] -Imp [GdT) (2) 

[G2(T) -G,  " (a) 
If  we can obta in  a t ransformat ion  matr ix  U tha t  satisfies the p roper ty  

U T W m p U  ~- Wmp such tha t  UG = R, where R is upper  tr iangular ,  then  
we have 

T = GTWrnpG .= G T U T W m p U G  

01[? L][0 
= R T R ,  (4) 

which gives us the Cholesky factorizat ion of  T [8]. The  t ransformat ion  
mat r ix  U, which satisfies the proper ty  u T W m p U  = Wrap , is called a hyper-  
bolic Householder  t ransformat ion  [26]. The  basic properties of  hyperbolic  
Householder  reflectors are discussed in Section 2.2. Since the mat r ix  G com- 
prises two upper  t r iangular  block Toeplitz matrix,  we show in Section 2.4 
tha t  considerable computa t iona l  savings can be obta ined by working with 



TOEPLITZ AND BLOCK TOEPLITZ 347 

a generator matr ix  defined using the first block rows of G1 and G2 as 

G e n =  IT01 T2 "..  Tp-1 Tp] .  (5) 
T2 " " " Tp-1 T~ 

I t  can also be seen tha t  the above generator matr ix  Gen is obtained by a 
factorization of the displacement of the block Toeplitz matr ix  into [i: 0] 

T - Z T T Z  = Gen T - L ,  Gen (6) 

Note that  when 2rl is not positive definite we can consider the more 
general decomposition T1 = L1 E L y, where E is some signature matr ix  
with +1 on diagonal. This will exist provided 2F1 has nonsingular leading 
principal submatrices. The blocks Tj are obtained by Tj = ( L 1 E ) - I T j  and 
the Wrap matrix becomes 

- z p  " (7)  

We then again use hyperbolic Householder transformations (now with re- 
spect to the new signature matrix Wrap) to reduce G to an upper tr iangular 
matrix. A detailed discussion of the Sehur algorithm for indefinite Toeplitz 
matrices is presented in Section 3. 

2.2. Hyperbolic Householder Transformations 

In [8], Cybenko and Berry use hyperbolic Householder t ransformations 
[26] to reduce the generator matr ix  G of a scalar Toeplitz matr ix  to an upper 
tr iangular matrix. We extend their idea to block hyperbolic Householder 
t ransformations (required in the block Schur algorithm), using representa- 
tions very similar to those proposed in [2] and [29]. 

Let W be a diagonal matr ix  whose entries are either +1 or - 1 .  I t  is easy 
to verify tha t  the matr ix  W satisfies the equalities 

W 2 = I and W T = W. (8) 

Any matr ix  U tha t  satisfies the equation u T w u  = W is called a W- 
unitary matrix. Let x be a column vector such that  x T W x  ¢; 0. A hyper- 
bolic Householder matr ix  is defined as 

2 x x  T 
Ux = W x T w :  c. (9) 

One easily checks [8, 27] that  Ux is W-unitary,  i.e., u T W U x  = W .  These 
transformations can be used to map one vector to another as long as they 
have the same hyperbolic norm, i.e., if a T W a  = bTWb.  In our algorithm, we 
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reduce the generator matrix to an upper triangular matrix by successively 
zeroing elements below the diagonal of columns of the G matrix in (3). 
Given a column vector u, we would like to find a hyperbolic Householder 
matrix Ux such that  

Uzu = -o-e  j ,  (10) 

where e~ is a column vector whose j t h  element is 1 and other elements 
are 0 and a is a constant. We assume here that  e T W e j  = 1; i.e., the j t h  
component corresponds to a +1 in W. Also the vectors u we consider will 
have positive hyperbolic norm when the matrix T we decompose is positive 
definite. Choosing 

Uj u T w .  = --v / ~ (11) lujl 

then  u and Gej have the same hyperbo l ic  norm. I f  we take x = Wu + Gej, 
it can be shown that  Ux is a hyperbolic Householder transformation that  
maps u to -c~ej. 

2.3. Block Hyperbolic Householder Representations 

If we have to perform a sequence of hyperbolic Householder transforma- 
tions we could block these transformations together and then apply this 
block to the appropriate matrices. This allows us to use level 3 BLAS 
primitives rather than level 2 BLAS operations if we applied the transfbr- 
mations sequentially. Storage efficient ways to block regular Householder 
transformations are derived in [2] and [29]. We extend these methods to 
hyperbolic Householder transforms. 

Suppose U (r) = U r U r - I . . . U 2 U 1  is a product of r n × n hyperbolic 
Householder matrices. The matrix U can be written in two forms corre- 
sponding to the V Y  form and the Y T Y  T form derived in [2] and [29]. The 
two forms of the V Y  representation differ in the types of primitives they use. 

LEMMA 1. Suppose U (k) = W k + V k Y  T is a product o f  k n x n hyper- 
bolic Householder  matrices,  where Vk and Yk are n x k matrices.  I f  

T 9 ~ T  Tr(k) 
Uk+ 1 --- W 2xk3-1X-bl and zk+l -- 

T Xk+l WXk-t-1 XT+I WXk+I  

then 

where Vk_t_ 1 : [ W V  k 
V Y  form.  

U (kq-1) = Uk_bl U(k) : W k-F1 ~_ Vk-FIYL1 , 

zk+l] and Yk+l [Yk T = zk+l]. We call this the f i rs t  
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Proof. If r = 1 then,  U (H = U1 ~- W - 2XlXT1/(xTWxl) and we assign 
V1 = Xl and Y1 = - - 2x l / xTWxl  in order to have the  desired form 

( 2xk+lxL1 "~ VkY£r) Uk+~U (k) = W ~ (W k+ 
Z k + l W X k + l  ]] 

T (k) 
= W k+l ~_ W V k Y  [ - 2 X k + l X k + l U  

T X k + l W X k + l  

_.~ w k +  1 _[_ W g k Y  [ n t- Xk+lZk+ 1 

= Wk+l + [WVk xk+l] [ YT ] 
[Zk+l 

T = W k+~ + V k + W i + l .  

LEMMA 2. Suppose U (k) = W k + VkY [ is a product of k n × n hyper- 
bolic Householder matrices, where Vk and Yk are n x k matrices. If 

then 

T k 
Uk+l = W -  2xk+lxT+l and Z k + l  - -  - 2 x k + l W  

zkT+l W X k + l  T ' X k + l W X k + l  

T 
U (k+l) = Uk+IU (k) = W k+~ + Vk+~Yk+l, 

where Vk+l = [Uk+lVk 
second V Y  form. 

xk+l]  and Yk+l [Yk T -- zk+l] .  We call this the 

Proof. If r = 1 then,  U (1) = U 1 : W - 2XlXT/(xTWXl) and we assign 
V1 = Xl and Y1 = - -2Xl /xTWxl  in order to have the desired form 

Uk+lU (k) = W 2Xk-t- 1XkL 1 / Vk ]7[ / 
.T ( Wk + 

X k + l W X k + l  
T k 2xk+lXk+lW 

= W k + l  + Uk+ 1 y k y T  - T 
X k + l W X k + l  

= W k+l _[_ U k + l Y k Y  [ -~ Sgk_l_lZk+ 1 

=Wk+l+[Uk+lVk Xk+l] [ Ykr 1 
Zk+l J 

= Wk+l + Vk+IYL1. 
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LEMMA 3. Suppose U (k) = W k + Yk Tk y T w  k- 1 is a product of k n x n 
hyperbolic Householder matrices, where Yk is a n x k matrix and Tk is a 
k x k matrix. I f  

Uk+l = W 2Xk+lXk_rlT 2 
T W , ak+, = T (xT+I YkTk) 

Xk+ 1 xk-[-1 Xk+lWXk+l 

and 

then 

where 

2 
bk+l : T 

Xk+lWXk+l 

T rk U (k+~) = Uk+~U(k) = W k+~ + Yk+~Tk+~Yk+~I4 , 

Y k + I = [ W Y k  xk+l] and Tk+l= [ Tkak+l bk+lO ] .  

Proof. For k = 1 it can be seen that  U1 = W + Y 1 T I Y  T,  where Y1 = xl 
and T1 = --2/xTIWxt.  

U (k+l)  --  ( W  2Xk+lXkT+I) YkVkyTW k-l) 
zkV+lWzk+l ( wk + 

(_ 2 ) T k ( w Y k ) T k ( y T w k _ l )  = wk+l -~Xk+l T (Xk+lW) -~- 
Xk+lWXk+l 

2 
• 

T k ( W Y k ) T k ( y T w k - 1 )  : W k+l -t--xk+lbk+l (Xk+lW) -~- 

+ ~k+lak+l (Y?W ~-1) 

ak+l bk+l [ xk+lWk 
T k = wk+ 1 + Yk+ITk+IYf~+IW • • 

The three blocking schemes discussed above differ in the computational 
primitives employed (dotproducts or saxpys) and the amount of storage. A 
detailed performance analysis of the three blocking schemes is presented 
in [13]. 
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2.4. The Factorization Algorithm 

The following algorithm is used to reduce matr ix  G (3) described in 
Section 2.1 to an upper triangular matrix. This algorithm is essentially 
the same as the one described in [8] except that  we are dealing with blocks 
instead of elements. We describe the algorithm using an example as follows. 
Let T = GTWmpG, where G and W,~p are 

IT1 

0 

0 

0 

G =  
0 

0 

0 

0 

\ . 

Wrap = ( toP 

T,2 T3 T4 

T1 T2 T3 

0 T1 ~2 

0 0 T1 

Tp_l 

T;_2 

t r  i 

0 iT2 T 3 ". rp-1 
i . . . . . . . . . . . . .  I 

~T, ". Tp-2 0 0 ......... ?j 

0 0 . ". 

