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Abstract. In this paper, we address the problem of constructing a reduced order system of
minimal McMillan degree that satisfies a set of tangential interpolation conditions with respect
to the original system under some mild conditions. The resulting reduced order transfer function
appears to be generically unique and we present a simple and efficient technique to construct this
interpolating reduced order system. This is a generalization of the multipoint Padé technique which
is particularly suited to handle multiinput multioutput systems.
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1. Introduction. Model reduction of large-scale dynamical systems has received
a lot of attention during the last decade: it is a crucial tool in reducing the compu-
tational complexity of, e.g., analysis and design of micro-electro-mechanical systems
(MEMS) [13], in simulation of electronic devices [5], in weather prediction [6], and in
control of partial differential equations [12].

The construction of the reduced order model typically passes via the derivation of
one or two projective subspaces of the state space in which the original system is mod-
elled. There are several approaches to find such projective subspaces. In this paper,
we focus on an approach related to tangential interpolation of the rational transfer
function, which therefore only works for linear time invariant systems. Tangential
interpolation of given input/output data has already been treated in the literature
[3], [4]. Here, we address the case where these data are themselves obtained from tan-
gential information of a given (large-scale) transfer function, which to our knowledge
has not been considered.

In this paper, we consider p×m strictly proper transfer functions T (s), i.e., where
lims→∞ T (s) = 0. This implies that the point at infinity is a zero of T (s). For this
reason, a separate treatment of the point at infinity is required.

We begin with some definitions which will allow us to formalize the problem of
tangential interpolation. We say that a rational matrix function R(s) is O(λ− s)k in
s with k ∈ Z if its Taylor expansion about the point λ can be written as follows:
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R(s) = O(λ− s)k ⇐⇒ R(s) =

+∞∑
i=k

Ri(λ− s)i,(1.1)

where the coefficients Ri are constant matrices. If Rk �= 0, then we say that R(s) =
Θ(λ− s)k. As a consequence, if R(s) = Θ(λ− s)k and k is strictly negative, then λ is
a pole of R(s), and if k is strictly positive, then λ is a zero of R(s). Analogously, we
say that R(s) is O(s−1)k if the following condition is satisfied:

R(s) = O(s−1)k ⇐⇒ R(s) =

+∞∑
i=k

Ris
−i,(1.2)

where the coefficients Ri are constant matrices. It should be stressed that, in general,
R(s) being O(s)−k is not equivalent to R(s) being O(s−1)k.

We must also use the well-established concept of a zero of a system (see, e.g.,
[14]) and the following related definition.

Definition 1.1. Suppose that T (s) is a p×m rational function. The zeros of the
numerator polynomials not equal to zero in the Smith–McMillan form of the transfer
function T (s) are called the zeros of T (s). An m× 1 polynomial vector y(s) is a right
zero direction of order k at λ if y(λ) �= 0 and

T (s)y(s) = O(λ− s)k.(1.3)

Analogously, a 1×p polynomial vector x(s) is a left zero direction of T (s) when x∗(s)
is a right zero of T ∗(s). The order of a zero is defined as the maximum order of the
zero directions at this point.

For MIMO systems, a zero can also be a pole. If λ is not a pole of T (s), only the
k first Taylor coefficients of y(s) about λ are important. If λ is a pole of T (s), the
situation is more complicated. Indeed, assume that λ is a pole of order p of T (s) and
that y(s) has an expansion about λ; then

T (s)y(s) =

⎛
⎝

+∞∑
i=−p

Ti(λ− s)i

⎞
⎠

⎛
⎝

∞∑
j=0

yj(λ− s)j

⎞
⎠ .(1.4)

We see that the first k + p terms in the Taylor expansion of y(s) are important to
ensure that the product (1.4) has a zero of order k. This case will not be discussed in
this paper, but a few remarks will be made to indicate how it complicates the problem.

We now present the concept of tangential interpolation that will be considered in
this paper. Three concepts are defined, namely left, right, and two-sided tangential
interpolation. Interpolation at the point at infinity is considered as a special case.

Let z be a finite point in the complex plane. Let T (s) and T̂ (s) be two p × m
strictly proper transfer functions that do not have a pole at s = z.

Left tangential interpolation. Let x(s) be a 1×p polynomial vector of degree
β−1 and not equal to zero at s = z. We say that T̂ (s) interpolates T (s) at (z, x(s)) if

x(s)(T (s) − T̂ (s)) = O(z − s)β .(1.5)

Let x(s) be a 1× p polynomial vector in s−1, of degree β − 1 in s−1 and not equal to
zero at s = ∞. We say that T̂ (s) interpolates T (s) at (∞, x(s)) if

x(s)(T (s) − T̂ (s)) = O(s−1)β+1.(1.6)
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Right tangential interpolation. Let y(s) be a m × 1 polynomial vector of
degree δ − 1 and not equal to zero at s = z. We say that T̂ (s) interpolates T (s) at
(z, y(s)) if

(T (s) − T̂ (s))y(s) = O(z − s)δ.(1.7)

Let y(s) be a m × 1 polynomial vector in s−1, of degree δ − 1 in s−1 and not equal
to zero at s = ∞. We say that T̂ (s) interpolates T (s) at (∞, y(s)) if the following
condition is satisfied:

(T (s) − T̂ (s))y(s) = O(s−1)δ+1.(1.8)

Two-sided tangential interpolation. Let x(s) be a 1 × p polynomial vector
of degree β− 1 and not equal to zero at s = z. Let y(s) be a m× 1 polynomial vector
of degree δ− 1 and not equal to zero at s = z. We say that T̂ (s) interpolates T (s) at
(z, x(s), y(s)) if the following condition is satisfied:

x(s)(T (s) − T̂ (s))y(s) = O(z − s)β+δ.(1.9)

Let x(s) be a 1× p polynomial vector in s−1, of degree β − 1 in s−1 and not equal to
zero at s = ∞. Let y(s) be a m×1 polynomial vector in s−1, of degree δ−1 in s−1 and
not equal to zero at s−1 = 0. We say that T̂ (s) interpolates T (s) at (∞, x(s), y(s)) if
the following condition is satisfied:

x(s)(T (s) − T̂ (s))y(s) = O(s−1)β+δ+1.(1.10)

The objective of this paper is the following. We are given a transfer function T (s)
and a set of tangential interpolation conditions of the type (1.5) to (1.10) in a number
of points of the complex plane, and we want to construct the transfer function of
minimal McMillan degree that satisfies these interpolation conditions. In order to
make the problem more precise, we need to introduce the following concepts.

