Rational approximations of pre-filtered transfer functions via the Lanczos algorithm

Kyle Gallivan ${ }^{\text {a }}$ and Paul Van Dooren ${ }^{\text {b }}$
${ }^{a}$ Department of Computer Science, Florida State University, Tallahassee, FL-32306 USA E-mail: gallivan@cs.fsu.edu
${ }^{b}$ CESAME, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
E-mail: vdooren@csam.ucl.ac.be

Received 12 September 1998; revised 21 December 1998
Communicated by M.H. Gutknecht

Given a single-input single-output system $\{A, b, c\}$ with strictly proper transfer function $g(s)$, we derive a Lanczos-based method to construct a tridiagonal state-space model $\{\hat{A}, \hat{b}, \hat{c}\}$ approximating the "pre-filtered" transfer function $f(s) g(s)$, where $f(s)$ is given in factored form $f(s) \doteq \prod_{i=1}^{\ell}\left(s-z_{i}\right) / \prod_{i=1}^{\ell}\left(s-p_{i}\right)$. We also show how to apply this idea to the Arnoldi process and mention a few other extensions.
Keywords: Lanczos algorithm, Padé approximation, filtering
AMS subject classification: 65F15, 65G05

1. Introduction

In this short paper we develop Lanczos-based methods to fit the first $2 k$ moments of a transfer function

$$
\begin{equation*}
h(s)=h_{1} s^{-1}+h_{2} s^{-2}+\cdots+h_{2 k} s^{-2 k}+\cdots \tag{1}
\end{equation*}
$$

via a Lanczos-based method operating directly on the state-space model $\{A, b, c\}$ of the transfer function

$$
\begin{equation*}
h(s)=c\left(s I_{n}-A\right)^{-1} b \tag{2}
\end{equation*}
$$

Notice that we use expansions around $s=\infty$ in (2) and that $h_{0}=0$ by assumption. The relation between (1) and (2) is easily seen to be

$$
\begin{equation*}
h_{i}=c A^{i-1} b \tag{3}
\end{equation*}
$$

and the aim is to construct a reduced order model $\{\hat{A}, \hat{b}, \hat{c}\}$ of order k and with transfer function

$$
\begin{equation*}
\hat{h}(s)=\hat{c}\left(s I_{k}-\hat{A}\right)^{-1} \hat{b} \tag{4}
\end{equation*}
$$

[^0]so that
\[

$$
\begin{equation*}
h(s)-\hat{h}(s)=c_{2 k+1} s^{-(2 k+1)}+\mathrm{O}\left(s^{-(2 k+2)}\right) . \tag{5}
\end{equation*}
$$

\]

In other words, $h(s)$ and $\hat{h}(s)$ match in their first $2 k$ moments of their expansion around $s=\infty$, and $\hat{h}(s)$ is constrained to be of degree k.

This basic problem has been addressed in several papers already [5,9] but here we consider the problem where $h(s)$ is given as a product of two functions:

$$
\begin{equation*}
h(s)=f(s) g(s), \tag{6}
\end{equation*}
$$

where $g(\infty)=0$ and $f(\infty)=f_{0}<\infty$. This implies that there exist expansions

$$
\begin{align*}
& g(s)=g_{1} s^{-1}+g_{2} s^{-2}+\cdots+g_{2 k} s^{-2 k}+\cdots, \tag{7}\\
& f(s)=f_{0}+f_{1} s^{-1}+f_{2} s^{-2}+\cdots, \tag{8}
\end{align*}
$$

Moreover, we assume that we already have a k th order model $\{\tilde{A}, \tilde{b}, \tilde{c}\}$ fitting the first $2 k$ moments of $g(s)$:

$$
\begin{equation*}
g(s)-\tilde{c}\left(s I_{k}-\tilde{A}\right)^{-1} \tilde{b}=\mathrm{O}\left(s^{-(2 k+1)}\right) \tag{9}
\end{equation*}
$$

and also that $f(s)$ is a transfer function of which we know the poles and zeros:

$$
\begin{equation*}
f(s)=\frac{\left(s-z_{1}\right) \cdots\left(s-z_{\ell}\right)}{\left(s-p_{1}\right) \cdots\left(s-p_{\ell}\right)} . \tag{10}
\end{equation*}
$$

The motivation of this problem as follows: suppose we have a function $g(s)$ that is well approximated by a k th order system $\hat{g}(s)=\tilde{c}\left(s I_{k}-\tilde{A}\right)^{-1} \tilde{b}$. We then want to "pre-filter" $g(s)$ by $f(s)$ - whose poles and zeros are known - and derive from this a k th order approximation of the compound system $f(s) g(s)$:

$$
\begin{equation*}
f(s) g(s)-\hat{c}\left(s I_{k}-\hat{A}\right)^{-1} \hat{b}=\mathrm{O}\left(s^{-(2 k+1)}\right) \tag{11}
\end{equation*}
$$

The role of the filter $f(s)$ is typically to emphasize certain frequencies or to stabilize the system.