0 ). (12) 
--Imp 

The goal of this algorithm is to reduce G into an upper triangular matr ix  
using block hyperbolic Householder matrices. Since the first column of the,' 
generator is already in the right form we only use the generator matr ix  from 
the second row down. The first row of the upper submatr ix  of the generator 
is the first block row of the triangular factor of the Toeplitz matrix. The 
first step in this algorithm therefore involves eliminating the first diagonal 
in the lower half of the generator matr ix  (the boxed T2 blocks in (12)). 
If  this is done while maintaining the Toeplitz s tructure of the remaining 
port ion of the matr ix  (the submatr ix  from the third row downward), we 
can repeat  the process on the smaller generator till we triangularize G. 

Consider the matr ix  formed by stacking the second block row of the 
upper  submatr ix  and the first block row of the lower submatr ix  as 

G'= (~  T1 T2 T3 ... T p - 1 ) ,  (13) 
T2 T3 T4 ... Tp 
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Let U1 be a block hyperbolic Householder transformation that  eliminates 
T2 using :/"1. Applying this to G' we get 

U1G = . (14) 
o o . . .  T.  

The matrix formed by stacking the third row of the upper submatrix 
and the second row of the lower submatrix is just a shifted version of G'. 
Similarly all matrices constructed by stacking the corresponding rows in 
the two halves of the generator matrix are shifted versions of the G' matrix 
in (13). Hence, all the work that was needed to zero out the diagonal row 
of T2 in the lower submatrix was done in the first step. At this stage, the 
generator matrix G has a Toeplitz submatrix in its upper half (from the 
third row onward) and another Toeplitz submatrix in its lower half as 

~T1 T.[ T3 T4 . . .  Tp 

o " 5 - 1  

o o . 

0 0 0 ~Yl " .  " 

G = (15) 
0 0 i ' 

0 O 0 i"~-i Tp-1 [......3...I "'" 

0 0 0 0 "'. Tp-2 

0 0 0 ". ". 

-.. - /  

The second row of the upper submatrix of G is the second block row of 
the triangular factor of the Toeplitz matrix• The process is then repeated 
on the two lower right submatrices of the generator in (15)• After p - 2 
steps the generator is completely triangularized. 

Note that  in addition to being able to work with only two block rows, 
we can work with the same two block rows because the reduced generator 
in the next step has the same lower block row but the upper block row 
is shifted by one block to the right• Before this shift is made the upper 
block row must be stored in the right place in the triangular factor of the 
original Toeplitz matrix• At the first step of the algorithm, this reduced 
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matrix, which we refer to as the generator matrix, is 

G e n = ( T 1  T2 T3 .-. T p ) .  (16) 
0 T2 T3 . . .  Tp 

Also, we see that  in the first step 771 is upper triangular because by 
construction T1 = L T. The diagonal elements of T1 are sequentially used 
to zero out all the elements in the corresponding column of the lower block 
(T2). This implies that  at each step of the algorithm the block hyperbolic 
Householder matrices are computed using vectors that have one nonzero 
element in their upper half and a non zero lower half. This means that the 
If, Y matrices in the first two forms and the Y matrix in the third form 
have more sparsity than usual. The sparsity patterns of the matrices V, 
Y and Y, T and their performance implications can be found in [13]. In 
this paper we provide a summary of the computational costs involved in 
blocking the hyperbolic Householder reflector. 

The blocking scheme described in Lemma 1 requires two reduction prim- 
itives (matrix vector products) at each step. For a block Toeplitz matrix 
with block size m, if the m hyperbolic Householder reflectors at each step 
of the Schur algorithm are blocked, then the total flop count is 2.33m 3 + 
3.75m 2 + 8m. Also, applying the blocked reflector to a generator of size 
2m x mp requires 5m3p + 3m2p operations performed at the BLAS 3 (ma- 
trix nmltiplication) rate. 

If the blocking scheme described in Lemma 2 is used, one matrix vector 
product and one rank I update are used at each step of the blocking process. 
The total flop count to block the reflectors is 2m 3 + 3m 2 + 8rn and the cost 
of applying the blocked reflector to the rest of the generator is 5m3p+2m2p. 

The blocking scheme described in Lemma 3 requires two reduction prim- 
itives like in Lemma 1 but the cost of blocking m reflectors is 1.33m a + 
3.75m 2 + 8m, which is less than the two schemes mentioned above. On the 
other hand, applying the blocked reflector in this form to the rest of the 
generator is the most expensive, requiring 5m3p + 5rn2p flops. 

From this discussion it can be seen that there are definite tradeoffs in 
implementing the three blocking schemes and implementation choices must 
be made following a detailed performance analysis taking into consideration 
the architecture of the machine at hand. 

2.5. LDL T Factorization of a s.p,d. Block Toeplitz Matrix 

In this section we derive another form of the block hyperbolic House- 
holder reflector that  is used to obtain an LDL T factorization of a symmetric 
positive definite block Toeplitz matrix as opposed to a Cholesky factoriza- 
tion. This blocking scheme can be used if the matrix is symmetric indefinite 
unless there is a breakdown. Modifications to the Schur algorithm in the 



354 K. A. GALLIVAN ET AL. 

presence of breakdowns are discussed in Section 3. 
Consider a symmetric  positive definite block Toeplitz matr ix  T having 

blocks Ti, i = 1 , . . . ,  p of dimension m x m. The generator for such a Toeplitz 
matr ix  can be writ ten as 

I T2 T3 .. .  r ip) (17) 
G =  o T2 T3 . . .  Tp ' 

where T~ = : F [ l ~ , i  = 1 , . . .  ,p. The generator matr ix  shown above gives 
us a factorization of the displacement of the Toeplitz matr ix  T 

T - Z T T Z = G T (  ~10 -TIO ) G 

= GTWG, (18) 

where Z is the block right shift matr ix  of size mp x rap. The first step of 
the Schur algorithm for such a generator is trivial. After the shift at the 
end of the first step, the generator for the second step is 

G(2)= ( I  T2 T3 "" Tp-1). (19) 
T2 T3 T4 . . .  Tp 

If  we chooseAa block hyperbolic Householder reflector U such tha t  UTWU = 
W, where W is also block diagonal, then the factorization obtained is of 
the form LDL T, where D is block diagonal. If Tsc is the Schur complement 
of T w.r.t, the first leading m x m block and 2 is a block right shift matr ix  
of size m ( p -  1) x m ( p -  1), then 

) ~lsc _ 2TTsc~ = G(2)T 0A G (2) 
-T1 

= G(2)TuT(~oI ; 2 ) U G  (2) 

where o) 
~3 ~ 4 - - .  Tp 0 E~ " 

From the above equations we see tha t  if T = LDL T, then 

L ( m + l : 2 m ,  m + l : m p ) - = ( I  T2 T3 "'" Tp-1) 

D(m + l : 2m, m + l : 2m) = E l .  (20) 
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From this discussion it is obvious that  we need to construct a block hyper- 
bolic Householder reflector U such that 

0 9~2 u =  ~2 (21) 

The steps to construct the block reflector U are shown below. From (21) 
and (22) it can be seen that  

Et = E1 + X T E 2 X  (23) 

and 

z]  (24) 

U-1 can be factored as 

where Z = X Y  + W and 

Substituting for U, E, and E in (21) we get 

E1 = Et + x T E 2 x  (27) 
- ~ I Y W  -1  : xTE2 (28) 

~-]2 = w - T ( y T ~ " I ~  J- ~2) W - 1 .  (29) 
If we choose W = I,  then we have 

~1 = z l  + (XTZ2)X (30) 

z : -~ ,71(xTz~)  (31) 
E2 = E2 - Y T E 1 Y  = E2 + ( x T E 2 ) T y .  (32) 

It can be seen from the above description that  the primitives used in 
this blocking scheme are of the BLAS 3 type (matrix multiplication). The 
cost of obtaining the block reflector in this form is 6.83m 3 4- m 2 flops. 
This is substantially higher than the cost of the previous blocking schemes 
but the operations are performed at a higher rate (BLAS 3 rate versus 
BLAS 2 for the other schemes). The advantage of this scheme over the 
others is that  applying the block reflector to the rest of the generator of 
size 2m × m p  requires 4m3p flops, which is significantly less than that of 
the other blocking schemes. 
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3. SYMMETRIC I N D E F I N I T E  BLOCK T O E P L I T Z  MATRICES 

In Section 2 we described the Schur algorithm to obtain a Cholesky 
(LL T) factorization and an LDL T factorization of a block Toeplitz ma- 
trix. In this section, we discuss modifications to the classical Schur to ob- 
tain an LDL T factorization of a symmetric indefinite block Toeplitz ma- 
trix. We begin by discussing a possible degeneracy for indefinite matrices 
and then present a few techniques to overcome these degenerate steps in 
the Schur algorithm. 

The following theorem states tha t  if the block Toeplitz matr ix  T is pos- 
itive definite, it can be shown that  the block reflector U (22) always exists 
at every step of the Schur algorithm. 

THEOREM 4. Given a symmetric positive definite block Toeplitz T, at 
every step of the Schur algorithm, one can always construct a block reflector 
U, such that (21) and (22) are satisfied. 

Proof. See [13]. • 

3.1. Modifications to the Schur Algorithm for the Indefinite Case 

If  the block Toeplitz matr ix  T is symmetric  lad%finite, then the Schur 
algorithm could break down because of a singular E1 (see (31)). Even if 
E1 is badly conditioned the Schur algorithm would [ roduce  an inaccurate 
factorization. If  at any step of the Schur algorithm E1 is found to be well 
conditioned, then one can proceed with the Schur algorithm exactly as 
described in Section 2.5 to the next step. 

There are two ways in which one can, in the event of degeneracy, avoid 
the problem of near or total  breakdown of the Schur algorithm. The first 
method involves perturbing the pivot element of the generator such tha t  the 
matr ix  E1 in (31) is invertible. This method of "boosting" the pivot block 
provides an inexact factorization of the block Toeplitz matrix. I terat ive 
refinement may be used to correct the solution of such a system. The other 
method of avoiding degeneracy is to look ahead a few steps of the Schur 
algorithm, till a well-conditioned principal minor can be obtained. These 
two techniques are discussed in Sections 3.2 and 3.3. 