Definition 1.2. Let z1, . . . , zkleft
be points in the complex plane, not necessarily

distinct or finite. For each finite zα, a 1× p polynomial vector xα(s) of degree βα − 1
and not equal to zero at s = zα is given:

xα(s) =

βα−1∑
j=0

x[j]
α (zα − s)j , x[0]

α �= 0.(1.11)

If zα = ∞, then a 1 × p polynomial vector in s−1, xα(s) of degree βα − 1 in s−1 and
not equal to zero at s = ∞ is given:

xα(s) =

βα−1∑
j=0

x[j]
α s−j , x[0]

α �= 0.(1.12)

The left interpolation set Ileft is defined as follows:

Ileft
.
=

{
(z1, x1(s)) , . . . ,

(
zkleft

, xkleft
(s)

)}
.(1.13)

The size of Ileft, written s(Ileft), is defined as follows:

s(Ileft)
.
=

kleft∑
i=1

βi.(1.14)



MODEL REDUCTION VIA TANGENTIAL INTERPOLATION 331

Finally, the set of interpolation points of Ileft, written p(Ileft) is defined as follows:

p(Ileft) = {z1, . . . , zkleft
}.(1.15)

Analogously, a right tangential interpolation set

Iright
.
=

{
(w1, y1(s)) , . . . ,

(
wkright

, ykright
(s)

)}
,(1.16)

with the points w1, . . . , wkright
arbitrarily chosen in C∪∞ and each m×1 polynomial

vector yα(s), 1 ≤ α ≤ kright of degree δα − 1 in s if wα is finite (of degree δα − 1 in
s−1 otherwise) defined with the same conventions as above.

Let Il be a left tangential interpolation set. Let Ir be a right tangential interpola-
tion set. The set

I = {Il, Ir}(1.17)

is called a tangential interpolation set. The set of interpolation points of I, written
p(I), is defined by

p(I)
.
= p(Il) ∪ p(Ir).(1.18)

Let T (s) be a transfer function, then we say that the tangential interpolation set I is
T (s)-admissible if T (s) has m inputs and p outputs and no point belonging to p(I) is
a pole of T (s), i.e., no interpolation point is a pole of T (s).

Let the tangential interpolation set I = {Il, Ir} be defined as above. If some

zα ∈ Il is equal to some wγ ∈ Ir, say ξα,γ = zα = wγ , then define x
(f)
α (s) to be the

polynomial vector of size 1× p of degree f obtained by keeping the first f terms in the

Taylor expansion of xα(s) about zα, and analogously for y
(g)
γ (s):

x(f)
α (s)

.
=

f−1∑
j=0

x[j]
α (zα − s)j , y(g)

γ (s)
.
=

g−1∑
j=0

y[j]
γ (wγ − s)j .(1.19)

Use the same notation if zα or wγ is equal to ∞:

x(f)
α (s)

.
=

f−1∑
j=0

x[j]
α s−j , y(g)

γ (s)
.
=

g−1∑
j=0

y[j]
γ s−j .(1.20)

We are now able to define the tangential interpolation problem.
Definition 1.3. Let T (s) and T̂ (s) be two strictly proper p ×m transfer func-

tions. T̂ (s) interpolates T (s) at I if the three following conditions are satisfied:
1. T̂ (s) interpolates T (s) at any couple (zα, xα(s)) belonging to Il,
2. T̂ (s) interpolates T (s) at any couple (wγ , yγ(s)) belonging to Ir,
3. Finally, for every zα = wγ

.
= ξα,γ , we impose in addition that for all f =

1, . . . , βα; g = 1, . . . , δγ , T̂ (s) interpolates T (s) at (ξα,γ , x
(f)
α (s), y

(g)
γ (s)).

Two remarks are in order. In this paper, we consider only the simple case when
the interpolation set I is T (s)-admissible and T̂ (s)-admissible. Second, the tangential
interpolation problem has been studied in a slightly different form in the literature,
e.g., in [4], and the reader is directed there for general results about the theory of
interpolation of rational matrix functions. At first sight, one could think that our
definition of the two-sided tangential interpolation problem is not the same as the



332 K. GALLIVAN, A. VANDENDORPE, AND P. VAN DOOREN

one treated in [4]. A lemma showing the equivalence between the two formulations is
proved in the appendix.

The problem solved in this paper can be stated as follows.
Problem 1.1. We are given a strictly proper p × m transfer function T (s) of

McMillan degree N , and a corresponding minimal state space realization (C,A,B),
such that

T (s) = C(sIN −A)−1B,

with C ∈ C
p×N , A ∈ C

N×N , and B ∈ C
N×m. We are also given a T (s)-admissible

tangential interpolation set I. We want to construct a p ×m reduced order transfer
function T̂ (s) of minimal McMillan degree n,

T̂ (s) = Ĉ(sIn − Â)−1B̂,(1.21)

with Ĉ ∈ C
p×n, Â ∈ C

n×n, B̂ ∈ C
n×m such that I is T̂ (s)-admissible and T̂ (s)

tangentially interpolates T (s) at I.
The remainder of this paper is organized as follows. In section 2, the tangential

interpolation problem is solved for two simple sets of interpolation conditions. In
section 3, the background necessary to solve the general problem, Problem 1.1, is
introduced. In section 4, the multipoint Padé approximation is constructed and its
main properties are analyzed. Concluding remarks are given in section 5.

2. Preliminary results. In this section, we present the solution of Problem 1.1
for two particular interpolation sets. The general results are given in sections 3 and 4.

2.1. One set of n distinct right interpolation conditions. The first simpler
problem solved in this section is the following.

Problem 2.1. Let T (s) be a p×m transfer function of McMillan degree N . Let
{λ1, . . . , λn} be n (where n < N) distinct finite points in the complex plane that are
not poles of T (s). Let {y1, . . . , yn} be n m× 1 nonzero vectors. We want to construct
a p×m transfer function T̂ (s) of McMillan degree n such that for all 1 ≤ i ≤ n,

T (λ)yi = T̂ (λi)yi.(2.1)

Let C,A,B be a minimal state space realization of the p×m transfer function T (s).
In order to solve the problem, we construct the N × n matrix V

.
=

[
v1 . . . vn

]
that

satisfies the following Sylvester equation:

A
[
v1 . . . vn

]
−
[
v1 . . . vn

]
⎡
⎢⎣

λ1

. . .

λn

⎤
⎥⎦ + B

[
y1 . . . yn

]
= 0.(2.2)

Assume that V has full column rank n. Construct Z ∈ C
N×n such that

ZTV = In.

Construct Ĉ ∈ C
p×n, Â ∈ C

n×n, and B̂ ∈ C
n×m as follows:

Ĉ
.
= CV, Â

.
= ZTAV, B̂

.
= ZTB.

To verify that the transfer function

T̂ (s)
.
= Ĉ(sIn − Â)−1B̂
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solves Problem 2.1, first note that for any 1 ≤ i ≤ k the columns of V can be computed
as follows:

vi = (λiIN −A)−1Byi.

We will also use the following well-known result.
Lemma 2.1. Let V ∈ C

N×n. If the vector v belongs to the column span of the
matrix V . Then, for any matrix W ∈ C

N×n such that WTV = Ik,

v = VWT v.

Proof. Because v belongs to the linear span of the columns of V , there exists
a vector v̂ ∈ C

n such that v = V v̂. For any WT satisfying WTV = In, we have
v̂ = WT v. This in turn implies that v = VWT v.

Defining W by

WT .
=

(
ZT (λ1IN −A)V

)−1
ZT (λ1IN −A).

clearly yields WTV = In and applying the preceding lemma, we obtain the following
equalities:

T (λ1)y1 = C(λ1IN −A)−1By1(2.3)

= CVWT (λ1IN −A)−1By1(2.4)

= CV (λ1Ik − ZTAV )−1ZTBy1(2.5)

= T̂ (λ1)y1.(2.6)

This proves that T̂ (s) solves Problem 2.1.
Remark 2.1.

1. This reasoning is very similar to the technique used in the SISO case in [7] and
[11] . These papers develop techniques to construct a SISO transfer function
of McMillan degree n that satisfies a set of (scalar) interpolation conditions
with respect to an original transfer function.