2. Background

Here we develop some basic facts about realizations of transfer functions and their product. Any linear time-invariant system

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)+D u(t)
\end{array}\right.
$$

can be described equivalently in the Laplace domain:

$$
\left\{\begin{aligned}
s x(s) & =A x(s)+B u(s) \\
y(s) & =C x(s)+D u(s)
\end{aligned}\right.
$$

Eliminating $x(s)$ from this then yields the associated transfer function

$$
R(s) \doteq C(s I-A)^{-1} B+D
$$

which describes the relation between inputs and outputs in the Laplace domain. Essentially the same result is obtained for discrete-time linear time-invariant systems when using the z-transform. For simplicity we restrict ourselves to the continuous-time case, but everything below also holds for discrete-time systems. We also assume for the sake of simplicity - that the models $\{A, B, C, D\}$ are real, but point out that everything in this paper trivially extends to the complex case. As described in the introduction, we are interested in approximating this transfer function by another one of lower degree and such that both match in their first $2 k$ terms (called moments) of an expansion around $s=\infty$. Since pre-filtering amounts to pre-multiplying a transfer function, the following lemma will be useful.

Lemma 1 (See [11] for a proof). Let $\left\{A_{i}, B_{i}, C_{i}, D_{i}\right\}$ for $i=1,2$ be realizations of transfer functions $R_{i}(s)$, then a realization for the product $R_{1}(s) R_{2}(s)$ is specified by $\{A, B, C, D\}$, where

$$
\begin{align*}
R_{1}(s) R_{2}(s) \Leftrightarrow\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right] & =\left[\begin{array}{cc|c}
A_{1} & B_{1} C_{2} & B_{1} D_{2} \\
0 & A_{2} & B_{2} \\
\hline C_{1} & D_{1} C_{2} & D_{1} D_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc|c}
A_{1} & & B_{1} \\
& I_{n_{2}} & \\
\hline C_{1} & & D_{1}
\end{array}\right]\left[\begin{array}{ll|l}
I_{n_{1}} & A_{2} & B_{2} \\
& C_{2} & D_{2}
\end{array}\right] . \tag{12}
\end{align*}
$$

The realization quadruple can thus be obtained by a mere product of "expanded" realizations and we can expect sparsity to be preserved to a large extent, especially in the case that B_{i} and C_{i} are vectors and D_{i} scalars. As an example, let us take the singleinput single-output (SISO) case and let us choose $\ell=1$, i.e., $f(s)=(s-z) /(s-p)$. A realization for $f(s)$ is easily seen to be

$$
f(s) \Leftrightarrow\left[\begin{array}{c|c}
A_{1} & b_{1} \tag{13}\\
\hline c_{1} & d_{1}
\end{array}\right]=\left[\begin{array}{c|c}
p & 1 \\
\hline p-z & 1
\end{array}\right] .
$$

Assume $g(s)$ also scalar and $g(\infty)=0$, then

$$
g(s) \Leftrightarrow\left[\begin{array}{c|c}
A_{2} & b_{2} \tag{14}\\
\hline c_{2} & 0
\end{array}\right]
$$

and the following realization for $f(s) g(s)$ is obtained from lemma 1 :

$$
f(s) g(s) \Leftrightarrow\left[\begin{array}{c|c}
A & b \tag{15}\\
\hline c & 0
\end{array}\right]=\left[\begin{array}{cc|c}
p & c_{2} & 0 \\
0 & A_{2} & b_{2} \\
\hline p-z & c_{2} & 0
\end{array}\right]
$$

which clearly preserves sparsity. We show later on that this simple case of a first degree filter $f(s)$ is not restrictive since we can repeat the same argument to add on additional first order pre-filters and build recursively one of arbitrary degree ℓ.

How can this be used in the construction of $\hat{h}(s)$ when $\hat{g}(s)$ is given? It turns out that one can start from $\hat{h}(s)=f(s) \hat{g}(s)$ rather than from $h(s)=f(s)(s)$ for the following reason. Let

$$
\begin{equation*}
g(s)-\hat{g}(s)=\mathrm{O}\left(s^{-(2 k+1)}\right) \tag{16}
\end{equation*}
$$

then it follows that

$$
\begin{equation*}
f(s) g(s)-f(s) \hat{g}(s)=\mathrm{O}\left(s^{-(2 k+1)}\right) \tag{17}
\end{equation*}
$$

since $f(s)$ is regular at $s=\infty$. But this is the same as the desired result

$$
\begin{equation*}
h(s)-\hat{h}(s)=\mathrm{O}\left(s^{-(2 k+1)}\right) \tag{18}
\end{equation*}
$$

So it is sufficient to find a k th order model matching the first $2 k$ moments of $f(s) \hat{g}(s)$, which is a $(k+\ell)$ th order function. So we have to run the Lanczos-Markov algorithm on a realization of $f(s) \hat{g}(s)$ which is a reasonably low order system. This process is briefly explained in the next section.

