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Abstract

Analytic expressions are derived for the complex and real stability radii of non-monic poly-
nomial matrices with respect to an arbitrary stability region of the complex plane. Numerical
issues for computing these radii for different perturbation structures are also considered with
application to robust stability of Hurwitz and Schur polynomial matrices. © 2002 Elsevier
Science Inc. All rights reserved.
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1. Introduction

The robustness issue is a crucial problem for the application of control theory; for
example, one of the basic goals of feedback control is to enhance system robustness
(see [4]). Robust stability is also an important topic in linear algebra [2,20] as well
as in numerical analysis [19].

A fundamental problem in robustness analysis is to determine the ability of a
system matrix to maintain its stability under a certain class of perturbations. A natural
robustness measure is ttistanceof a stable system = Ax to theset of unstable
system®f the same form and dimension. The idea of Hinrichsen and Pritchard [9],
defining the stability radius as the distance to instability, has proved to be very fruitful
in stimulating a large amount of research and in establishing interesting connections
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(see [7,17,21]). In many applications, it is more convenient to deal with the charac-
teristic polynomial of the closed-loop matrix, as for instance in the single-input or
single-output cases (see [3]). A desired property of the (closed-loop) characteristic
polynomial is that all its roots are located in a pre-specified, “good” area of the
complex planeCy C C. Let K be either the real fiel® or the complex field”. A
polynomial in the complex variable,

PO =po+pir+--+prk, p#0 pek, i=0k,

is said to beCgy-stable (or simply stable) if all its roots are located in the stability
regionCgy. A natural stability robustness measure is the distancestdlaepolyno-
mial p(1) to the set ounstablepolynomials. The stability radius gf(1) is defined

as thenormof the smallest perturbation

Sp(h) = 8po+Spih + - -+ dpirk,  Spi € K, i =0k,

needed to “destabilizep (1), i.e. forcing at least one root gf(,) + Sp (1) to leave
the “good” region. The norm of the perturbations will be measured with the help of
the norm of a constant matrix (or vector), depending on the polynaipial).

A current research problem is to extend the stability radii theory to systems de-
scribed by equations other than ordinary differential ones. In this respect, the main
theme of the present paper is to address the robust stability problem of time-invariant
linear systems described by higher order differential or difference equations of the
form

dx (1) dkx (1)

Po+P1——+---+ P =0, reR4, 1
o+ Pr—g =+t Py + (1)

or
Po+Pix(t+1D)+---+ Px(t+k)y=0, teZy, (2)

whereP; € K"*". Such systems appear frequently in mechanical engineering. Clas-
sically, associated with the systems (1) or (2) is the polynomial matrix

PO = Py+ Pih+--+ PAK,  Pe K™, i =0k,

that is assumed to be square invertible and to have zeros—i.e. the roots of the poly-
nomial detP (1)—inside a given regioiCy C C. By extending the stability notion
introduced for polynomialsP (1) is said to beCgy-stable (or just stable) if all its
zeros are located in the stability regi@yg. Similarly, a robust stability measure can

be defined as theormof the smallest “destabilizing” perturbation

SP(A) =8Pg+ 8P+ -+ 8Pk, sP e K™, i =0:k.

Again, the norm of the perturbations will be measured via the norm of a constant
matrix 4, depending on the coefficients &P (). A detailed problem formulation
will be given in Section 3. It will be shown that the structuredadtrongly influences
the computation of the different stability robustness measures.

Thecomplexstability radius theory of polynomial matrices has been investigated
by Pappas and Hinrichsen in [16]. They have analyzed the monic case only, but
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including structured perturbations of the coefficients; moreover, they have obtained
computable formulas for different perturbation structures and for arbitrary norms.

The paper is organized as follows. Section 2 is devoted to some prerequisites
concerning thetability radius Some particular aspects regarding the scalar polyno-
mial case are emphasized in Section 3, in connection with the problem formulation
for different perturbation structures. In Section 4 we are treating the complex case,
considering Holder norms. Closed formulas for the real stability radii of polynomial
matrices are then derived in Section 6, with emphasis on the 2-norm case. As a result,
it is shown in Section 6 how both real and complex stability radii can be efficiently
computed for Hurwitz and Schur polynomial matrices. Some additional comments
on computational complexity conclude this section. Future research directions along
with some short remarks are finally indicated.