2. It should be pointed out that the transfer function T̂ (s) of McMillan degree n
that solves Problem 2.1 is not unique. This is due to the fact that there exist
infinitely many matrices Z ∈ C

N×n such that ZTV = In, where V satisfies
(2.2) and is generically unique. We will see in what follows that, by imposing
n additional left interpolation conditions, one generically determines a unique
reduced order transfer function T̂ (s) of McMillan degree n.

2.2. One unique two-sided interpolation condition. We next consider the
case where the interpolation set consists of only one finite interpolation point α ∈ C,
i.e., in terms of the parameters of Problem 1.1,

kleft = kright = 1, β1 = δ1 = n, z1 = w1 = α.(2.7)

Moreover, we assume that α is not a pole of T (s). Deleting the subscripts not required
due to the simpler conditions to clarify the notation allows the problem to be stated
as follows.

Problem 2.2. Given T (s) = C(sIN − A)−1B, α ∈ C, x(s)
.
=

∑n−1
i=0 x[i](α − s)i

and y(s)
.
=

∑n−1
i=0 y[i](α − s)i, construct a reduced order transfer function T̂ (s) of

McMillan degree n such that

x(s)T (s) = x(s)T̂ (s) + O(α− s)n,(2.8)

T (s)y(s) = T̂ (s)y(s) + O(α− s)n,(2.9)
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and for all f = 1, . . . , n, g = 1, . . . , n,

x(f)(s)(T (s) − T̂ (s))y(g)(s) = O(α− s)f+g.(2.10)

In order to solve the problem, we first rewrite (2.8)–(2.10) as matrix equations.
Note that for any α ∈ C is not a pole of T (s), we can write

T (s) = C(sIN −A)−1B = C ((s− α)IN + αI −A)
−1

B(2.11)

= C(αIN −A)−1
(
I − (α− s)(αI −A)−1

)−1
B(2.12)

=

∞∑
k=0

C(αI −A)−k−1B(α− s)k.(2.13)

Let us consider the left interpolation conditions corresponding to equation (2.8). By
imposing the n first coefficients of the Taylor expansion of the product x(s)(T (s) −
T̂ (s)) to be zero, we find the following system of equations:

x[0]C(αI −A)−1B

= x[0]Ĉ(αI − Â)−1B̂(2.14)

x[1]C(αI −A)−1B + x[0]C(αI −A)−2B

= x[1]Ĉ(αI − Â)−1B̂ + x[0]Ĉ(αI − Â)−2B̂(2.15)

...

x[n−1]C(αI −A)−1B + · · · + x[0]C(αI −A)−nB

= x[n−1]Ĉ(αI − Â)−1B̂ + x[0]Ĉ(αI − Â)−nB̂.(2.16)

Defining the matrix X ∈ C
n×np and the generalized observability matrix OC,A ∈

C
np×N as follows:

X
.
=

⎡
⎢⎣

x[0]

...
. . .

x[n−1] . . . x[0]

⎤
⎥⎦; OC,A

.
=

⎡
⎢⎣

C(αI −A)−1

...
C(αI −A)−n

⎤
⎥⎦(2.17)

and defining matrix OĈ,Â ∈ C
np×n analogously by replacing the matrices C and A

by Ĉ and Â in (2.17), we are able to state the following lemma.
Lemma 2.2. A p × m transfer function T̂ (s) = Ĉ(sIn − Â)−1B̂ satisfies the

interpolation conditions (2.8) if and only if

XOĈ,ÂB̂ = XOC,AB.(2.18)

Proof. Equation (2.18) is simply a matrix form of the system (2.14)–(2.16).
We can transpose the preceding reasoning to the right interpolation condition

(2.9). Defining

Y =

⎡
⎢⎣

y[0] . . . y[n−1]

. . .
...

y[0]

⎤
⎥⎦; CA,B =

[
(αI −A)−1B . . . (αI −A)−nB

]
(2.19)

and following the same reasoning as before, we obtain the following lemma.
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Lemma 2.3. A p × m transfer function T̂ (s) = Ĉ(sIn − Â)−1B̂ verifies the
interpolation conditions (2.9) if and only if

ĈCÂ,B̂Y = CCA,BY.(2.20)

At this point, all that we have done is to rewrite the left and right interpolation
conditions into matrix equations. Next, we define the generalized Loewner matrix as

LT (s) = XOC,ACA,BY.(2.21)

The matrix LT̂ (s) is defined as LT (s) by replacing the matrices C,A, and B by Ĉ, Â,

and B̂. By rewriting the two-sided interpolation conditions corresponding to (2.10),
we obtain the following lemma.

Lemma 2.4. A p × m transfer function T̂ (s) = Ĉ(sIn − Â)−1B̂ verifies the
interpolation conditions (2.10) if and only if

LT̂ (s) = LT (s).(2.22)

The following result can be proven using partial fraction expansion and Lemmas
2.2 to 2.3.

Proposition 2.5. Every transfer function T̂ (s) that verifies (2.8), (2.9) and
(2.10) is such that

XOC,AACA,BY = XOĈ,ÂÂCÂ,B̂Y.(2.23)

The main result of this section can now be stated as follows.
Proposition 2.6. If the matrix LT (s) is invertible, then every transfer function

that verifies the interpolation conditions (2.8)–(2.10) has a McMillan degree greater
than or equal to n. Moreover, the transfer function of degree n that satisfies the
equations (2.8)–(2.10) is unique if it exists and it can be constructed by the projection
matrices V and Z that satisfy

Im(V ) = Im (CC,AY ) ,(2.24)

Ker(ZT ) = Ker (XOA,B) ,(2.25)

ZTV = In,(2.26)

if α is not a pole of Â.
Sketch of the proof. Suppose that there exists a transfer function of McMillan

degree n such that (2.8)–(2.10) are satisfied. It follows that

XOĈ,ÂB̂ = XOC,AB,(2.27)

ĈCĈ,ÂU = CCC,AY,(2.28)

XOĈ,ÂÂCÂ,B̂Y = XOC,AACA,BY.(2.29)

Because of the invertibility of LT (s), the matrices XOĈ,Â ∈ C
n×n and CÂ,B̂Y ∈ C

n×n

are invertible. If we define

M = (XOĈ,Â)−1,(2.30)

N = (CÂ,B̂Y )−1,(2.31)

ZT = MXOC,A,(2.32)

V = CA,BY N,(2.33)

it is straightforward to show that

Â = ZTAV, B̂ = ZTB, Ĉ = CV, ZTV = In.(2.34)



336 K. GALLIVAN, A. VANDENDORPE, AND P. VAN DOOREN

3. Auxiliary results. In this section, we define a generalized Loewner matrix
that will allow us to construct explicitly the solution of the interpolation problem
(1.1) under some mild conditions. This generalized Loewner matrix is inspired by the
discussion in [2]. For the SISO case previous results based on [1], [8], and [10] may be
found in [9].

In this section, we are given a strictly proper transfer function T (s) and a T (s)-
admissible interpolation set I = {Il, Ir} as defined in section 1. The objective of this
section is to find a way to characterize the set of strictly proper transfer functions
T̂ (s) such that I is T̂ (s)-admissible (the interpolation points are not poles of T̂ (s))
and T̂ (s) tangentially interpolates T (s) at I.