3. A Lanczos-based algorithm

We assume here that we are starting from a sparse system $\left\{A_{g}, b_{g}, c_{g}\right\}$ realizing the transfer function $g(s)$:

$$
\begin{equation*}
g(s)=c_{g}\left(s I_{n}-A_{g}\right)^{-1} b_{g}, \quad n=\text { degree } g(s) \gg k \tag{19}
\end{equation*}
$$

A k th order model $\{\tilde{A}, \tilde{b}, \tilde{c}\}$ such that

$$
\tilde{c} \tilde{A}^{i-1} \tilde{b}=c_{g} A_{g}^{i-1} b_{g}, \quad i=1, \ldots, 2 k,
$$

is obtained from the Lanczos algorithm [5,8] which constructs $n \times k$ matrices V_{k} and W_{k} such that

$$
\begin{aligned}
\operatorname{Im} V_{k} & =\operatorname{Im}\left[b_{g}, A_{g} b_{g}, \ldots, A_{g}^{k-1} b_{g}\right] \\
\operatorname{Im} W_{k} & =\operatorname{Im}\left[c_{g}^{\mathrm{T}}, A_{g}^{\mathrm{T}} c_{g}^{\mathrm{T}}, \ldots, A_{g}^{\mathrm{T} k-1} c_{g}^{\mathrm{T}}\right] \\
W_{k}^{\mathrm{T}} V_{k} & =I_{k}
\end{aligned}
$$

giving

$$
\hat{g}(s) \Leftrightarrow\left[\begin{array}{c|c}
\tilde{A} & \tilde{b} \tag{20}\\
\hline \tilde{c} & 0
\end{array}\right]=\left[\begin{array}{cccc|c}
W_{k}^{\mathrm{T}} A_{g} V_{k} & W_{k}^{\mathrm{T}} b_{g} \\
\hline c_{g} V_{k} & 0
\end{array}\right]=\left[\begin{array}{cccc}
\alpha_{1} & \gamma_{2} & & \\
\beta_{2} & \ddots & \ddots & \\
& \ddots & \ddots & \gamma_{k} \\
& & \beta_{k} & \alpha_{k} \\
\hline \gamma_{1} & 0 & \ldots & 0 \\
\hline
\end{array}\right] .
$$

All parameters α_{i}, β_{i} and γ_{i} here are scalar if the Lanczos tridiagonalization did not encounter any breakdowns. If either β_{i} or γ_{i} is zero, then we found an uncontrollable or unobservable mode, which is easy to deflate $[4,9]$. Other breakdowns lead to a modification of the algorithm (using so-called look-ahead steps) and result in parameters α_{i}, β_{i} and γ_{i} that are blocks of compatible size [5,7,9], see also section 6. For the sake of simplicity, we consider the scalar and tridiagonal case first and will come back to the more general case later.

If we now construct the realization for the product $f(s) \hat{g}(s)$ and assume that $f(s)$ is of degree one,

$$
f(s) \Leftrightarrow\left[\begin{array}{c|c}
p & 1 \\
\hline p-z & 1
\end{array}\right],
$$

then we have

$$
f(s) \hat{g}(s) \Leftrightarrow\left[\begin{array}{c|cccc|c}
p & \gamma_{1} & 0 & \ldots & 0 & 0 \tag{21}\\
\hline 0 & \alpha_{1} & \gamma_{2} & & & \beta_{1} \\
0 & \beta_{2} & \ddots & \ddots & & 0 \\
\vdots & & \ddots & \ddots & \gamma_{k} & \vdots \\
0 & & & \beta_{k} & \alpha_{k} & 0 \\
\hline p-z & \gamma_{1} & 0 & \ldots & 0 & 0
\end{array}\right] \triangleq\left[\begin{array}{c|c}
A_{+} & b_{+} \\
\hline c_{+} & 0
\end{array}\right] .
$$

It is easy to see that this is almost in the required tridiagonal form (20) resulting from the Lanczos algorithm. It suffices to find an updating state-space transformation T such that

$$
\left[\begin{array}{c|c}
T^{-1} A_{+} T & T^{-1} b_{+} \tag{22}\\
\hline c_{+} T & 0
\end{array}\right]=\left[\begin{array}{cccc|c}
\hat{\alpha}_{1} & \hat{\gamma}_{2} & & 0 & \hat{\beta}_{1} \\
\hat{\beta}_{2} & \ddots & \ddots & & 0 \\
& \ddots & \ddots & \hat{\gamma}_{k+1} & \vdots \\
0 & & \hat{\beta}_{k+1} & \hat{\alpha}_{k+1} & 0 \\
\hline \hat{\gamma}_{1} & 0 & \cdots & 0 & 0
\end{array}\right]
$$

and this can be achieved by a sequence of "bulge chasing" $L R$ steps that propagate the superfluous elements $\hat{\beta}_{1}$ and $\hat{\gamma}_{1}$ in (21) to the bottom, resulting finally in (22). Of course, it is possible that an $L R$ step breaks down, in which case (22) will require a look-ahead step [9], but for the sake of simplicity we leave this discussion for later.