3.2. Approximate Factorization of Indefinite Toeplitz Matrices 
Using Perturbations 

We outline a modification to the Schur algorithm to factor a symmetr ic  
indefinite block Toeplitz matr ix  with singular principal minors. As indi- 
cated in the previous subsection, if the matr ix  has a singular principal 
minor, then the hyperbolic Householder reflector cannot be constructed 
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and the Schur algorithm breaks down. If the pivot block is per turbed such 
tha t  the matr ix  E1 becomes nonsingular, then the Schur algorithm can 
be continued. This provides an approximate  factorization of block Toeplitz 
matrix.  

The blocking scheme used in this subsection is different from the one 
discussed in the previous subsection. The scheme used is a modification 
of the techniques discussed in Section 2. Consider a symmetric  indefinite 
block Toeplitz matr ix  T with block size m x m whose first block row is 
given as Ti, i = 1 , . . .  ,p. If r l  is nonsingular and :Yl = PL1EIL TPT (P is a 
permutat ion matrix),  then the generator for the Toeplitz matr ix  is given as 

C e n :  (r01 Z 2 - . - Z p )  and W :  ("01 0 ) ,  (33) 
r 2 " - - T p  - -Z 1 

where T~ = ( L E 1 ) - I p T T i , i =  1 , . . . , p  and E1 is a diagonal signature 
matrix. If the leading block T1 is singular, then the generator is given as 

= ( 0 . 5 ( T l + I m )  T2 "'" :Fp~ and 
W = ( / ' ~  

0 ) ,  

Gen \ 0 ' 5 ( T l - I r n )  T2 "'" T p /  0 - I r a  

where Im is an identity matr ix  of size m. 
At each step of the Schur algorithm, a block hyperbolic Householder 

matr ix  is constructed using the first block column of the generator at tha t  
step. Let us consider the blocking schemes discussed in Section 2. A se- 
quence of hyperbolic Householder matrices is constructed such tha t  the 
diagonal element of the upper block is used to zero out all the elements of 
the column below it. At the j t h  step of the process of zeroing out the lower 
block, the vector u has the form [0 , . . . ,  0, u j , . . . ,  u2m]. Let the hyperbolic 
norm of u be uTWu. A hyperbolic Householder reflector can transform a 
vector u to another vector b such that  uTWu = bTWb. If  we choose b to 
be -ae j  (using uj to zero out the column), then bTWb = W ( j , j ) a  2. If 
sign(W(j, j))  ~ sign(uTWu), then one cannot obtain a reflector U such 
tha t  Uu = -ae j .  We would have to look for an alternate nonzero pivot ele- 
ment  in the column of u tha t  has the same signature as the sign of uTWu. 
Let this be uk. The element uk can be permuted to the j t h  position and 
can be used as a pivot element to zero out the column below it. 

Let us first assume tha t  the hyperbolic norms of all the u vectors during 
the block reflector generation process are nonzero. The case of a zero hy- 
perbolic norm is discussed later. The blocking schemes discussed in Section 
2 can be easily extended to the indefinite case in the presence of permuta-  
tions of the kind described above. Let us consider the V Y  blocking scheme. 
A derivation of the Y T Y  T form can be obtained similarly. 
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Let us consider a particular step in the Schur algorithm. Let the gener- 
ator and signature matrix Gen and W satisfy the following displacement 
equation 

T - 2"~2 = GenTW Gen. (34) 

Consider the first step of the blocking process. Let P1 be the permutation 
matr ix to get the correct pivot element in place. The hyperbolic reflector 
U1 is given as 

2 ~ 1 ~  r 
u 1  = w 1  _ , ( 3 5 )  2TW1~1 

where WI = PIW1P T (where W1 = W) and "Xl = Plx. Let us denote 
the first block column of the generator Gen that  is used to produce the 
block reflector as A. The reflector U1 is applied to a permuted version 
of A, 

U1P1A = W1 2"x12 T1 P1A 
~W,~l 

U(1) A = (P1Wl + (PlXl) ~ 2xT1 
X ~ l ~ l ) )  ~ 

U(')A = (P1W1 + vlyT1)A. (36) 

The reflector U (1) shown above is W-unitary in the following sense 

U(1)rWIU (1) = W, (37) 

where W1 = P1WP1T. This result is derived as follows: 

UO)rWIU (') = (P, W1 + vlyT)T~z1(P1W1 + Vly T) 

= W1pITW1P, W, -+- ylxTpTW1PlX,y T 

+ p, Wl + Wlpl  lelXl l 
If p~  W~ pl = Wl 

g(ll  lU = Wl + + ylXf + . l yF  

= w l .  ( 3 8 )  

Let C (1) = PIW1, V (1) = Vl and y(1) = Yl, we show by induction that  
at the (i + 1)th step the block relector has the form U (i+l) = C (i+1) + 
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V(i+I)Y (i+l)r,  where C (i+1) = P(i+l)W(i+l). At the first step p(1) = / )1 ,  
W (1) = W1 and U (1) = U1. Assume tha t  U (i) has been obtained in the 
correct form. We show tha t  U (i+t) can be obtained in the correct form. 

At the (i + 1)th step Wi+l is given by 

and 

where 

~i+1 = pi+l ( Ii 0 ) o P51 

T = Pi+lWi+lPi+l (39) 

U(i+ 1) _ Ui+lPiTiU (i) 

T (C(~) v(~)y(~) ~) = (Pi+lWi+l -F Pi+lXi+lYi+l) + 

= Pi_F1Wi+l C(i) 

-F (Pi+lWi+lV(i) l Pi+lXi_F1) 

= C (i+1) -F v(i+I)Y (i+l)T, 

y(~)T .) 
Yi+IT (C(i) + V(i)y( i ) r )  

C(~+ 1) = P~+IWi+IC (~) 

= P~+IWi+IP(~)W (~) 

= (P~+IP (~)) (P(~)rW,+,P(~)W(~)) 

= p(i+l)  W(~+I). (40) 

The block hyperbolic Householder t ransformation at the end of m steins 
has the form U ('~) = C (m) +V( '~)Y ('~)T. From (37) we know that  U(1)~'Vv1 
U (1) = W, where W1 = PIWP~I ~. It  can be shown by induction tha t  

U (m)TWnextU (m) : W 
Wnext = Pm...  P1WPIT... pTm 

= P(m)WP(m), (41) 

where Wnext iS the signature matr ix  for the next Schur step. 
If the hyperbolic norm of any column is zero, then the Schur algorithm 

breaks down. The  column of the generator is per turbed such tha t  the hy- 
perbolic norm of the column is of the order of 161. An algorithm for the 
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per turbat ion of such a column of the generator is: 

i f  ( u T W j _ I  u = O) then 
uj  --~ pivot element 
a = ( 0 , . . . , 0 ,  u j + l , . . . , U 2 m )  

i f  ( W j - I ( j , j )  = 1) then 

Uj = V/~Zj_l (j,j)([~[ -- aT~ ' j_ la)  
else 

I 

- -  a T W j _  I a ) 

end 

else if (urWj_lu > o) then (+1~1 say) 
i f  ( W j - I ( j , j )  = 1) then 

uj --~ pivot element 
a = (O, . . . ,O,  u j + l , . . . , u 2 m )  

uj  = v/Wj_I( j , j ) ( IS[- t - [e l  ~ a r  W j  ~ l a ) 

else 

uk ~ pivot element (Wj_l(k ,  k) = 1 say) 
a = ( 0 , . . .  ,O, u y , . . .  ,Uk_l ,O,  U k + l , . . . ,  U2rn) 
uk = V / - ~ - ~ ( k ,  k)(lel  + I~f - a ~ j _ l a )  

end 

else ( u r ~ / j _ l U = - I t  I say) 

if  ( W j - I ( j , j )  = 1) then 

uk ~ pivot element (Wj - l (k ,  k) = - 1  say) 
a = ( 0 , . . . ,  O, u s , . . . ,  Uk-1,  O, U k + l , . . .  , U2m ) 

Uk : v / W j - l ( k ,  k ) ( - [ ( ~ [ -  I ~ ] -  a T W j - l a )  
else 

uj  --* pivot element 
a = (O,. . . ,O, Uj+l , . . . ,U2r~) 

"ttj = v /Wj_I ( j , j ) ( - ]~[  - [~l - - ( tTwj_ I  a) 
end 

end 

The per turbat ion of a column of the pivot block column of the gen- 
erator with zero hyperbolic norm allows us to continue the factorization 
process but introduces numerical instability into the algorithm. One way 
to circumvent the possible numerical instability of the Schur algorithm is to 
use iterative refinement on the system of equations. A similar per turbat ion 
technique has been used in [7] for the Levinson algorithm. They use the 
approximate  factorization as a preconditioner in the conjugate-gradient al- 
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gorithm. The iterative refinement technique we propose requires less work 
than the preconditioned conjugate-gradient algorithm per iteration. 