We define first several matrices that will be used in the development. Consider
the set Il and associate with the pair (zα, xα(s)) ∈ Il defined in (1.11)–(1.12) the
matrix Xα ∈ C

βα×pβα

Xα
.
=

⎡
⎢⎢⎣

x
[0]
α

...
. . .

x
[βα−1]
α . . . x

[0]
α

⎤
⎥⎥⎦ ,(3.1)

and define the matrix X(Il) ∈ C
s(Il)×ps(Il) by

X(Il)
.
= diag{Xα}kleft

α=1 .(3.2)

Analogously, with the pair (wα, yα(s)) ∈ Ir, we associate the matrix

Yα
.
=

⎡
⎢⎢⎣

y
[0]
α . . . y

[δα−1]
α

. . .
...

y
[0]
α

⎤
⎥⎥⎦(3.3)

and define

Y (Ir)
.
= diag{Yα}kright

α=1(3.4)

related to, respectively, the left and right interpolation sets Il and Ir.
The Jordan matrices will play an important role in this paper, and we therefore

introduce the following compact notation.
Definition 3.1. The matrix Jw,δ,k ∈ C

kδ×kδ is defined to be

Jw,δ,k
.
=

⎡
⎢⎢⎢⎢⎣

wIk −Ik
. . .

. . .

. . . −Ik
wIk

⎤
⎥⎥⎥⎥⎦
.(3.5)

When k = 1, Jw,δ,1 is simply a Jordan matrix of size δ × δ at eigenvalue w and is
written Jw,δ.

With this definition, we easily obtain the following lemma.
Lemma 3.2.

Jw,δ,mYα = YαJw,δ, JT
w,βXα = XαJ

T
w,β,p.(3.6)
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Proof. The case w = 0 is nothing but the shift invariance property of block
Toeplitz matrices. It then also follows for Jw,δ,m = wI +J0,δ,m since we add the same
term on both sides of (3.6).

Two matrices associated to the p ×m transfer function T (s) = C(sIN − A)−1B
with A ∈ C

N×N are the controllability matrix Contr(A,B) ∈ C
pN×N and the ob-

servability matrix Obs(C,A) ∈ C
N×mN defined by

Contr(A,B)
.
=

[
B . . . AN−1B

]
, Obs(C,A) =

⎡
⎢⎣

C
...

CAN−1

⎤
⎥⎦ .(3.7)

The quantities occurring in Contr(A,B) and Obs(C,A),

µA,B(∞, k)
.
= Ak−1B νC,A(∞, k)

.
= CAk−1,(3.8)

can be seen as “moments” of (sI −A)−1B and C(sI −A)−1 about infinity. Similarly,
from the dyadic expansion about a point λ /∈ Λ(A)

(sI −A)−1 =

+∞∑
k=0

(λI −A)−k−1(λ− s)k,(3.9)

we define the moments about a finite expansion point λ ∈ C

µA,B(λ, k)
.
= (λI −A)−kB, νC,A(λ, k)

.
= C(λI −A)−k.(3.10)

Definition 3.3. Let I be a T (s)-admissible interpolation set. For any state-space
realization (A,B,C) of T (s), we associate with the right tangential interpolation set
Ir the generalized controllability matrix CA,B(Ir) by the following equations:

CA,B(zα, βα)
.
=

[
µ(zα, 1) . . . µ(zα, βα)

]
,(3.11)

CA,B(Ir)
.
=

[
CA,B(z1, β1) . . . CA,B(zkleft

, βkleft
)
]
.(3.12)

Similarly, we define a generalized observability matrix OC,A with the left tangential
interpolation set Il:

OC,A(wα, δα)
.
=

⎡
⎢⎣

ν(wα, 1)
...

ν(wα, δα)

⎤
⎥⎦,OC,A(Il)

.
=

⎡
⎢⎣

OC,A(w1, δ1)
...

OC,A(wkright
, δkright

)

⎤
⎥⎦ .(3.13)

We associate with the tangential interpolation set I the generalized Loewner matrix
LT (s)(I) ∈ C

s(Il)×s(Ir) defined by

LT (s)(I)
.
= X(Il)OC,A(Il)CA,B(Ir)Y (Ir),(3.14)

where (A,B,C) is a minimal realization of T (s).
It is straightforward to verify then that LT (s)(I) does not depend on the particular

state space realization of T (s). Next, we derive a series of lemmas that are needed
for our main result in Theorem 3.10.
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Lemma 3.4. If zα �= wγ and both interpolation points are finite,

OC,A(zα, βα)CA,B(wγ , δγ)

=
1

wγ − zα
OC,A(zα, βα)

([
B 0 . . . 0

]
− CA,B(wγ , δγ)J0,δγ ,m

)

+
1

zα − wγ

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

C
0
...
0

⎤
⎥⎥⎥⎦− JT

0,βα,pOC,A(zα, βα)

⎞
⎟⎟⎟⎠ CA,B(wγ , δγ).(3.15)

If zα �= wγ and zα is infinite, then

OC,A(zα, βα)CA,B(wγ , δγ)

=

⎡
⎢⎢⎢⎣

C
0
...
0

⎤
⎥⎥⎥⎦ CA,B(zα, δα) − JT

0,βα
OC,A(zα, βα)CA,B(wγ , δγ)J0,δγ ,m(3.16)

−wγJ
T
0,βOC,A(zα, βα)CA,B(wγ , δγ) + JT

0,βα
OC,A(zα, βα)

[
B 0 . . . 0

]
.

Proof. We first prove (3.15). Recall that if α �= β ∈ C, then

(αI −A)−1(βI −A)−1 =
1

β − α
(αI −A)−1 +

1

α− β
(βI −A)−1.(3.17)

This permits us to write that

OC,A(zα, βα)CA,B(wγ , δγ)

=

⎡
⎢⎣

C(zαI −A)−1

...
C(zαI −A)−βα

⎤
⎥⎦ [

(wγI −A)−1B . . . (wγI −A)−δγB
]

(3.18)

=
1

wγ − zα

⎡
⎢⎣

C(zαI −A)−1

...
C(zαI −A)−βα

⎤
⎥⎦ [

(B . . . (wγI −A)−δγ+1B
]

(3.19)

+
1

zα − wγ

⎡
⎢⎣

C
...

C(zαI −A)−βα+1

⎤
⎥⎦ [

(wγI −A)−1B . . . (wγI −A)−δγB
]
.

This last equation is equal to (3.15). This concludes the proof for the finite case.
Next, consider the case zα = ∞. The proof is similar but uses the following

equality:

A(λI −A)−1 = −I + λ(λI −A)−1.(3.20)
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This permits us to write that

OC,A(zα, βα)CA,B(wγ , δγ)

=

⎡
⎢⎣

C
...

CAβα−1

⎤
⎥⎦ [

(wγI −A)−1B . . . (wγI −A)−δγB
]

(3.21)

=

⎡
⎢⎢⎢⎣

C
0
...
0

⎤
⎥⎥⎥⎦ CA,B(wγ , δγ) − JT

0,βα
OC,A(zα, βα)(A− wγI + wγI)CA,B(wγ , δγ)(3.22)

=

⎡
⎢⎢⎢⎣

C
0
...
0

⎤
⎥⎥⎥⎦ CA,B(wγ , δγ) − wγJ

T
0,βα

OC,A(zα, βα)CA,B(wγ , δγ)(3.23)

+ JT
0,βα

OC,A(zα, βα)
([
B 0 . . . 0

]
− CA,B(wγ , δγ)J0,δ

)
.