If one chooses

$$
M_{1}=\left[\begin{array}{cc}
0 & \gamma_{1} \\
1 & p-z
\end{array}\right], \quad M_{1}^{-1}=\left[\begin{array}{cc}
\frac{p-z}{\gamma_{1}} & 1 \\
\frac{1}{\gamma_{1}} & 0
\end{array}\right],
$$

then, clearly,

$$
M_{1}^{-1}\left[\begin{array}{l}
0 \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{l}
\beta_{1} \\
0
\end{array}\right] \doteq\left[\begin{array}{l}
\hat{\beta}_{1} \\
0
\end{array}\right], \quad M_{1}^{\mathrm{T}}\left[\begin{array}{c}
(p-z) \\
\gamma_{1}
\end{array}\right]=\left[\begin{array}{c}
\gamma_{1} \\
0
\end{array}\right] \doteq\left[\begin{array}{c}
\hat{\gamma}_{1} \\
0
\end{array}\right]
$$

Applying the state-space transformation

$$
T_{1}=\operatorname{diag}\left\{M_{1}, I_{k-1}\right\}
$$

then yields

$$
\left[\begin{array}{llllll|l}
\hat{\alpha}_{1} & x_{2} & y_{2} & & & & \hat{\beta}_{1} \tag{23}\\
u_{2} & z_{2} & t_{2} & 0 & & & 0 \\
v_{2} & w_{2} & \alpha_{2} & \gamma_{3} & & & \vdots \\
& 0 & \beta_{3} & \alpha_{3} & \ddots & & \vdots \\
& & & \ddots & \ddots & \gamma_{k} & 0 \\
& & & & \beta_{k} & \alpha_{k} & 0 \\
\hline \hat{\gamma}_{1} & 0 & \cdots & \cdots & 0 & 0 & 0
\end{array}\right] .
$$

In the next step we define a transformation M_{2} such that

$$
M_{2}^{-1}\left[\begin{array}{l}
u_{2} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
\hat{\beta}_{2} \\
0
\end{array}\right], \quad M_{2}^{\mathrm{T}}\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
\hat{\gamma}_{2} \\
0
\end{array}\right]
$$

which also defines $\hat{\beta}_{2}$ and $\hat{\gamma}_{2}$. This transformation (almost) always exists since we only impose two vector conditions. It is easy to check that it always exists if and only if $u_{2} x_{2}+v_{2} y_{2} \neq 0$ since this also equals the product $\hat{\beta}_{2} \hat{\gamma}_{2}$. Applying the state-space transformation

$$
T_{2}=\operatorname{diag}\left\{1, M_{2}, I_{k-2}\right\}
$$

then moves the 3×3 "bulge" one step downwards. We illustrate this by showing the leading 4×4 submatrix of (23) only:

$$
\left[\begin{array}{ccc}
1 & & \\
& M_{2}^{-1} & \\
& & 1
\end{array}\right]\left[\begin{array}{cccc}
\hat{\alpha}_{1} & x_{2} & y_{2} & \\
u_{2} & z_{2} & t_{2} & 0 \\
v_{2} & w_{2} & \alpha_{2} & \gamma_{3} \\
& 0 & \beta_{3} & \alpha_{3}
\end{array}\right]\left[\begin{array}{lll}
1 & & \\
& M_{2} & \\
& & 1
\end{array}\right]=\left[\begin{array}{cccc}
\hat{\alpha}_{1} & \hat{\gamma}_{2} & 0 & \\
\hat{\beta}_{2} & \hat{\alpha}_{2} & x_{3} & y_{3} \\
0 & u_{3} & z_{3} & t_{3} \\
& v_{3} & w_{3} & \alpha_{3}
\end{array}\right]
$$

which also defines $x_{3}, y_{3}, z_{3}, t_{3}, u_{3}, v_{3}, w_{3}$ to be used in later steps. This is continued until the "bulge" disappears in the bottom right corner. After that, one only needs to keep the leading $k \times k$ subsystem.