Let us consider the system of equations T z  = b, where T is an indefinite 
symmetric block Toeplitz with singular principal submatriees. Using the 
perturbat ion technique described above we obtain an approximate factor- 
ization 

T + 5T = L D L  y .  (42) 

We solve the system of equations to get Xl 

L D L T x l  = b (43) 

and then compute the residual r l  

r l  = - T x l  + b. (44) 

Using the correction term AZl obtained from 

L D L T A x l  = r l  (45)  

we improve the estimated solution by 

X 2 : 2;" 1 ~-  A X  1 . (46) 

The algorithm then becomes 

Construct L D L  T = T + 5T using the Schur algorithm. 
Solve LDLT x l  = b, and set rl = - T x l  + b. 

f o r i  = 1, . , .  
Solve LDLT A x i  = ri 

i f  IIAxill < tol IIxill then stop 
else 

Xi+l ~- Xi Jv AXi 
ri+l = - T X i + l  + b 

endi f  
endfo~" 

From the error analysis of [32] we know that  the computed quantities 
5i, A~i, and Yi satisfy the following identities 

~i = - T ~ i  + b + 5~i = r~ + 5~i with 115~i11 _< e~llTtl II~iII (47) 

(LDL  T + 5Ti)AYi = gi with ll6Zill <_ wlILII 2 IIDlI, (48) 

where ci, 7/i are of the order of the machine precision of the computer. 
From these equations we obtain 

(T + 5T + 5T{)AZ{ = b - T~{ + 5~{ (49) 

and after some rewriting 

ri+l = b - T ( X i + A S i )  = (ST + 6 T ~ ) A Z i - 6 ~ {  



362 K.A. GALLIVAN ET AL. 

or also 

ri+l = (6T + 6Ti)(T + 6T + 6Ti ) - l ( r i  + ~ )  - 6~i 

= AT{(T + A T i ) - l r i  - T(T + ATi)-16~i,  

where the terms 6T and 6Ti, which are typically of the same order, have 
been grouped together in ATi. Defining Mi = ATi T -1 we have 

ri+l = Mi ( I  + M i ) - l r i  - (I  + Mi)-16~i . (50) 

If we can now obtain that  max~ [[ATi T-1[I = 7 << 1 then the above 
equation is a difference equation that  will converge linearly, with a factor 

= 7(1 - ~'), to a steady-state value of 

1 1 II~rmaxll = 1 5max 
IIr~[I ~ 1 ~ 1 ~  2-----~ ] l h r m a x l [ 1  < l[TIt[]xll. (51) 

- - _ _ -  - l - 2 - y  

Since our assumption is that  0/ is small, this final residual is about what 
one can expect from a stable algorithm. If we obtain that  7 = ~fe then the 
number of iteration steps to get "convergence" to this result would be k. 

As shown above it is important  to bound 116T T- i l l  in the construction 
of the factorization. Since LDL T is only an approximate decomposition 
of T (but an exact decomposition of T + 6T), we have the freedom to 
perturb T so as to obtain a better  bound for 6T T -1. In this subsection 
we show how to obtain this by selective perturbations introduced in the 
Schur algorithm. Similar ideas have been developed independently for the 
Levinson algorithm by Concus and Saylor [7]. 

At the i th step of the Schur algorithm we apply a block hyperbolic 
Householder transformation U~ to the generator G'(i) to get G'(i + 1), i.e., 
UiG'(i) = G'(i + 1). The corresponding decomposition for the Toeplitz ma- 
trix is 

T : [aT(i) [c1(i)] 
LG2(i)J 

w [ G I ( i + I ) ]  
= [oT(i + 1)GT(i + 1)] LG2(i + I)  ' 

where Ui is essentially a block arrangement of identity matrices and Ui 
blocks. Hence, 

IIU, H2 = flU, H2 and II0,- ll= --IIu,-~ll~. (52) 
If we now perturb the generator matrix G'(i)  by a perturbat ion of norm 
6[[G(1) [[2 then the equivalent perturbation HAG(l)[[ of G(1) is bounded by 

II~C(1)tl _<  llu -'ll  . - -  IIc,-_hll  IIO(1)ll 

and that of T is proportional to ~11U~-1112.-. IIUV-~II~IITII. In other words, 
the norms of the inverses of the block transformations performed thus far 
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act as a growth factor in the back transformations of the per turbat ion to 
the original matrix. Another factor tha t  we have to be concerned about  is 
tha t  the t ransformation Ui for which the 6 per turbat ion was done will have 
a norm of approximately 1/6 and the norm of the next generator G(i + 1) 
will be increased by tha t  amount.  Numerical errors in subsequent steps will 
thus be proportional to this value and when transforming these back to the 
original matr ix  T we find again that  we have to keep 

£IIU1H." HUn_ill 
bounded. Experience has shown tha t  for each per turbat ion 6 performed at 
a certain step i, there will be two block transformations of norm approx- 
imately 1/6. For hyperbolic Householder transformations,  IIUtl = l i e - l  I! 
Hence, the total  error due to one per turbat ion is 

IIATII _ 6 + - -  (sa)  
]ITll 6 2. 

We choose 6 so as to minimize the above expression. The value of 6 that  
minimizes the above expression is ~ or 6 ~ {yT. This gives us 

= IILxT T -1 II 

< IIATll IIr-~l l  

< IIATII condCT) 
- I l r l l  

-~ 6 + ~ (if T is well conditioned) 

,,~ ~ (if we set 6 = ~ ) .  (54) 

The subsequent number of steps of iterative refinement would be three. 
The above analysis holds true if we perturb the generator matr ix  just once. 

Let us consider the case when we need to per turb twice. Let 61 and 62 be 
the two perturbat ions at steps i and j respectively. The total  per turbat ion 
to the original Toeplitz matr ix  can be expected to be of the following order 

116TII = (6111U~-tll - . -  ltU/_~ll + 6211U~-111 . ' .  IIU/_~,II) IITII 

(< + (55) 
The numerical error due to the block transformations of norms approxi- 
mately  equal to 1/61 and 1/6 2 is 

Numerical errors = ellUlll..-llU,~-lll IITll 
C 

= u 2" (56~ 
6162 

The total  error due to the two factors is 
62 e IIATII -- 6a + - -  + (57) 

IITII 6~ 6126e2" 
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The above expression is minimized by choosing 61 = ~/~ and 52 = ~/e. This 
means that  we would require nine iterations to get to machine precision. It 
is impossible to know ahead of time how many perturbations one requires to 
carry on with the Schur algorithm. If, upon performing one perturbation of 
~/e, we see during the Schur algorithm that  another perturbation is needed, 
we would have to backtrack to the first perturbation and change the value 
of 51 from ~/e to ~/-~. This is usually very wasteful of computation. Also, 
if the number of times the generator needs to be perturbed increases, the 
accuracy is lost very quickly and we might have to look for other ways to 
handle such cases. From our experiments with Toeplitz matrices, we have 
observed that  even for Toeplitz matrices with several singular minors one 
perturbat ion is sufficient. So, in practice, it might be safe to assume that  
a large number of systems can be solved by perturbing the generator only 
once and the above analysis holds. For systems where this is not the case 
the algorithms discussed below are applicable. 

We now present an example of a symmetric Toeplitz matrix with a sin- 
gular principal minor. Consider the following block Toeplitz matrix T with 
a block size of 2. 

T ( I :  2 ,1 :  2) = ("0.04324379151529 0.29158091418984~ 

\0.29158091418984 0.67982106506507] 

T ( I :  2 ,3 :  4 ) =  (0.00769818621115 0.06684223751856~ 

\0.38341565075489 0.41748597445781 / 

T ( I :  2 ,5 :  6) = /0"68677271236050 0.93043649472782 

\ 0.58897664285683 0.84616689050857.] 

T ( I :  2, 7:  8) = (0.52692877758617 0.65391896229885~ 

\0.09196489075756 0.41599935685098] 

This matrix has a singular principal minor (T(1 : 4, 1 : 4) is singular). At 
the second step of the Schur algorithm, while blocking the two hyperbolic 
Householder transformations, the second column of the pivot block col- 
umn of the generator has zero hyperbolic norm. We introduce a pertur- 
bation of ~ ~ 10 -5. The norm of the block hyperbolic Householder 
after perturbation is 2.2172e+07 and the norm of U4 is 2.821e+07. This in- 
dicates that  a single perturbation of 5 produces two block hyperbolic House- 
holder transformations of norm approximately equal to 1/5. The norm of 
6 T . T  -1 is 5 . 5761e -  04. If we consider x = ( 1  1 1 1 1 1 1 1) T, then 
b = ( 3 . 2 0 7 4  3.7154 2.4177 3.6918 2.0762 4.0332 2.6206 4.3022). 
We find [ Ix -  Xll] = 3 .1699e-  04. Using iterative refinement, we find that  
after one step IIx-x211 =9.7515e - 08, after the second step IIx-x3H = 
3.2389e - 11, and after the third step IIx-x4U =3.5231e - 15, which is 
approximately equal to the machine precision. Note that  this is consistent 
with the analysis above. 
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3.3. Look-Ahead Schur Algorithms 

Perturbing the generators in the event of singularities during the Schur 
algorithm produces an approximate factorization of the block Toeplitz ma- 
trix. Iterative refinement is needed to improve the accuracy of the solution• 
If an exact factorization of a symmetric indefinite block Toeplitz matrix is 
desired, then we would have to deal with the singular principal minors of 
the Toeplitz matrix in a different way. 

One important  way of avoiding the singular principal minors during the 
Schur algorithm is to look ahead over the singularities. This technique may 
also be used when the principal minors are badly conditioned. Look-ahead 
techniques were originally proposed to improve the numerical robustness 
of the Lanczos algorithm applied to an indefinite matrix T in the presence 
of singular and nearly singular leading principal minors in T [25]. Most of 
the techniques related to these developments are based on the theory of 
orthogonal polynomials [17] or equivalently on that  of T conjugate direc- 
tions. This theory is in turn closely connected to that  of Hankel matrices 
and the Pad~ algorithm [3] and of Toeplitz matrices and the Levinson algo- 
ri thm [12]. In both cases one constructs the decomposition L - 1 T L  -T  = D 
where T is the given Toeplitz matrix. The rows of L -1 are the conjugate 
directions or also contain the coefficients of the orthogonal polynomials. 
Look-ahead techniques have been proposed and yielded algorithms with 
satisfactory numerical behavior [3, 4, 12, 18, 25]. 

The look-ahead Schur algorithm proposed in [18] is based on orthogonal 
polynomials and does not extend to block Toeplitz matrices. Look-ahead 
Schur algorithms for Toeplitz systems with exactly singular principal mi- 
nors have been proposed in [10, 24]. 

In Sections 3.3.1 and 3.3.2 we discuss two look-ahead Schur algorithms 
that  are based entirely on matrix operations and hence extend easily to 
block Toeplitz matrices. 