This last term is equal to the right-hand side of (3.16).
To prove Theorem 3.10, we need the important result that the matrix LT̂ (s)(I) is

invariant for any matrix T̂ (s) interpolating T (s) at I (for which I is T̂ (s)-admissible).
However, to show this result, we need the following lemmas.

Lemma 3.5. Let T (s) = C(sI −A)−1B and T̂ (s) = Ĉ(sI − Â)−1B̂ be two p×m
strictly proper transfer functions. Let Il be a left interpolation set that is T (s)- and
T̂ (s)-admissible. Then, T̂ (s) interpolates T (s) at Il if and only if

X(Il)OĈ,Â(Il)B̂ = X(Il)OC,A(Il)B.(3.24)

Proof. Because of the diagonal structure of X, if we prove (3.24) for one diagonal
block of X, say for instance Xα, we prove it for the entire equation (3.24). So we con-
sider the block associated with Xα, and we drop Il from xα(s), Xα,OC,A(Il),OĈ,Â(Il)
to make the notation simpler. In other words, we consider the case where there is
only one vector x(s) of degree β − 1 associated with one interpolation point z in the
left interpolation set Il. We assume that z is finite (appropriate change must be made
for the case z = ∞). We have to show that (1.5) is satisfied if and only if

XOĈ,ÂB̂ = XOC,AB.(3.25)

We can write that

T (s) =
+∞∑
i=0

C(zI −A)−i−1B(z − s)i, T̂ (s) =

+∞∑
i=0

Ĉ(zI − Â)−i−1B̂(z − s)i.(3.26)

Equation (1.5) says that x(s) is a left zero of T (s) − T̂ (s). This means that the first
β Taylor coefficients of x(s)(T (s) − T̂ (s)) at s = z are zero. In other words, for all
1 ≤ i ≤ β, the following equation must be satisfied:

i−1∑
k=0

x[k]Ĉ(zI − Â)i−kB̂ =

i−1∑
k=0

x[k]C(zI −A)i−kB,(3.27)

and this equation turns out to be exactly the ith row of (3.25).
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Analogously, for the right interpolation conditions, we have the following lemma.
Lemma 3.6. Let T (s) = C(sI −A)−1B and T̂ (s) = Ĉ(sI − Â)−1B̂ be two p×m

strictly proper transfer functions. Let Ir be a right interpolation set that is T (s)- and
T̂ (s)-admissible. Then, T̂ (s) interpolates T (s) at Ir if and only if

ĈCÂ,B̂Y = CCA,BY.(3.28)

The proof is similar to the proof of Lemma 3.5.
Lemma 3.7. Let T (s) = C(sI −A)−1B and T̂ (s) = Ĉ(sI − Â)−1B̂ be two p×m

strictly proper transfer functions. Let I = {Il, Ir} be an interpolation set that is T (s)-
and T̂ (s)-admissible. If T̂ (s) interpolates T (s) at I and then, for every pair of indices
α, γ such that zα = wγ = ξ, (where ξ is finite),

XαOĈ,Â(zα, βα)CÂ,B̂(wγ , δγ)Yγ = XαOC,A(zα, βα)CA,B̂(wγ , δγ)Yγ ;(3.29)

and for every pair of indices α, γ such that zα = wγ = ξ, (where ξ = ∞),

XαOĈ,Â(zα, βα)ÂCÂ,B̂(wγ , δγ)Yγ = XαOC,A(zα, βα)ACA,B(wγ , δγ)Yγ .(3.30)

Proof. We consider the finite case. To simplify the notation, we drop the sub-
scripts α, γ. Let us choose two integers f, g such that 1 ≤ f ≤ β and 1 ≤ g ≤ δ.

Condition 3 of Definition 1.3 applied to x(s) = x
(f)
α (s) and y(s) = y

(g)
γ (s) says that the

f + g first derivatives of x(f)(s)(T (s) − T̂ (s))y(g)(s) at s = ξ are zero. The condition
corresponding to the derivative of highest order is

1

(f + g − 1)!

df+g−1

dsf+g−1
{x(f)(s)T̂ (s)y(g)(s)}

∣∣∣
s=ξ

=

f−1∑
k=0

g−1∑
l=0

x[k]C(ξI −A)k+l−f−gBy[l](3.31)

=

f−1∑
k=0

g−1∑
l=0

(x[k]C(ξI −A)k−f )((ξI −A)l−gBu[l])(3.32)

= (XOC,ACA,BY )f,g .(3.33)

Thus, (3.29) is a consequence of the interpolation conditions. The proof is similar for
the infinite interpolation point.

Equations (3.25), (2.20), (3.29), and (3.30) are just a matrix version of the in-
terpolation conditions of Definition 1.3. We now proceed to prove that (3.25) and
(2.20) imply as well that XOĈ,ÂCÂ,B̂Y = XOC,ACA,BY and XOĈ,ÂÂCÂ,B̂Y =
XOC,AACA,BY , provided the two-sided interpolation condition 3 of Definition 1.3
is added for every pair zα = wγ . This may seem surprising but it is a simple con-
sequence of Lemma 3.7 when zα�=wγ and follows from the two-sided condition when
zα = wα.

Lemma 3.8. If the strictly proper transfer function T̂ (s) = Ĉ(sI−Â)−1B̂ interpo-
lates T (s) at I = {Il, Ir} (where the interpolation set I is T (s)- and T̂ (s)-admissible),
then

XOĈ,ÂCÂ,B̂Y = XOC,ACA,BY.(3.34)
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Proof. The proof will be done block by block. If zα = wγ = ξα,γ and ξα,γ is finite,
the proof follows from Lemma 3.7. Let us consider the case ξα,γ infinite.

XαOC,A(zα, βα)CA,B(wγ , δγ)Yγ

= XαOC,A(zα, βα)
[
B . . . Aδγ−1

]
⎡
⎢⎢⎣
y
[0]
γ . . . y

δγ−1
γ

. . .
...

y
[0]
γ

⎤
⎥⎥⎦(3.35)

= XαOC,A(zα, βα)B
[
y[0]
γ . . . yδγ−1

γ

]
(3.36)

−XαOC,A(zα, βα)ACA,B(wγ , δγ)YγJ0,δ(3.37)

= XαOĈ,Â(zα, βα)CÂ,B̂(wγ , δγ)Yγ .(3.38)

Second, we suppose that

zα �= wγ .(3.39)

We assume that zα and wγ are finite. The idea is to recursively use (3.15). We want
to show that

XαOĈ,Â(zα, βα)B̂ = XαOC,A(zα, βα)B(3.40)

and

ĈCÂ,B̂(wγ , δγ)Yγ = CCA,B(wγ , δγ)Yγ(3.41)

imply

XαOĈ,Â(zα, βα)CÂ,B̂(wγ , δγ)Yγ = XαOC,A(zα, βα)CA,B(wγ , δγ)Yγ .(3.42)

We drop again α, γ, (zα, βα), (wγ , δγ) to simplify the notation.