The operation count for this procedure is 40 flops per 2×2 transformation, resulting in a total of $40 k$ flops since there are k transformations. If one wants to update the spaces V_{k} and W_{k} as well, then the operation count increases by $12 n k$
flops. For each additional degree section $\left(s-z_{i}\right) /\left(s-p_{i}\right)$ one has to repeat the same process and, hence, the total amount is

$$
\begin{cases}40 k p & \text { flops to obtain }\{\hat{A}, \hat{b}, \hat{c}\} \\ 12 n k p & \text { flops to obtain } V_{k}, W_{k} .\end{cases}
$$

4. Continuing the Lanczos process

The process described in the previous section only explains how to obtain a k th order model $\hat{h}(s)$ matching the first $2 k$ moments of $h(s)$, starting from a similar model $\hat{g}(s)$ for $g(s)$. But what to do if one wants a model of degree higher than k, matching more than the first $2 k$ moments? From the discussion of the last section it is clear that it is no longer sufficient to start from $\hat{g}(s)$. It is precisely here that the updating of V_{k} and W_{k} enters the picture. Assume we start from the standard Lanczos recurrence for A_{g}, b_{g}, c_{g} at step k :

$$
\begin{cases}A_{g} V_{k}=V_{k} \tilde{A}+q_{k} e_{k}^{\mathrm{T}}, & c_{g}=\left[\gamma_{1} 0 \ldots 0\right] W_{k}^{\mathrm{T}}, \quad W_{k}^{\mathrm{T}} V_{k}=I_{k}, \tag{24}\\ W_{k}^{\mathrm{T}} A_{g}=\tilde{A} W_{k}^{\mathrm{T}}+e_{k} r_{k}^{\mathrm{T}}, & b_{g}^{\mathrm{T}}=\left[\beta_{1} 0 \ldots 0\right] V_{k}^{\mathrm{T}},\end{cases}
$$

then this completely specifies the reduced model (20). From this, one also easily derives the following updated equation:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\underline{p-z} \\
c_{g}^{\mathrm{T}}
\end{array}\right]=\left[\begin{array}{c|c}
1 & 0
\end{array} \ldots 00 \begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]\left[\begin{array}{c}
\frac{p-z}{\gamma_{1}} \\
0 \\
0
\end{array}\right],} \\
& \left.\left[\begin{array}{c}
0 \\
b_{g}
\end{array}\right]=\left[\begin{array}{c|c|}
\hline & 0
\end{array} \ldots 0^{0} \begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right] \quad V_{k}\right]\left[\begin{array}{c}
0 \\
\beta_{1} \\
0 \\
0
\end{array}\right] .
\end{aligned}
$$

When one updates the model as in the previous section it is obvious that the embedded matrices $\operatorname{diag}\left\{1, V_{k}\right\}$ and $\operatorname{diag}\left\{1, W_{k}\right\}$ have to be updated at the same time and that the 2×2 transformations have to be applied to these matrices as well. Notice that in the very last step of this update (step k) the residual vectors q_{k} and r_{k}^{T} also enter the picture and that one will obtain something of the following type:

$$
\begin{align*}
& +\hat{q}_{k}\left(\gamma e_{k}^{\mathrm{T}}+\delta e_{k+1}^{\mathrm{T}}\right) \text {, } \\
& {\left[\begin{array}{c}
\widehat{W}_{k}^{\mathrm{T}} \\
\\
\hline * \ldots *
\end{array}\right]\left[\begin{array}{c|c}
p & c_{g} \\
\hline 0 & \\
\vdots & A_{g} \\
0 &
\end{array}\right]=\left[\begin{array}{cccc|c}
\hat{\alpha}_{1} & \hat{\gamma}_{2} & & & 0 \\
\hat{\beta}_{2} & \ddots & \ddots & & \vdots \\
& \ddots & \ddots & \hat{\gamma}_{k} & 0 \\
& & \hat{\beta}_{k} & \hat{\alpha}_{k} & * \\
\hline 0 & \ldots & 0 & * & *
\end{array}\right]\left[\begin{array}{c}
\widehat{W}_{k}^{\mathrm{T}} \\
\\
\hline \ldots *
\end{array}\right]} \tag{25}\\
& +\left(\zeta e_{k}+\eta e_{k+1}\right) \hat{r}_{k+1}^{\mathrm{T}} .
\end{align*}
$$

If we now delete the last column and row of these equations, we have again the setup of stage k of a Lanczos process, as described in (24). From thereon, one can continue the process with spaces and vectors that are now in \mathbb{R}^{n+1}. The updated "residuals" \hat{r}_{k} and \hat{q}_{k} are directly obtained from (25).