3.3.1. Algorithm 1. Consider a m p  x mp block Toeplitz or quasi-block 
Toeplitz matrix T with a block size of m x m. Let the displacement equation 
of this matrix be 

T - Z T T Z  = GoTEoGo 

where 

and 

( HOo 
G = \Goo 

~o = ( ~ 1  

Hol Ho2 

Go1 Go2 

• " " H O p -  1 

• .  • G o p -  l ) 
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The Schur algorithm proceeds by applying a E-unitary transformation Uo 
(UoTE1Uo = Eo) to Go such that  

 0 o=( 00o 
Go1 "" Gop-1  ' 

~1~ ( ~110 ~120 ). 

It was shown earlier that  if H~EolHoo + G~oEo2Goo is singular, then the 
Schur algorithm breaks down. If it is badly conditioned, the factorization 
would have significant numerical errors. It can be seen that  Ho~EolHoo + 
Go~oEo2Goo is the (1, 1) block of the Toeplitz or quasi-Toeplitz matrix. 
More generally, if the 2m, am,... ,  (k-  1)m principal minors are singular or 
badly conditioned and the km principal minor is well conditioned, then to 
preserve numerical accuracy we would have to look ahead over the (k - 1)m 
steps of the Schur algorithm. Let the matrix T be partitioned as 

[Tll T12 ] (59) 
T =  [ TT  T22J' 

where Tll is the km x km principal minor of T that  is well conditioned. 
If we are to "jump" over (k - 1)m steps of the Schur algorithm, we also 
require that  the off-diagonal entries of T~lT12 not be too large. A detailed 
discussion on the determination of the look-ahead step size (denoted here 
by k) can be found in [4] and [12]. We restrict our discussion to the look- 
ahead scheme after the determination of the step size k. 

The first step in this look-ahead scheme is the computation of the first 
km rows of the Toeplitz or quasi-Toeplitz matrix given by [Tll ] T12]. From 
this we obtain the diagonal block and the upper triangular factor of the 
Toeplitz or quasi-Toeplitz matrix by an O(n 3) "slow" algorithm such as 
the Bunch-Kaufman for symmetric indefinite matrices. The first km rows 
of the block Toeplitz matrix can be obtained from the generator matrix 
and the signature in O(rn2p) flops. 

Let the matrix [Tll [T12] be factored into 

[Tll I T12] = DkL T, (60) 

where Dk = Tll and L~ is a k m  x mp matrix with a leading identity matrix 
of size km 

L T = (Ikm I T~lT12) 

: (I m r (61) 
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The Schur complement of the Toeplitz matr ix  T w.r.t, the k m t h  principal 
minor is 

T(c k) T ( k r n  + 1 : rnp, k m +  1 : mp)  ~ ~ T  = - L k D k L  k . (62) 

The Schur algorithm can be continued if we obtain a factorization of Ts([ ) 
tha t  is of the form shown in (58). Since the displacement rank of the Schur 
complement of a block Toeplitz matr ix  is 2m, such a factorization exists. 
We now proceed to show how such a factorization can be obtained. 

Let us denote the matr ix  T ( k m  + 1 : rap, krn + 1 : rnp) as T.  Let Z be 
a block right shift matr ix  of size (p - k )m .  The displacement of the Schur 
complement T~(~ ) is given as 

T(~:) - 2 ~ T ~ ) 2  = ~ - 2 ~ 2  - LkDkI .  T + 2T~kDk~2. (63) 

If the generator Go is parti t ioned as 

[" H o o  " ' "  H o k - 1  I H o k  

G o =  !\ Goo . . .  Gok - l  l Gok 

= (& ~do), 

" "  Hop-1 ) 
• "" G o p - 1  

(64) 

then 

and 

(65) 

T(~?) - 2rT(sck)2 : ~ T Z o d o  _ LkDkLkA AT + 2 T Z ~ D ~ 2 2 .  (66) 

Factoring Dk = LDkED~LTk ,  where EDk is a diagonal matr ix  with 4-1 
entries, the right-hand side of the above equation can be rewritten as 

( d  r LkLD~ 

( oo o)( o 
2~Z~L~) o - z ~  o L ~  

o o r ~  L ~ Z ~ 2 /  

Hence, we have 

(67) 

This indicates tha t  we can readily obtain a generator for the Schur com- 
plement. The problem with (67) is tha t  the generator d has a rank of at 
most 2krn + 2m. We know tha t  the minimal generator of a block Toeplitz 
matr ix  has rank 2m. We, therefore, have to reduce the generator shown 
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above so tha t  a minimal is (k generator obtained. The displacement of the 
Schur complement,  ATsc ), is a symmetric  indefinite matr ix  of rank 2m. To 
obtain a rank 2m factorization of this matr ix  one would have to use the 
Bunch-Kaufman  algorithm. A brief description of a delayed update  ver- 
sion of the algorithm follows. Consider the i th step of the Bunch-Kaufman  
algorithm, and let the partial  factorization of the matr ix  A T  (k) be 

(68) 

where d is a block diagonal matr ix  with 1 × 1 or 2 × 2 blocks. The next 
step is the computat ion of the first row of the matr ix  X.  This can be 
obtained by computing the corresponding row of A T  (k) and updat ing it 
with uTdu. I t  must be noted tha t  the matr ix  A T  (k) can be stored in its 
factored form and when a certain row is needed it can be computed using 
the factorization in (67). For example, the j t h  row of A T  (k) is given by 
~ T W G  and requires O(mkn) flops where m is the block size, k is the look- 
J 

ahead step size, and n is the number of columns of G. After obtaining 
the first row of X,  the maximum element of this row is computed.  If  the 
(1, 1) element of X can be used as the pivot (for a detailed description 
of the Bunch-Kaufman  algorithm see [16]), then this row can be used to 
compute  the next row of the factorization. If the (1, 1) element cannot be 
used as a pivot, another row of the matr ix  X needs to be computed in 
the same way as described above. In some cases this new row becomes the 
pivot row. In others the first row and the new row are used to define a 
2 × 2 pivot block, which is used in the elimination. After ~ steps with 
si × si pivot blocks, where ~ = 1  s~ = 2m, the generator of the AT(k ) is 
obtained. 

This look-ahead algorithm requires 2kin + 2m of storage for the gener- 
ator G. In addition, during the reduction of G to Gk a Bunch-Kaufman  
like pivoting s t ra tegy is applied to obtain 1 × 1 or 2 × 2 pivot blocks tha t  
are used to compute  the hyperbolic Householder transforms. The pivot 
search s t ra tegy requires reduction primitives to find the column with max- 
imum hyperbolic norm. In Section 3.3.2 we present an alternate look-ahead 
Schur algorithm tha t  requires less storage and in some cases less computa-  
tion than  this method and avoids the Bunch-Kaufman  pivoting s t rategy all 
together. Hence, reduction primitives tha t  perform poorly on distributed 
memory  machines are avoided. 

3.3.2. Algorithm 2. In this section we discuss another  look-ahead Schur 
algorithm tha t  requires less storage than  the previous scheme and avoids the 
reduction primitives used in the Bunch-Kaufman  pivoting strategy. A simi- 
lar algorithm has been developed independently by Sayed and Kailath [28]. 
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Let T be a general symmetric, block Toeplitz matrix of dimension N x N 
and block size m x m, i.e., row of T be given as 

I To 71 ... Tp-1 

T =  T ~  To "'. Tp-2 , T o = T o  T, N = m x p. (69) 
• . , " .  • 

LTL1 fY-2 ... To 

Let Z be a block right shift matrix of size rap; then the displacement 
equation of the matrix T can be written as 

T - Z T T Z  = G T E G .  (70) 

Let us assume that  To is ill conditioned. A look-ahead Schur step would be 
needed to preserve numerical accuracy of the factorization. In addition, let 
us assume that  the m, 2 m , . . . ,  (k - 1)m principal minors are ill conditioned 
and that  the k m  principal minor is well conditioned. Parti t ion T and Z 
eonfornlally as 

T : , Z : , (71) 
L T21 I T22 J Z22 J 

where Tll  and Zll  are of dimension m k  × m k  (a multiple of the block size) 
and Tll  is assumed to be invertible (this is always possible by choosing k 
large enough). Let us also assume that  all the conditions for determining 
the look-ahead step size of k as discussed in [12] are satisfied. We now 
derive updating formulas for the Schur complement of a matrix T with 
low displacement rank and show that  it also has low displacement rank• 
The rank 2 m  factorization of the displacement of the Schur complement 
provides the generator for the subsequent steps of the Schur algorithm. 
This part is related to the work of [22], but is not contained in it. 

Define 

X T~llT12, X T  T -1 [ ~ j X ]  = = T12Tll  , U = ; (72) 

then it follows that  

L ITscJ 
where Tsc is the Schur complement of T with respect to Tll .  Applying 
uT(.)U to (70) yields 

U T T U  -- ( u T z T u  -T)  U T T U  ( U - 1 Z U )  = u T G T E G U .  (74) 
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 1z :[z111 121z2   ,75, 
Using (73) and (75) we can reduce (74) to 

I~Tsc] - [ Z1T1 ] I T l l ~  ---] [ Zll Z121=uTGT~,GU. (76) 
J z T [ IT~oJ Z22J 

Equating the (1, 2) and (2, 2) positions in the above equation we have 

M=ZTT11ZI2+[I,O]GTZG[~I ] =0,  

/',Ts~ = T ~  - Z ~ T ~ c Z 2 2  

= 2~T~121,~ + [ - x f l , ]  GT~G[Z-~ ]. (77) 

Substituting for Z12 from (75) we can further simplify M and ATsc to 

M = [I ] 0] Z T Tll[I I X]Z + ar~a  = 0 (7s) 

Substituting for X in the matrix in the middle of the above equations we 
get 

[TTj  T111[Tll [ T12]Z q- GT~G 

This expression can now be further simplified to prove that the rank of 
ATsc is at most a. To prove this we first need the following lemma. 