XOC,ACA,BY =
1

w − z
XOC,A

([
B 0 . . . 0

]
− CA,BJ0,δ,m

)
Y

+
1

z − w
X

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

C
0
...
0

⎤
⎥⎥⎥⎦− JT

0,β,pOC,A

⎞
⎟⎟⎟⎠ CA,BY(3.43)

=
1

w − z

[
XOC,AB 0 . . . 0

]
Y +

1

z − w
X

⎡
⎢⎢⎢⎣

CCA,BY
0
...
0

⎤
⎥⎥⎥⎦

− 1

w − z
XOC,ACA,BY J0,δ −

1

z − w
J0,βXOC,ACA,BY .(3.44)

From Lemmas 3.5 and 3.6 we deduce

1

w − z

[
XOĈ,ÂB̂ 0 . . . 0

]
Y =

1

w − z

[
XOĈ,ÂB̂ 0 . . . 0

]
Y,(3.45)

1

z − w
X

⎡
⎢⎢⎢⎣

CCA,BY
0
...
0

⎤
⎥⎥⎥⎦ =

1

z − w
X

⎡
⎢⎢⎢⎣

ĈCÂ,B̂Y

0
...
0

⎤
⎥⎥⎥⎦ .(3.46)
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By using a recursive argument, it can be shown that

XOC,ACA,BY J0,δ = XOĈ,ÂCÂ,B̂Y J0,δ,(3.47)

J0,βXOC,ACA,BY = J0,βXOĈ,ÂCÂ,B̂Y.(3.48)

Finally, we have to consider the case with one infinite interpolation point, say for
instance zα = ∞ and the other point wγ finite. This can be treated similarly by
recursively using (3.16).

Lemma 3.9. If the strictly proper transfer function T̂ (s) = Ĉ(sI − Â)−1B̂ inter-
polates T (s) at I = {Il, Ir} and I is T (s)- and T̂ (s)-admissible, then

XOĈ,ÂÂCÂ,B̂Y = XOC,AACA,BY.(3.49)

Proof. We recall that

ACA,BY =
[
ACA,B(w1, δ1)Y1 . . . ACA,B(ws, δs)Ys

]
.(3.50)

The proof will again be done block by block. Let us prove it for the block of CÂ,B̂(Ir)Y
corresponding to wγ . Two cases must be considered.

Assuming that wγ is finite yields

ACC,A(wγ , δγ)Yγ

= (A− wγI + wγI)CC,A(wγ , δγ)Yγ(3.51)

= −
[
B . . . (wγIN −A)−δγ+1B

]
Yγ + wγCC,A(wγ , δγ)Yγ(3.52)

= −B
[
y[0] . . . y[δγ−1]

]
+ CC,A(wγ , δγ)YγJwγ ,δγ .(3.53)

This allows us to write that

XOĈ,ÂÂCÂ,B̂(wγ , δγ)Yγ

= XOĈ,Â(−B̂[y[0] . . . y[δγ−1]] + CÂ,B̂(wγ , δγ)YγJwγ ,δγ )(3.54)

= XOC,A(−B[y[δγ−1] . . . y[0]] + CA,B(wγ , δγ)YγJwγ ,δγ )(3.55)

= XOC,AACA,B(wγ , δγ)Yγ ,(3.56)

where the first part of (3.55) is a consequence of Lemma 3.5 and the second part of
(3.55) is a consequence of Lemma 3.7.

Second, assume that wγ = ∞. Two cases must be considered. If zα is finite, then
the proof is done by transposing the preceding results. If ξα,γ = ∞, then this follows
from Lemma 3.7.

Putting together the preceding results, we obtain the following theorem that gives
the main result of the section.

Theorem 3.10. Let (C1, A1, B1) be a minimal state space realization of the
strictly proper transfer function T1(s) and (C2, A2, B2) be a minimal state space
realization of the strictly proper transfer function T2(s). Let the interpolation set
I = {Il, Ir} be T1(s)- and T2(s)-admissible (i.e., the interpolation points are neither
poles of T1(s) nor T2(s)). Then, T1(s) interpolates T2(s) at I if and only if the fol-
lowing equations are satisfied:

C1CA1,B1(Ir)Y (Ir) = C2CA2,B2(Ir)Y (Ir),(3.57)

X(Il)OC1,A1
(Il)B1 = X(Il)OC2,A2(Il)B2,(3.58)

X(Il)OC1,A1(Il)CA1,B1(Ir)Y (Ir) = X(Il)OC2,A2(Il)CA2,B2(Ir)Y (Ir),(3.59)

X(Il)OC1,A1(Il)A1CA1,B1(Ir)Y (Ir) = X(Il)OC2,A2(Il)A2CA2,B2(Ir)Y (Ir).(3.60)
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Proof. The proof follows from the preceding results.

4. The multipoint Padé reduced order transfer function. In this section,
we give a practical way of constructing a minimal state space realization of the trans-
fer function of minimal McMillan degree that interpolates T (s) at the interpolation
set I when the corresponding Loewner matrix LT (s)(I) is invertible. The interpo-
lating transfer function of minimal McMillan degree will be called the multipoint
Padé reduced order transfer function T̂MP (s). A minimal state space realization
(ĈMP , ÂMP , B̂MP ) of T̂MP (s) will be obtained by a projection technique. More pre-
cisely, the state space realization (ĈMP , ÂMP , B̂MP ) will be constructed by project-
ing a minimal state space realization (C,A,B) of T (s) with two projecting matrices
Z, V ∈ C

N×n as follows:

ĈMP = CV, ÂMP = ZTAV, B̂MP = ZTB, ZTV = In.

It will be shown that the projecting matrices Z, V can be obtained by solving Sylvester
equations.

In order to prove these facts, we first introduce two new pairs of matrices. Let
us consider the left tangential interpolation set Il defined in (1.13). For any integer

α such that 1 ≤ α ≤ kleft, define the matrices (L
(l)
α , L

(r)
α ) as follows:

1. If the interpolation point zα is finite, then take

L(l)
α

.
= Iβα , L(r)

α
.
= JT

zα,βα
.(4.1)

2. If the interpolation point zα is infinite, then define

L(l)
α

.
= −JT

0,βα
, L(r)

α
.
= Iβα

.(4.2)

Moreover, define the matrix Xα as follows:

Xα =

⎡
⎢⎢⎣

x
[0]
α

...

x
[βα−1]
α

⎤
⎥⎥⎦.(4.3)

Finally, define the matrices L(l)(Il), L
(r)(Il), and X (Il) as follows:

L(l)(Il)
.
= diag{L(l)

α }kleft

α=1 , L(r)(Il)
.
= diag{L(r)

α }kleft

α=1 ,(4.4)

X (Il)
.
=

⎡
⎢⎣

X1

...
Xkleft

⎤
⎥⎦.(4.5)

Let us consider the right tangential interpolation set Ir defined in (1.16). For any

integer α such that 1 ≤ α ≤ kright, define the matrices (R
(l)
α , R

(r)
α ) as follows:

1. If the interpolation point wα is finite, then take

R(l)
α

.
= Iδα , R(r)

α
.
= Jwα,δα .(4.6)

2. If the interpolation point wα is infinite, then define

R(l)
α

.
= −J0,δα , R(r)

α
.
= Iδα .(4.7)
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Moreover, define

Yα
.
=

[
y[0]
α . . . y[δα−1]

α

]
.(4.8)

Finally, define the matrices R(l)(Ir), R
(r)(Ir), and Y(Ir) as follows:

R(l)(Ir)
.
= diag{R(l)

α }kright

α=1 , R(r)(Ir)
.
= diag{R(r)

α }kright

α=1(4.9)

Y(Ir)
.
=

[
Y0 . . .Ykright

]
.(4.10)

As a consequence of these definitions we have

L(l)L(r) = L(r)L(l), R(l)R(r) = R(r)R(l)(4.11)

and we can now derive the following lemma that introduces the related Sylvester
equations.