5. Relation to implicit restarts

Starting from a particular Krylov subspace

$$
\mathcal{K}_{k}(A, b) \doteq \operatorname{Im}\left[b, A b, \ldots, A^{k-1} b\right],
$$

spanned by the columns of a matrix V_{k} (i.e., $\left.\operatorname{Im} V_{i}=\mathcal{K}_{i}(A, b), i=1, \ldots, k\right)$, it is often useful to derive a modified space $\operatorname{Im} V_{f, k}=\mathcal{K}_{k}\left(A, b_{f}\right)$, where $b_{f}=f(A) b$ and $f(s)=\prod_{i=1}^{\ell}\left(s-z_{i}\right)$ is an appropriately chosen polynomial. In [10] this is used to pre-filter the basis

$$
\operatorname{Im} V_{f, k}=\mathcal{K}_{k}\left(A, b_{f}\right)=f(A) \mathcal{K}_{k}(A, b)
$$

so that the eigenvalues of the projected matrix $V_{f, k}^{\mathrm{T}} A V_{f, k}$ tend faster to the spectrum of A in a specified region. It is also shown in that paper that passing from V_{k} to $V_{f, k}$ can be done implicitly, via the application of $Q R$-steps on the Hessenberg matrix $V_{k}^{\mathrm{T}} A V_{k}$, rather than building the space explicitly from the pair $\left\{A, b_{f}\right\}$. The same idea was
subsequently applied to the Lanczos tridiagonalization in [6], where it was shown that $H R$-steps applied to the tridiagonal matrix $W_{k}^{\mathrm{T}} A V_{k}^{\mathrm{T}}$ implicitly pre-filter the Krylov spaces $\operatorname{Im} V_{k}=\mathcal{K}_{k}(A, b)$ and $\operatorname{Im} W_{k}=\mathcal{K}_{k}\left(A^{\mathrm{T}}, c^{\mathrm{T}}\right)$ to yield new spaces

$$
\operatorname{Im} V_{f_{1}, k}=\mathcal{K}_{k}\left(A, b_{f_{1}}\right)=f_{1}(A) \mathcal{K}_{k}(A, b)
$$

and

$$
\operatorname{Im} W_{f_{2}, k}=\mathcal{K}_{k}\left(A^{\mathrm{T}}, c_{f_{2}}^{\mathrm{T}}\right)=f_{2}\left(A^{\mathrm{T}}\right) \mathcal{K}_{k}\left(A^{\mathrm{T}}, c^{\mathrm{T}}\right),
$$

where $f(s)=f_{1}(s) f_{2}(s)$ is again a given polynomial. Instead of fitting the moments $c A^{i-1} b, i=1, \ldots, 2 k$, of the function

$$
g(s)=\sum_{i=1}^{\infty} c A^{i-1} b s^{-i},
$$

the new spaces now yield a Padé approximation of degree k of the pre-filtered function $f(s) g(s)$ with modified moments $c f(A) A^{i-1} b, i=1, \ldots, 2 k$.

From this discussion, it is clear that the present paper shows how to extend these ideas to rational pre-filters. We now show how to extend rational pre-filtering as well to the Arnoldi process. In this case, one builds an orthogonal basis V_{k} such that

$$
\left\{\begin{array}{l}
A_{g} V_{k}=V_{k} \tilde{A}+q_{k} e_{k}^{\mathrm{T}}, \quad V_{k}^{\mathrm{T}} V_{k}=I_{k}, \tag{26}\\
b_{g}^{\mathrm{T}}=\left[\beta_{1} 0 \ldots 0\right] V_{k}^{\mathrm{T}},
\end{array}\right.
$$

and \tilde{A} is in upper Hessenberg form. In order to apply the present ideas one needs to define a transfer function $g(s)=c_{g}\left(s I-A_{g}\right)^{-1} b_{g}$ and, hence, to choose as well a vector c_{g}. The updating equations of the previous section then become (with $\tilde{c} \doteq c_{g} V_{k}$)

$$
\begin{align*}
& {\left[\begin{array}{c|c}
p & c_{g} \\
\hline 0 & \\
\vdots & A_{g} \\
0 &
\end{array}\right]\left[\begin{array}{c|c|c}
1 & 0 & \ldots \\
\hline 0 & \\
\vdots & & V_{k} \\
0 &
\end{array}\right]=\left[\begin{array}{c|c|c}
1 & 0 & \ldots \\
0 & 0 \\
\vdots & & V_{k} \\
0 & &
\end{array}\right]\left[\begin{array}{c|c}
p & \tilde{c} \\
\hline 0 & \tilde{A} \\
\vdots & \tilde{A} \\
0 &
\end{array}\right]+\left[\begin{array}{c}
0 \\
q_{k} \\
e_{k+1}^{\mathrm{T}},
\end{array}\right]} \\
& {\left[\begin{array}{c}
0 \\
b_{g}
\end{array}\right]=\left[\begin{array}{c|cc}
1 & 0 & \ldots \\
0 & 0 \\
\vdots & V_{k} \\
0 &
\end{array}\right]\left[\begin{array}{c}
0 \\
\hline \beta_{1} \\
0 \\
0
\end{array}\right] .} \tag{27}
\end{align*}
$$