LEMMA 5. Let 

W= IF r FTj  [~01 y]21 IF21 F22] , (81) 
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where E1 and Wll = FT E,  F u  + F72t E2 F21 are invertible. Then there always 
exists a transformation H such that 

H T  1 0 E1 0 (82) 
E2 H = 0 E2 

[ Fll FI2] I ~  1 t~12 1 
HLF2,  F22 = ~ e J  (83) 

Proof. See [1.4]. • 
To simplify (80) we now must apply this lemma to construct a transforma- 
tion H such that  

Lo ]d~J '  

(84) 

(85) 

where_. Tu  and T n  are matrices of size mk x ink, G has dimensions a x N, 
and G2 has dimensions ee x (N - ink). To apply the above lemma we only 
need to show that  W u  is invertible since Tn  is invertible by assumption. 
From (76) it follows that  

Tll = zT11T11Z11 4- GTEG1, 

From (80), l~Zll equals 

where G1 = G [ / ]  . 

kr~j  TI~I [Tll I T12]Z + a z z a  

and since 

we have 

Wll r -1 GT~G1 2/711, = Z l l T l l T l l  TllZll 4- z 

which thus shows that  W u  is invertible as well. 
Applying (84) and (85) to (80) we obtain 

w=L~?~ d~ L o I x j  o d~ " 

(86) 

(87) 

(88) 

(89) 

(90) 
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Inserting this in (78) and (79) yields 

AT~¢ = GTEd2 

L[~TJ Z111[rll 1712] 

Since M = 0 and T n  and :Fll are invertible, we have 

[+] :0 
which yields, 

= 0  

(91) 

= = 0 

partitioned as 

1 
R =  

R22 

From (93), it can be seen that  H must satisfy 

(95) 

(96) 

0 O~ J (93) 

1 1 ,94, 

Let H -- RQ, where R is upper block triangular and Q is unitary. Let G 
be parti t ioned as [G1 I G2], where G1 has dimensions c~ x ink. Let R be 

~Tsc -- d ~ d 2 .  (92) 

This establishes a new displacement identity where E and G2 are obtained 
from (84)-(85). 

The above description of the algorithm did not provide a method to 
construct the transformation H. We now outline one method to construct 
the matrix H.  Assuming that  Tll is invertible, we know that  the matrix H 
satisfies the following 
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The first step involves a QR faetorization: 

a l  J = = = Q1 " (97) 

From (96) and (97), we obtain 

[ 21 ~12] [Bo] : [T101] :::~ ~11B : Tie =:~ t~11 (98) 

Substi tuting for H in (94) we obtain, 

R*1,T~l R11 
R~2TI~IRll 

R* [ T51 

R~1Tu1R12 
R~2Tl~1R12 -t- R~2ER22 

Equating the (1, 2) position in the above matr ix  equation after some sim- 
plification we obtain 

[Zll ] 
R;2 = Q u [ E G I  " (100) 

Equating the (2, 2) position in (99) and rearranging the terms, we have 

R~2ER~2=Q2I"~I ] (~, ; -- R;2Tlll R12. (101) 

The matr ix  H is then computed as a product  of R and Q. 
This algorithm is of course only conceptual. It  does not describe how to 

track the condition number of T1J. For this we refer to techniques as those 
described in [4, 12, 18]. If no look ahead is necessary, then the blocking 
scheme discussed in Section 2.5 can be used to compute H.  If a look ahead 
of size km is required, then H can be computed as shown in Lemma 5. It  
should be pointed out tha t  when Tll is well conditioned then the transfor- 
mat ion H and its construction should give no numerical problems. 

3.3.3. Comparison of the two algorithms. In this section we compare 
the two look-ahead algorithms from a computat ional  and numerical stand 
point. Consider a block Toeplitz matr ix  with a block size of rn. Further, 
let us consider a look-ahead step size of krn at some stage of the Schur 

(99) 
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algorithm. Let the size of the Schur complement following the look-ahead 
step be l m ×  lm. 

In Algorithm 1, the Bunch-Kaufman  pivoting strategy would have to 
be applied to obtain the generator for the Schur complement. In the worst 
case, we would have 2m steps with each step requiring two rows of ATsc 
be computed and contributing a 1 x 1 pivot. This would mean tha t  a total  
of 4m reduction operations, each of length lrn are done throughout the 
algorithm. Comput ing one row of ATsc for example, say the i th row is 
done as ~ T w G .  I t  can be seen tha t  computing one row of ATsc costs 

total  flops = 8m 2 + 4m2k 2 + 4m2(k + 1)/. (102) 

As mentioned earlier, in the worst case there are 2m steps requiring two 
rows at each step. Also, at each step the rows computed need to be updated 
with the factorization computed till the previous step. At the j t h  step 
this requires 2(j - 1)lm operations. Hence, the total  cost of the entire 
algorithm is 

2m 
= 2m 2 (8m 2 + 4m2k 2 + 4 m 2 ( k  + 1)/) + 2 m E 2  2(j - 1)lm 

j = l  

= 16m41 + 8m31 + 16m3kl + 16rn3k 2 + 32m 3. (103) 

In comparison, if we use Algorithm 2, the computat ion of the matr ix  H 
(described in (93 through 101)) requires a QR factorization of the matr ix  

T l l Z l l ]  (104) 
G 1 J '  

which has a dimension of m ( k  + 2) × krn. The cost of QR factorization of 
an M × N matr ix  is 4 M 2 N  - 2 M N  2 + 2N3/3.  For the matr ix  in (104) the 
computat ional  cost would be 

= 4m2(k + 2)~mk - 2(.~k)2(k + 2)m + (2~3)(ink) 3 

= 2 .67m3k 3 + 12m3k 2 + 16m3k.  (105) 

We then have to compute R12 from (100). The total  number of operations 
to compute R12 is 

8m3k + 16m 3 + 2m2k. (106) 

If  we assume R22 = I ,  then the number of operations required to compute 
E from (101) is 

= 2m3k 2 + 16m3k + 16m 3 + 8m 2. (107) 
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The cost of applying H to the generator of size m ( k  + 2) x l m  is just  the 
cost of applying Q2 to the generator. This cost is 

= 4rn3kl + 8real, (108) 

The total  cost of this method is found by adding (105, 106, 107, 108) 
together. This gives us 

= 4 m a k l + 8 m 3 1 + 2 . 6 7 m 3 k 3 + 1 4 m : ~ k 2 + 4 0 m 3 k + 2 m 2 k + 3 2 m a + 8 r r ~  2. (109) 

Comparing (109) and (103) and factoring the common multipliers we have 

2mak  ~ + 12makl  + 16m4/ 

k 2 + 6kl + 8ml 

vs. 2.67m3k 3 + 40m3k + 2m2k  + 8m, 2 

k 4 
vs. ----1.33k 3 + 20k + - -  + - - .  (110) 

Consider an example where m = 4 and l = 100. It  can be seen from (110) 
tha t  for look-ahead step sizes greater than  24 Algorithm 1 is less expensive 
than  Algorithm 2. 

Hence for small block sizes, if the look-ahead step size is large, the 
Bunch-Kaufman-based  look-ahead algorithm is faster than the one without 
pivoting. Note tha t  in this calculation the cost of the reduction operation 
has not figured in. The results are not very different for serial machines. 
For parallel machines, the reduction operations give rise to several syn- 
chronization points but the reduction is done in parallel. For Algorithm 2 
the computat ion of H is a serial bottleneck. I t  is possible on some par- 
allel machines that  Algorithm 1 will have a wider range of applicability 
than on a sequential machine. From this it is clear that  the two algo- 
r i thms have distinct ranges of applicability. The performance implications 
of these algorithms on serial and parallel machines is currently being in- 
vestigated. 

It  has been shown tha t  in certain pathological cases, the Bunch-Kaufinan 
algorithm may not be able to detect, accurately, the rank of a low rank 
matr ix  [31]. Algorithm 1 relies on obtaining a rank 2 factorization of the 
displacement of the Schur complement after each look-ahead step. The pro- 
cess is s topped after one or two steps of the Bunch-Kaufman  algorithm. In 
such cases, Algorithm 1 would produce only an approximate factorization 
and the exact solution would have to be obtained using iterative refine- 
ment. I terat ive refinement may also be used to improve the accuracy of the 
solution in the second look-ahead algorithm, if the solution is inaccurate. 
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4. QR FACTORIZATION OF BLOCK TOEPLITZ MATRICES 

The Schur algorithm can be generalized to obtain the QR factorization 
of block Toeplitz matrices due to the low displacement rank of the matrix 
TTT. This generalized Schur algorithm has been outlined in [5] for scalar 
Toeplitz matrices and can be trivially extended to block Toeplitz matrices. 
In this section we present a modification of the generalized Schur algorithm 
for rank deficient Toeplitz matrices. It is shown that  for exactly rank deft- 
cient block Toeplitz matrices, in the event of a degeneracy, the rank of the 
generator matrix can be dropped by 2. This reduces the complexity of the 
generalized Schur algorithm. For numerically rank deficient block Toeplitz 
matrices this algorithm yields a low-rank approximation. 

The generalized Schur algorithm described in [5] was applied to block 
Toeplitz systems with full column rank. In several applications in signal 
and image processing the Toeplitz systems are related to rank deficient 
least-squares problems and hence regularization has to be applied to yield 
an acceptable solution. 

A standard approach would be to apply Tikhonov regularization which 
still yields a matrix in the same class of matrices. If T is a N × N Hermitian 
(and semidefinite) Toeplitz matrix, then both T and T + a I  are Toeplitz 
Hermitian and hence of displacement rank 2. Similarly, if T is a general 
M z N Toeplitz matrix, then both T*T and T*T+aI have a displacement 
rank of at most 4. The complexity of this approach would thus be that  of 
a Toeplitz solver, i.e., O(N2). 