Lemma 4.1. Let (A,B,C) be a state-space realization of the transfer function
T (s). Let us consider a T (s)-admissible interpolation set I = {Il, Ir}. Then,

N = CA,B(Ir)Y (Ir) ⇐⇒ ANR(l)(Ir) −NR(r)(Ir) + BY(Ir) = 0,(4.12)

M = X(Il)OC,A(Il) ⇐⇒ L(l)(Il)MA− L(r)M + XC = 0.(4.13)

Proof. Let us prove (4.12) for only one interpolation condition Ir = {(w, y(s))}
at a finite point w.

ANR(l)(Ir) −NR(r)(Ir) + BY(Ir) = 0

⇐⇒ A
[
n1 . . . nk

]
−
[
n1 . . . nk

]
Jw,k

+B
[
y[0] . . . y[k−1]

]
= 0.(4.14)

Let us solve this linear equation for N column by column from n1 up to nk. We find
recursively that

(wI −A)n1 = By[0](4.15)

(wI −A)ni+1 = By[i] + ni.(4.16)

Moreover, the matrix wI − A is invertible because we always assume here that the
interpolation set I is T (s)-admissible. This proves that N = CA,B(Ir)Y (Ir) for one
finite interpolation condition Ir = {(w, y(s))}.

Let us prove (4.12) for only one interpolation condition Ir = {(w, y(s))} at an
infinite point w = ∞.

ANR(l)(Ir) −NR(r)(Ir) + BY(Ir) = 0

⇐⇒ A
[
n1 . . . nk

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . 1
0 . . . . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−
[
n1 . . . nk

]
+ B

[
y[0] . . . y[k−1]

]
= 0.(4.17)
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Again, by solving this equation column by column we find that N = CA,B(Ir)Y (Ir)
for one interpolation condition Ir = {(∞, y(s))}. If the interpolation set Ir contains
more than one pair, say kr pairs, because of the block diagonal structure of R(l), R(r)

and Y (Ir), and the block structure of Y(Ir), we can split the columns of N into kr
blocks and prove the result for each pair (wγ , yγ(s)) ∈ Ir in order to prove that

N =
[
N1 . . . Nkr

]

=
[
CA,B (w1, y1(s))Y (w1, y1(s)) . . . CA,B (wkr

, ykr
(s))Y (wkr

, ykr
(s))

]

= CA,B(Ir)Y (Ir).(4.18)

The main result of this paper can now be formalized.
Theorem 4.2. Consider a transfer function T (s) and a T (s)-admissible tangen-

tial interpolation set I and assume that the corresponding Loewner matrix LT (s)(I) ∈
C

n×n is invertible. Define then two invertible matrices M,N ∈ C
n×n such that

LT (s)
.
= XOC,ACA,BY = MN,(4.19)

and define the “multipoint Padé” reduced order transfer function T̂MP (s) via its state
space realization {ÂMP , B̂MP , ĈMP } given by the equations

ĈMPN = CCA,BY,(4.20)

MB̂MP = XOC,AB,(4.21)

MÂMPN = XOC,AACA,BY.(4.22)

If the interpolation points are not poles of T̂MP (s), i.e., if the interpolation set I
is T̂MP (s)-admissible, then T̂MP (s) interpolates T (s) at I. Moreover, T̂MP (s) is the
unique transfer function of McMillan degree s(Il) = s(Ir) that interpolates T (s) at I
and there exists no such transfer function of lower McMillan degree.

Proof. First, note that it is always possible to find a couple of invertible matrices
M,N that satisfy (4.19) because of the invertibility of LT (s)(I). Second, it can be

verified that T̂MP (s) is uniquely defined and does not depend on the particular choice
of matrices M,N satisfying (4.19).

The proof consists of showing that M = X(Il)OĈMP ,ÂMP
(Il) and that N =

CÂMP ,B̂MP
(Ir)Y (Ir). From the preceding results, it is equivalent to show that M and

N are solutions of the Sylvester equations of Lemma 4.1. First, from (4.19)–(4.22)
and Lemma 4.1, we have

ÂMPNR(l) −NR(r) + B̂MPY
= M−1XOC,A(ACA,BY R(l) − CA,BY R(r) + BY) = 0.(4.23)

This implies also from Lemma 4.1 that N = CÂMP ,B̂MP
(Ir)Y (Ir). Analogously, M =

X(Il)OĈMP ,ÂMP
(Il). The proof follows now from Proposition 3.10. Indeed, (4.20) is

equivalent to saying that the right tangential interpolation conditions are satisfied,
(4.21) corresponds to the left tangential equations and (4.19) and (4.22) are equivalent
to the two-sided interpolation conditions. Hence, T̂MP (s) interpolates T (s) at I.

We have still to prove that T̂MP (s) is the unique transfer function of McMillan
degree n that satisfies the interpolation conditions with respect to T (s), and that
there exist no transfer function of McMillan degree smaller than n that satisfies the
interpolation conditions. To do this, first assume that there exists T̂ (s) of McMillan
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degree k < n that satisfies the interpolation conditions. Let (Ĉ, Â, B̂) be a minimal
state space realization of T̂ (s). Clearly,

rank CÂ,B̂(Ir)Y (Ir) ≤ rank CÂ,B̂(Ir) = rankContr(Â, B̂) = k < n.(4.24)

From the interpolation conditions, we must have that LT (s)(I) = LT̂ (s)(I). This
implies that

n = rankLT (s)(I) = rankLT̂ (s)(I) ≤ k.(4.25)

This proves that it is not possible to find an interpolating transfer function of McMillan
degree smaller than n.

If we assume that there exists another interpolating transfer function T̂ (s) of
McMillan degree n, it is not difficult to verify that the procedure given for construct-
ing a minimal state space realization (Ĉ, Â, B̂) of T̂ (s) will produce a state space
realization that is similar to (ĈMP , ÂMP , B̂MP ). This implies that T̂ (s) = T̂MP (s)
and concludes the proof.

By inverting the matrices M and N into (4.19)–(4.22), if we define

ZT = M−1XOC,A, V = CA,BY N−1,(4.26)

we see that

ZTV = In, CV = ĈMP , ZTB = B̂MP , ZTAV = ÂMP .(4.27)

5. Concluding remarks. An important result that has not been considered
in this paper is the following. Assume that a reduced order transfer function T̂1(s)
has been constructed that interpolates the original transfer function T (s) at the in-
terpolation set I1 with the projecting matrices Z1 and V1. If one wants to add new
interpolation conditions, say I2, all that we have to do is to compute the generalized
Krylov subspaces corresponding to the new interpolation set I2 and to construct new
projecting matrices Z2, V2 that contain, respectively, the column span of Z1 and V1

and the new, respectively, left and right generalized Krylov subspaces.
Another important result that can easily be derived is that we only need the pro-

jecting matrices Z, V to contain some subspaces, but they can contain other subspaces
as well! For instance, Theorem 4.2 can be generalized as follows.