In order to transform this again to the standard form (26) we first need to permute β_{1} from position 2 to position 1 in the transformed b_{g} vector, and to apply this permutation to the columns of $\operatorname{diag}\left\{1, V_{k}\right\}$. The corresponding similarity applied to
$\left[\begin{array}{c|c}p & c_{g} \\ \hline 0 & \\ \vdots & A_{g} \\ 0 & \end{array}\right]$
destroys its Hessenberg form by introducing an element in the (3,1) position. A classical bulge chasing algorithm then pushes this element downwards until the Hessenberg form is restored. In the last step k, a rotation is applied that affects the vector e_{k+1}^{T} in a similar manner as in the Lanczos process described in (26):

$$
\begin{align*}
{\left[\begin{array}{c|c}
p & c_{g} \\
\hline 0 & \\
\vdots & A_{g} \\
0 &
\end{array}\right]\left[\begin{array}{l|l}
\widehat{V}_{k} & * \\
\vdots \\
*
\end{array}\right]=} & {\left[\begin{array}{lll}
\widehat{V}_{k} & * \\
\vdots \\
*
\end{array}\right]\left[\begin{array}{cccc|c}
\hat{h}_{1,1} & \hat{h}_{1,2} & \cdots & \hat{h}_{1, k} & * \\
\hat{h}_{2,1} & \ddots & & \vdots & \vdots \\
& \ddots & \ddots & \vdots & \vdots \\
& & \hat{h}_{k, k-1} & \hat{h}_{k, k} & * \\
\hline 0 & \cdots & 0 & * & *
\end{array}\right] } \\
& +\hat{q}_{k}\left(\gamma e_{k}^{\mathrm{T}}+\delta e_{k+1}^{\mathrm{T}}\right) . \tag{28}
\end{align*}
$$

Again, we retrieve stage k of an Arnoldi process, after deleting the last column and row of this equation. Although this looks like a promising method for applying a rational pre-filter to a single Krylov space $\mathcal{K}_{k}(A, b)$ it is still unclear for the moment what the role of the c_{g} vector is in this procedure. This vector remains free to be chosen, while it clearly affects the resulting Hessenberg form. On the other hand, one clearly needs additional information to be able to apply a rational pre-filter to a single Krylov space, since $f(A) \mathcal{K}_{k}(A, b)$ obviously depends on all vectors of $\mathcal{K}_{n}(A, b)$ if $f(s)$ is rational.

6. Extensions

In this concluding section, we mention a few extensions of the "simplified" theory presented earlier.

First, we address the issue of breakdowns in the SISO case. It is well known that the tridiagonal form resulting from the Lanczos process may not always exist $[4,7,9]$. If one of the parameters β_{i} of γ_{i} becomes zero, this implies that the system $\left\{A_{g}, b_{g}, c_{g}\right\}$ is not completely controllable or observable, and, hence, that the original state-space description of the transfer function was not minimal. This (rather fortunate) breakdown will not occur if one starts with a minimal state-space representation for $g(s)$.

The more serious breakdown is when the inner product of the vectors q_{k} and r_{k} in (24) equals zero ($r_{k}^{\mathrm{T}} q_{k}=0$). Since these vectors are equal (up to a scaling factor) to the next vectors v_{k+1} and w_{k+1}, respectively, it becomes impossible to satisfy the biorthogonality $W_{k+1}^{\mathrm{T}} V_{k+1}=I_{k+1}$ in the next step. The standard procedure is then to perform look-ahead, in which case some of the parameters α_{i}, β_{i} and γ_{i} become blocks of compatible dimension [7,9]. The same holds true for the $L R$-steps. Even when starting from a scalar tridiagonal model (20), it is possible that the bulge chasing described in (23) fails. The vectors $\left[y_{i}, t_{i}\right]^{\mathrm{T}}$ and $\left[v_{i}, w_{i}\right]^{\mathrm{T}}$ now play the role of q_{i} and r_{i}, and if these vectors are orthogonal the process breaks down. Again one can get around these breakdowns by performing block $L R$-steps. We point out that even though a block form is encountered at some stage, it may disappear again after applying
another pre-multiplication with a first degree pre-filter. The use of look-ahead of course affects the complexity of the method and the moment matching property, which now holds only for those values of k that correspond to "completed" look-ahead steps [7]. For more details on look-ahead techniques, we refer to $[7,9]$.

Next, we address the multi-input multi-output (MIMO) case. Since the derivation of the look-ahead Lanczos process, there have been several attempts to extend this also to the MIMO case (see, e.g., [1]). The same ideas of using block tridiagonal forms apply here as well, but the algorithm becomes rather intricate and many variants are possible. The pre-multiplication with a first degree transfer function described in lemma 1 still applies to MIMO systems [11] and can thus be merged with MIMO look-ahead techniques. We refer to [1] for more details of this Lanczos variant.