For some applications, T is a large matrix, and its rank r is small com- 
pared to the dimensions o f t  (r << min{M, N}). This fact is not exploited in 
the standard approach because the regularized problems yield full-rank ma- 
trices. One would expect that  the Toeplitz algorithms should only require 
O(Nr) operations instead since the Cholesky decomposition of a low-rank 
semidefinite matrix A is 

A=U;U~, 

where U, in a r × N "upper-triangular" matrix or rank r. Depending of 
the given matrix, the rank profile of U~ will be of the type 

o r  

\ I 

\ \ I 
Matrices of displacement rank 2 are always of the first type, whereas ma- 
trices of displacement rank 4 can be of both types. 
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Consider  a co lumn rank  deficient point  Toepli tz  ma t r i x  T of size M x N.  
Let  the  m a t r i x  have l consecutive l inearly dependen t  columns T(: ,  k ) , . . . ,  
T(: ,  k + l - 1). We show tha t  in this case a very  par t icular  p rope r ty  holds 
in the  genera tor  ob ta ined  at  the  s ta r t  of the  kth  s tep of the  general ized 
Schur a lgor i thm.  As seen in [5], the  genera tor  for the  ma t r i x  T T T  is of 
the  form 

A T T T =  [G T I a T I c  T I c  T ] 
[ oo, o 

0 - I  G3 

0 0 

(111) 

where  G~, i = 1 , . . . ,  4 is of size 1 x N.  Let  us denote  the  genera tor  of TTT,  
at  the  i th  s tep of the  generalized Schur a lgor i thm by 

G (~) = /G(+ ) |  , (112) 

/ ° 1  

Lo?J 
where G (i) is of  size 4 x ( N  - i + 1). Since the m a t r i x  TTT is pos i t ive 
semidefini te  and since the  ma t r ix  T has I l inearly dependent  columns k , . . . ,  
k + l - 1, the  Schur complemen t  of TTT  w.r.t ,  the (k - 1)th pr incipal  minor  
has the  form 

where  X is a ( N  - k - l) x (N  - k - l) ma t r ix  wi th  nonzero entries. T h e  
d isp lacement  of the Schur complement ,  T~(c k - t )  also has the  same spars i ty  
pa t t e rn .  The  genera tor  a t  the  s t a r t  of k th  s tep of the  general ized Schur 
a lgor i thm is ( the superscr ip t  indicat ing the  kth  s tep has been d ropped  for 
convenience) 

911 g12 .. .  gl(N-tc+l) 

g22 .- .  g2(N-k+l)  (114) 

/ 

Lg41 942 . . .  g4(N-k+l) 

Ins t ead  of apply ing  a hyperbol ic  Householder  t r ans fo rm to zero out  the  
first co lumn using g11, we first app ly  two or thogona l  t r ans fo rms  to zero 
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out g21 and g41 using gll and g31 respectively. Let Q1 and Q3 be those 
transforms. The sparsity pattern of the generator will then be as shown: 

• . -  g l l  g1 ( /+1 )  

0 g2(/q-1) 

g31 g3 ( /+1 )  

0 g'4(/4-1) 

• "- g l ( N - k + l )  

• --  g 2 ( N - k + l )  

" ' "  g 3 ( N - k + l )  

• - '  g 4 ( N - k + l )  

Since the (1, 1) element of the Schur complement is 0, we have 

(115) 

g21 --  g21 ~--- 0 ( 1 1 6 )  

and since the first row of the displacement of the Schur complement is zero 
we have 

(117) 

The above equations yield 

[g]l g]2 . . .  g1(N-k+1)]=[g31 g32 .-. g3(N-k+l) ]- (118) 

Hence, the first and third rows of the generator shown in (115) can be 
dropped. Also, since the first l colmnns of the reduced generator are "zero" 
we can skip the next l steps of the generalized Schur algorithm. The gen- 
erator at the start  of the (k + / ) t h  step of the generalized Schur algo- 
r i thm is 

[~2(1+1) " "  ~2(N-k+l) 
g4(z+l) " "  g4(N-k+l)l" (119) 

Since the matrix TTT is a positive semidefinite matrix, if the pivot 
column of the generator has a zero hyperbolic norm, then the (1, 1) element 
of the displacement of the Schur complement will be zero and the entire row 
will also be zero. A detection of a zero hyperbolic norm of the pivot column 
of the generator is therefore sufficient to drop the rank of the generator. 
The next time the pivot column of the generator has zero hyperbolic norm, 
the rank of the generator again drops by two causing the Schur algorithm 
to terminate with an upper triangular factor of the form 

\ 
\ 
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This reduction in the generator size and rank avoids breakdowns. The 
algorithm has as many steps as the number of linearly independent colunms 
in T. The complexity of the algorithm therefore is O(Nr) (where r is the 
column rank of T) as opposed to O(N 2) for matrices with full column 
rank. 

If the matrix T has columns that are nearly linearly dependent on the 
other columns, i.e., it is nearly rank deficient, then the hyperbolic norm of 
the pivot column of the generator at those steps will be nonzero. In this 
case a simple thresholding mechanism applied to the above algorithm can 
be used to obtain an approximate low-rank decomposition of the matrix 
TTT 

A + ~A = U:U,.. (120) 

In case one is solving least-squares problems, it is easy also to use the 
obtained decomposition to perform a few steps of iterative refinement oil 
the seminormal equations. 

If the matrix T is a block Toeplitz matrix of block size m, then the gen- 
erator at the start of the generalized Schur algorithm has rank 4m. Again, 
if the hyperbolic norm of the generator is zero, then the Schur complement 
will have a leading "zero." Also since the matrix TTT is semidefinite, the 
entire row of the displacement of the Schur complement will be zero and the 
rank of the generator can be dropped by two by dropping the two identical 
rows with opposite signatures. 

The algorithm proposed in this section is a significant simplification over 
a similar approach proposed in [20], which uses the Levinson algorithm 
with look ahead. We include an example to illustrate the above algorithm. 
Consider a Toeplitz matrix T 

T = 

5 4 3 2 1 2 2 3" 

6 5 4 3 2 1 2 2 

7 6 5 4 3 2 1 2 

8 7 6 5 4 3 2 1 

9 8 7 6 5 4 3 2 

10 9 8 7 6 5 4 3 

11 10 9 8 7 6 5 4 

12 11 10 9 8 7 6 5 

13 12 11 10 9 8 7 6 

14 13 12 11 10 9 8 7 

15 14 13 12 11 10 9 8 
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Columns 3, 4, and 5 are linearly dependent of the first two columns, while 6, 
7, and 8 are again linearly independent. The (generalized) Schur algorithm 
uses the following generator for the matrix A = T ' T :  

G(0)(:, 1 : 4) = 

-34.7851 31.6228 28.4605 25.2982] 

0 4.0000 3.0000 2.0000~ 

0 31.6228 28.4605 25.2982[ 

0 15.000 14.000 13.000 J 

G(0)(:, 5 : 8) = 

-22.1359 19.2611 16.5876 14.2877] 

1.0000 2.0000 2.0000 3.0000~ . 

22.1359 19.2611 16.5876 14.2877[ 

12.000 11.000 10.000 9.0000J 

Two steps of the (generalized) Schur algorithm generate the first two rows 
of the upper triangular factor of T * T .  At the beginning of the third step 
the first column of the generator has a E-norm equal to zero 

G(2) -- 

1.0000 2.0000 3.0000 4.0000 3.9091 3.4545- 

-0.7583 -1.5166 -2.2749 -0.9113 -0.5391 0.9020 

-1.2515 -2.5030 -3.7545 -3.7545 -3.4860 -2.2985 

-0.0936 -0.1873 -0.2809 0.0827 0.4783 1.1324 

We then use Householder transformations to eliminate G(2)(2,1) using 
G(~)(1, 1) and G(2)(4, 1) using G(2)(3, 1). This gives us the generator 

(~(2) = 

-1.2550 -2.5100 -3.7650 -3.7379 -3.4406 -2.2076- 

0 0 0 1.6908 1.9324 2.8060 

-1.2550 -2.5100 -3.7650 -3.7379 -3.4406 -2.2076 

0 0 0 -0.3626 -0.7370 -1.3008 

Since the first and third rows of the generator are equal and have signatures 
of opposite signs, they can be removed and the generator for the next 
step will have only two columns. Also, it can be seen that  the first three 
columns of this generator are zeros and this means that  we can skip the 
corresponding rows in the upper triangular factor Ur. The next step would 
use the generator 

I 1.6908 1.9324 2.8060J 
G(5) = -0.3626 -0.7370 -1.3008 ' 
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and the factorization process continues. This finally yields the triangular 
factor U~ as 

U~(:, 1: 4) = 

u~(: ,  5 :  8) = 

--34.785 -31.623 -28.461 -25 .298]  

1.000 2.000 3.000 / 

J 
--22.136 -19.261 -16.588 -14 .288]  

4.000 3.909 3.455 2.182| 
-1.651 -1.817 - 2 . 5 8 7 |  . 

1.618 1.708| 
-1 .578J  

The backward error ~A of the matrix A = T*T defined as 

I I ~ A l l -  I{A - g ;U~l l  
IIAll 

is 3.57 x 10 -15, which is of the order of the machine precision (e ~ 2.22 x 
10-16). This shows the good numerical behavior of the regularization 
algorithm. 

The numerical behavior of this algorithm was good because the above 
example was exactly rank deficient. If there is a sharp drop in the singular 
values of the matrix, this algorithm will yield accurate results. However, if 
there is no sharp drop, then this algorithm may produce an inaccurate fac- 
torization due to the sensitivity of Schur complements [31]. The algorithm 
discussed in the next section addresses this issue. 

5. CONVERSION TO CAUCHY TYPE MATRICES 

In Section 4, we discussed modifications to the QR factorization algo- 
r i thm for block Toeplitz matrices proposed by Chun et al. [5]. The modi- 
fied algorithm could be used to obtain the QR factorization of an exactly 
rank deficient block Toeplitz matrix. If the Toeplitz matrix happened to 
be numerically rank deficient, then only a low approximation of the block 
Toeplitz matrix could be obtained. This was because any form of pivoting 
applied to the generalized Schur algorithm would destroy the displacement 
structure of the block Toeplitz matrix. 

In [15, 21] it was shown that  if Toeplitz matrices were converted to 
Cauchy type matrices, then the factorization of such matrices could be 
carried out with pivoting. The drawbacks of the algorithms proposed in 
[15, 21] were that  complex-valued FFTs  were used to convert a real vahmd 
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Toeplitz matr ix  into a complex-valued Cauchy type matrix• The algorithms 
were not able to exploit any symmetry  in the Toeplitz or quasi-Toeplitz 
matr ix  to reduce the computat ional  complexity. 