Theorem 5.1. Consider a transfer function T (s)
.
= C(sI − A)−1B and a T (s)-

admissible tangential interpolation set I
.
= {Il, Ir}. Let us assume that the projecting

matrices Z, V (such that ZTV = In) are such that

Colsp(V ) ⊇ Colsp (CA,B(Ir)Y (Ir)) ,

Colsp(ZT ) ⊇ Colsp
(
OT

C,A(Il)X
T (Il)

)
.

Then, if the interpolation point of I are not poles of T̂ (s)
.
= CV (sIn−ZTAV )−1ZTB,

the transfer function T̂ (s) interpolates T (s) at I.
It should also be pointed out that this Krylov technique can easily be extended

to generalized state space systems, also called descriptor systems.
Finally, we have shown that the projecting matrices Z, V , constructed in order

to compute a state space realization of T̂MP (s), are solutions of Sylvester equations.
Actually, it can be shown that, generically, constructing a reduced order transfer
function with projecting matrices that are solutions of a Sylvester equation with
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respect to a state space realization of the original transfer function is equivalent to
solving a particular tangential interpolation problem. We refer to [10] for results in
this direction.

Appendix.
Lemma A.1. Let T (s) and T̂ (s) be two strictly proper p×m transfer functions.

T̂ (s) tangentially interpolates T (s) at I with respect to Definition 1.3 if and only if
the three following conditions are satisfied:
for all finite zα, 1 ≤ α ≤ r, for any 1 ≤ i ≤ βα:

di−1

dsi−1

{
xα(s)(T (s) − T̂ (s))

}∣∣∣
s=zα

= 0;(A.1)

for all zα = ∞, 1 ≤ α ≤ r,

xα(s)(T (s) − T̂ (s)) = O(s−1)βα+1;(A.2)

for all finite wα, 1 ≤ α ≤ s, for any 1 ≤ i ≤ δα,

di−1

dsi−1

{
(T (s) − T̂ (s))yα(s)

}∣∣∣
s=wα

= 0;(A.3)

for all wα = ∞, 1 ≤ α ≤ s,

(T (s) − T̂ (s))yα(s) = O(s−1)δα+1;(A.4)

for all finite ξα,γ , for all f = 1, . . . , βα, g = 1, . . . , δγ ,

df+g−1

dsf+g−1

{
x(f)
α (s)(T (s) − T̂ (s))y(g)

γ (s)
}∣∣∣

s=ξα,γ

= 0;(A.5)

for all infinite ξα,γ , the coefficient e[f+g] of s−f−g of the product

x(f)
α (s)(T (s) − T̂ (s))y(g)

γ (s)
.
=

+∞∑
k=1

e[k]s−k(A.6)

is zero, where f = 1, . . . , βα; g = 1, . . . , δγ .
Proof of Lemma A.1. It is easy to see that the left tangential interpolation con-

ditions (A.1)–(A.2) and condition 1 of Definition 1.3 are equivalent. For the same
reasons, the right tangential interpolation conditions (A.3)–(A.4) and conditions 2 of
Definition 1.3 are equivalent. Moreover, it is not difficult to see that the two-sided
tangential interpolation condition 3 of Definition 1.3 implies conditions (A.5)–(A.6).
The proof will be completed by showing that conditions (A.1)–(A.6) imply conditions
1, 2, and 3 of Definition 1.3.

Let us first consider the case with a finite left and right interpolation point z ∈ C.
As usual, we assume that this point is admissible for T (s) and T̂ (s); i.e., it is neither
a pole of T (s) nor a pole of T̂ (s). So, we assume that we are given two polynomial
vectors x(s) and y(s) of respective degree β − 1 and δ − 1 such that

x(s)(T (s) − T̂ (s)) = O(s− z)β , x(z) �= 0,(A.7)

(T (s) − T̂ (s))y(s) = O(s− z)δ, y(z) �= 0,(A.8)
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and for all 1 ≤ f ≤ β, 1 ≤ g ≤ δ,

df+g−1

dsf+g−1

∣∣∣
{
x(f)(s)(T (s) − T̂ (s))y(g)(s)

}∣∣∣
s=z

= 0.(A.9)

We want to prove that this implies for all 1 ≤ f ≤ β, 1 ≤ g ≤ δ,

x(f)(s)(T (s) − T̂ (s))y(g)(s) = O(s− z)f+g.(A.10)

By using Lemma 3.7, (A.10) is equivalent to the equation

XOC,ACA,BY = XOĈ,ÂCÂ,B̂Y.(A.11)

The proof will be completed if we show that for all 1 ≤ f ≤ β, 1 ≤ g ≤ δ, for all
integer k such that 1 ≤ k ≤ f + g − 1, the derivative

df+g−k−1

dsf+g−k−1

{
x(f)(s)(T (s) − T̂ (s))y(g)(s)

}∣∣∣
s=z

= 0.(A.12)

Let us first verify (A.12) for k = 1. First, straightforward calculation gives

df+g−2

dsf+g−2

{
x(f)(s)T (s)y(g)(s)

}∣∣∣
s=z

=

f−1∑
k=0

g−1∑
l=0

x[k]C(zI −A)k+l−f−g+1By[l](A.13)

=

f−1∑
k=0

g−1∑
l=0

(x[k]C(zI −A)k−f )(zI −A)((zI −A)l−gBy[l])(A.14)

= (XOC,A(zI −A)CA,BY )f,g .(A.15)

From Lemmas 3.7 and 3.9,

(XOC,A(zI −A)CA,BY ) = (XOĈ,Â(zI − Â)CÂ,B̂Y ).(A.16)

This concludes the proof for the case k = 1. Now, we assume that for all 1 ≤ f ≤ β
and 1 ≤ g ≤ δ, and for all 0 ≤ r ≤ min(k, f + g − 1),

df+g−r−1

dsf+g−r−1

{
x(f)(s)(T (s) − T̂ (s))y(g)(s)

}∣∣∣
s=z

= 0,(A.17)

and we want to prove that (A.17) is still true for r = min(k + 1, f + g − 1). So, we
choose 1 ≤ f ≤ β and 1 ≤ g ≤ δ such that f + g− 1 ≥ k+ 1. We obtain the following
equations:

df+g−k−2

dsf+g−k−2

{
x(f)(s)(T (s) − T̂ (s))y(g)(s)

}∣∣∣
s=z

=
df−1+g−k−1

dsf−1+g−k−1

{
x(f−1)(s)(T (s) − T̂ (s))y(g)(s)

}∣∣∣
s=z

(A.18)

+
df−1+g−k−1

dsf−1+g−k−1

{
(z − s)f−1x[f−1](T (s) − T̂ (s))y(g)(s)

}∣∣∣
s=z

.(A.19)

By the recursive argument,

df−1+g−k−1

dsf−1+g−k−1

{
x(f−1)(s)(T (s) − T̂ (s))y(g)(s)

}∣∣∣
s=z

= 0.(A.20)
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Moreover, we know from (A.3) that

(T (s) − T̂ (s))y(g)(s) = O(z − s)g.(A.21)

This implies that

df+g−k−2

dsf+g−k−2

{
x(f)(s)(T (s) − T̂ (s))y(g)(s)

}∣∣∣
s=z

= 0.(A.22)

The case at infinity can be treated in a similar way.
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