We also point out that the present ideas are not restricted to expansions around $s=\infty$ or to standard state-space systems. Assume we have a MIMO generalized state-space system described by

$$
\left\{\begin{array}{l}
s E x(s)=A x(s)+B u(s) \\
y(s)=C x(s)+D u(s),
\end{array}\right.
$$

in the Laplace domain. The transfer function $R(s)=D+C(s E-A)^{-1} B$ can be expanded around a finite point $s=\sigma$ (which is not a pole of $R(s)$), as follows [2,3]:

$$
\begin{aligned}
R(s) & =D+C[(s-\sigma) E-(A-\sigma E)]^{-1} B \\
& =D+\sum_{i=0}^{\infty} C\left[(A-\sigma E)^{-1} E\right]^{i}(\sigma E-A)^{-1} B(s-\sigma)^{i} .
\end{aligned}
$$

It is clear that in this context the role of the matrices A_{g}, b_{g} and c_{g} is now replaced by $(A-\sigma E)^{-1} E,(\sigma E-A)^{-1} B$ and C, respectively. For more details on these connections, we refer to $[2,3]$.

A further extension is the application of the above ideas to the stabilization of an unstable system via pole/zero dislocations (see [11]). Assume we have a k th order model $\{\tilde{A}, \tilde{b}, \tilde{c}\}$ with transfer function $\tilde{g}(s)=\tilde{c}\left(s I_{k}-\tilde{A}\right)^{-1} \tilde{b}$, but this model has unstable - and, hence, undesired - poles. We would like to construct another transfer function $\hat{g}(s)$ which has only stable poles and yet the same frequency response (i.e., $|\hat{g}(j \omega)|=|\tilde{g}(j \omega)|, \forall \omega)$. It turns out that it is always possible to achieve this by pre-multiplying $\tilde{g}(s)$ with

$$
f(s) \doteq \frac{\prod_{i=1}^{\ell}\left(s-p_{i}\right)}{\prod_{i=1}^{\ell}\left(s-\bar{p}_{i}\right)}
$$

where the p_{i} are the unstable poles of $\tilde{g}(s)$. Since these are zeros of $f(s)$, they will cancel in the product $\hat{g}(s)=f(s) \tilde{g}(s)$. Moreover, the special choice of $f(s)$ ensures that $|f(j \omega)|=1, \forall \omega$, and hence that $|\hat{g}(j \omega)|=|\tilde{g}(j \omega)|, \forall \omega$. That these ideas also extend to the MIMO case or to the discrete-time case was shown in [11].

Acknowledgements

This work was supported by a Department of Energy Fellowship, IBM Corporation, and the National Science Foundation under grants CCR-9120105 and CCR9796315. Parts of this paper present research results of the Belgian Programme on Inter-university Poles of Attraction, initiated by the Belgian State, Prime Minister's Office for Science, Technology and Culture. The scientific responsibility rests with its authors.

References

[1] J. Aliaga, V. Hernandez and D. Boley, Using the block clustered nonsymmetric Lanczos algorithm to solve control problems for MIMO linear systems, in: Proc. of the Cornelius Lanczos Internat. Centenary Conf., eds. J. Brown, M. Chu, D. Ellison and R. Plemmons, Raleigh, NC (1994) pp. 387389.
[2] K. Gallivan, E. Grimme, D. Sorensen and P. Van Dooren, On some modifications of the Lanczos algorithm and the relation with Padé approximations, in: Mathematical Research Series 7 (Akademie Verlag, Berlin, 1996) pp. 87-116.
[3] K. Gallivan, E. Grimme and P. Van Dooren, A rational Lanczos algorithm for model reduction, Numer. Algorithms 12 (1995) 33-63.
[4] G. Golub, B. Kågström and P. Van Dooren, Direct block tridiagonalization of single-input singleoutput systems, Systems Control Lett. 18 (1992) 109-120.
[5] W.B. Gragg and A. Lindquist, On the partial realization problem, Linear Algebra Appl. 50 (1983) 277-319.
[6] E. Grimme, D. Sorensen and P. Van Dooren, Model reduction of state-space systems via an implicitly restarted Lanczos method, Numer. Algorithms 12 (1995) 1-31.
[7] M. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms. Part I, SIAM J. Matrix Anal. Appl. 13 (1992) 594-639.
[8] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bur. Standards 45 (1950) 255-282.
[9] B.N. Parlett, Reduction to tridiagonal form and minimal realizations, SIAM J. Matrix Anal. Appl. 13 (1992) 567-593.
[10] D. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl. 13 (1992) 357-385.
[11] P. Van Dooren, Rational and polynomial matrix factorizations via recursive pole-zero cancellation, Linear Algebra Appl. 137/138 (1990) 663-697.

[^0]: © J.C. Baltzer AG, Science Publishers