In this section we present a modification to the algorithms in [15, 21] 
to factor a symmetr ic  semidefinite quasi-Toeplitz matr ix  using only real 
ari thmetic and exploiting the symmetric property of the matrix• This al- 
gori thm can be used to obtain a rank revealing factorization of the matr ix  
T T T ,  where T is a rank deficient Toeplitz matrix• Rank deficient Toeplitz 
matrices arise in image reconstruction and system identification problems. 

In [20] Hansen and Gesmar  present a look-ahead-like algorithm for fast 
orthogonalization of rank deficient Toeplitz matrices and in [11] Eld6n and 
Park present a modification to the algorithm proposed in [5], where they 
delay the application of the ill-conditioned skew hyperbolic transforms to 
obtain an approximate  factorization. Both algorithms do not involve any 
pivoting since they deal with Toeplitz matrices only. The algorithm pre- 
sented in this section does not have this limitation due to the conversion 
to Cauchy type matrices• 

5.1. Rank  Factorization of Positive Semidefinite Quasi-Toeplitz Matrices 

Consider a symmetric  positive semidefinite quasi-Toeplitz matr ix  T of 
size N x N. Let the displacement equation of this matr ix  be given as 

T - Z T Z  T = G E G  T, (121) 

where Z is a circulant matr ix  of size N x N 

Z = 

rO 0 . . .  0 1 

1 0 ". ". 0 

0 1 ' .  ". 

• • , • • 

0 0 . . .  1 0 

(122) 

Note tha t  the matr ix  Z in (121) is a circulant matr ix  and not a lower shift 
as used in Section 4. 

A Cauchy type matr ix  can be defined as any matrix that  has the follow- 
ing displacement s tructure 

D f C  - C D b  = G 1 G  T 

or C - D f C D b  = G I G  T,  (123) 
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where D I  and D b are diagonal matrices. I t  was shown in [15, 21] tha t  if 
(121) is converted to (123) using the discrete Fourier transform, then Gaus- 
sian elimination with partial pivoting can be applied to obtain a factoriza- 
tion. The problem with this method is tha t  the Fourier t ransform converts 
the real-valued Toeplitz matr ix  into a complex-valued Cauchy type matr ix  
and increases the complexity of the algorithm. 

If we can obtain a real-vMued transform that  block diagonalizes the 
circulant matrix,  then applying that  t ransform to (121) would convert it to 
(123), where Df  and Db are real-valued block diagonal matrices. A Hart ley  
t ransform H of size N converts the circulant matr ix  Z shown above into 
a matr ix  with an X-shaped non zero structure. A permutat ion P can then 
be applied to obtain a block diagonal matr ix  with 1 x 1 or 2 x 2 blocks. 
Applying the t ransformation H = P H  of the appropriate  size to (121) 
yields 

~ I T ~ I  T - ( f I Z ~ I T ) ( I I T ~ I T ) ( ~ I Z T f i I  T) = I ? I d E d T  f-I T 

C -  A C A  T = G E G  T, (124) 

where C = ~ I T ~ I  T is a Cauchy type matr ix  and A = FIZ!~I T i s  a block 
diagonal matr ix  with 1 x 1 and 2 x 2 blocks. If we obtain a factorization 
C = L D L  r of the Cauchy type matrix, then the corresponding factorization 
of the quasi-Toeplitz matr ix  T will be T = ~ I T L D L T f i I .  The next step in 
this algorithm is obtaining a factorization of the form L D L  T of the Cauchy 
type matr ix  C in (124). 

It  must be noted tha t  the Cauchy type matrix C is not explicitly com- 
puted but is implicitly available from the matrices A, G, and E. Recon- 
structing any column of the Cauchy matrix from (124) would require solving 
the Lyapunov equations. Let the columns of the matr ix  C and G r be par- 
titioned conformally with the block structure of A. The i th column block 
of the matr ix  C, denoted by ci, satisfies the equation 

(125) 

where ai is the i th diagonal block of the matrix A and g~ is the corre- 
sponding block row of the generator G. The above equation can then be 
writ ten as 

A T  ci -- eiCt T = A T G Z g  T. (126) 

Any block row of ci given by cj~ then satisfies the Lyapunov equation 

T c j iaT  T T aj  cj~ -- = aj  gjEg~. . (127) 
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If j ¢ i, then the matrices aj and ai have different eigenvalues and the 
Lyapunov equation can be solved for cij. For j = i, the Lyapunov equation 
cannot be solved. The diagonal blocks of C, therefore, cannot be computed 
from A, G and E. We, therefore, need to precompute the diagonal blocks 
of C from the original quasi-Toeplitz matrix. 

Having outlined the method to compute any column and the diagonal 
block of the Cauchy type matrix, we now proceed to describe the algorithm 
to obtain the factorization of C. 

Let the block diagonal of the Cauchy matrix C be denoted by D. Since 
the matrix T is positive semidefinite, it can be argued that searching for 
the diagonal block di with the highest determinant is sufficient to locate a 
pivot block. Let P1 be the permutation matrix to get the diagonal block di 
to the pivot position dl. Also, let P1CP1T be partitioned as 

L z, IC,.J 
Let us define the matrix X, 

[, :] 
X = _ l ld~ l  ; 

then applying X (.) X r to 

P1C P T - ( p1ApT)  ( P1C pT)  ( p1A T pIT) = P1GEGT p1 T 

d - .~A'T = d E ~ T  (130) 

yields 

[dl_~_O_] _ JAil 0 ] [dl_~p__]- [A01T1 A T 1 ] = X ~ T x  T (131) 
k 0 I CscJ [A21 A22 L 0 I CscJ AT 

If we obtain a generator for Csc that satisfies the displacement equation of 
the form 

Csc - A22CscAT2 = G ~ E ~ G  T, (132) 

then we would have finished the first step of the factorization algorithm. 
It can be seen that the above equation is identical in form to (76) and 
hence the procedure developed in Section 3.3.2 can be used to obtain the 
generator of Csc. 

Alternatelyj. another techniqueto update the generators can be used. 
Partitioning G T conformally as G T = [~T ~T] and equating the (2, 2) 
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position in (131) we have 

Csc - A22CscAT2 = (G2 - / l d i - l G O E ( G 2  - I ld - l lG1)  T + A21dlAT1, (133) 

where A21 = A221ld~ 1 - l l d [ 1 A n .  The last term of (133), A21dlAT1, can 
be expanded as 

= (A2211d~l _ l l d l l A u ) d l  (d 1-1 lit A22T _ Audit -1 llT) 

= (A2211AT1 - l l d {1Aud lAT1)A~ITd~IA~I  1 

× (AuITAT2 - AudlATld-~ll~').  (134) 

Equating the (1, 1), (1, 2), and (2, 1) positions of (130) we have 

dl - AudlAT1 = GIEG T (135) 

11 - A221lAT1 = G2EG1T. (136) 

Inserting the above equations in (134) yields 

A21dlAT1 = ( G 2 - l l d l l G 1 ) E G T  A { ? d l l A l l l S 1 E ( G 2 - l l d l l G 1 )  T. (137) 

Substituting (137) in (133), ACsc = Csc - A22CscAT2 has the form 

Csc = ( G 2 - / l d l l G 1 )  ( E + E G T A l l T d l l A l l G 1 E ) ( 5 2 - l l d l l G 1 )  T. (138) 

Using the Sherman-Morrison-Woodbury formula and (135) it can be shown 
that  

(E + r G T A ~ T d ~ I A - ~ ) G l r )  = ( ~ - 1  _ ~Td~- l~ l ) - i "  (139) 

Hence, the update equations for the generator and the signature matrices 
are  

Gsc = 5 2 - - / l d 1 1 G 1  (140) 

~ c 1  = ~ - 1  _ ~ T d 1 1 5 1  " (141) 

Having obtained the generator for the next step, we update the diagonal 
matrix D as 

Dne×t = D - l l D l l I T  1 . (142) 

This defines all the information to proceed with the next step of the fac- 
torization. Carrying the factorization to completion in a similar manner, 
one obtains a factorization of C of the form LDL T and a factorization of 
T for the form HTLDLT~I  T. 
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5.2. Eztensions of the Algorithm 

The above algorithm extends very easily to block Toeplitz matrices be- 
cause the block circulant matrix Z can also be diagonalized by a permuted 
version of the Hartley transform. 

The pivoting strategy used in the above algorithm was block diagonal 
pivoting. In some cases this may not be sufficient. If at any stage of the 
algorithm all the diagonal pivots of the Schur complement are ill condi- 
tioned, it is possible to revert to the complex arithmetic version without 
too much overhead and continue the factorization. 

6. CONCLUSIONS 

In this paper we have presented several high performance variants of 
the Sehur algorithm to solve block Toeplitz matrices. Based on the existing 
Schur type algorithms and the algorithms discussed in this paper a high 
performance library is currently being developed. In the past there have 
been efforts to develop libraries for point Toeplitz matrices [1, 19] on se- 
rial machines using the Levinson algorithm. The proposed library can be 
used to solve point and block Toeplitz matrices on parallel machines. On 
parallel machines, the Levinson algorithm suffers from reduced parallelism. 
The Sehur algorithm-based library will be developed for distributed mem- 
ory machines such as the Cray T3D and shared memory/vector-pipeline 
machines such as the Cray C90. A detailed performance analysis of the 
algorithms on the various high performance architectures will impact the 
implementation choices. 

The authors thank Michael Stewart for some useful suggestions on Section 
3.2 of the paper. The authors also thank Cray Research Inc. for summer sup- 
port provided to Srikanth Thirumalai. The work of the first three authors is sup- 
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CCR-92093~9, and by ARPA under a subcontract of Grant No. A R P A / N I S T  
60NANB2D1272. V. Verrnaut is supported by an FDS-9d grant of the Universitd 
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