2. Preliminariesand basic results

Consider a partitioning of the complex plafizinto two disjoint setsCq and
Cp such thatCq is open and non-empt{; = C4 U Cp. Recall thatl  {C, R} and
consider the matrid e K"*" suchthat1(A) C Cy, thatis,Ais Cy-stable (or simply
stable). The two regions that are typically considereddgrare the open left half
planeC~ = {s € C : Res < 0} and the open unit dis® = {z € C : |z] < 1}. The
stability radiusof the matrixA, defined as

rk(A, Cg) i= Aeinf {141 : A(A + 4) N Cyp + 0}, (3)

Knxn

is the norm of the smallest perturbatidrforcing at least one eigenvalue af+ 4
to leave the “good” regiofiy. More details concerning this concept can be found in
[9,11].

The size of the perturbation matrike K"/ is measured by the induced operator
norm

[l Ax [l gm
4] = sup——— 4)
x#0 Xl
for arbitrary norms ori</ andiK”, respectively. In (3), = m = n.

Denote byE the real linear normed spacw, Il - ID- Any linear functional ork
can be associated with a vector belonging to the dull &* = (K, | - |p), where
thedual norm|| - ||p is defined by

|x*v]
lx|lp = max . 5
v#0 vl ©)

A vectory is said to be the dual of a vecterif |y*w| = ||ylp|lw].

The notation|| - ||, stands either for the Holdg-norm of any vector inkK",
Ixllp, =ity |x;|”)¥/?, or for the induced operator norm of any linear mép
K — K™, ||4 lp = supo ll4vllp/llvllp- The distinction will be clear from the con-
text. Note also that the dual norm pf ||, is | - |4, where ¥p + 1/g = 1. One has
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that|| 4|2 = 01(4), whereo1(U) denotes the largest singular value of the mdthix
in general, theth singular value ot will be written o; (U).

Remark 1 (see [9,11]). LetdCqy denote the boundary d@g. By continuity of the
spectrum of a matrix versus perturbations on its entries, it follows that the eigenvalue
“leaving” Cq for Cy, must actually lie on its boundag/Cy. Therefore

ri(A, Cg) =rk(A, 9Cg)

= inf ( inf {||A||:det(u—A—A)=o}>
g

Ar€0C AEK"'XI
= inf inf {||4]| : det — AT — A)"D) =
ot <Ae'[2mxz{” | - det ( )™ 0}), (6)

the last equality resulting from the stability of the initial matdx A — A is in-
vertible forx € 0Cq. Relation (6) shows that an important issue in stability radius
computation is to solve the following linear algebra problem: given a mafriz
Ccl*™ determine

inf {||A|| cdet] — AM) = 0}. )
Aekmx!

If both Mand 4 are complex (or real), then the following result holds for arbitrary
norms onk!, K™ (see also [11, Proposition 3.1]).

Lemma2. Forall M € K'*™ and any operator norm

inf {||4] : det — 4M) =0} = | M| (8)
AeKmxl

Moreover there exists always a rank otieptimal’ perturbation4qpt for which the
infimum in (8) is attained If v € K™ is a unit norm vector such thgtMv||,; =
| M]|, thendopt = [ M]|~1v uly, whereuy is the dual of My J|ug| = 1.

When 4 is real andM is complex, the problem (7) is more involved. It can
be solved with the help of the following theorem, valid only for Euclidean norms
(p = 2). To our knowledge, there is no other available resultpgidtdlder norms.
Define the largesteal perturbation valugor thereal structured singular valyeof
M by

-1
ur(M) = [ inf ]{||A|| cdet(] — AM) = 0}} ., Mechm, 9)
AERWX

Notice thatug (M) = 0 if and only if there is nat such that dg/ — AM) = 0.
By introducing

GO := I — AL,
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one can deduce from relation (6), combined with (8) and (9), that

-1 -1
sup ||G()»)||} and rg(A,Cy) = |: sup MR(G(X))] :
1edCq A€dCq

rc(A, Cg) = [
(10)

The first equality in (10) has been proved in [9,11], while the second one is due to
[11,14]. For Euclidean norms, an explicit formula fog has been derived by Qiu
et al. in [14], and it is presented in Theorem 3. An alternative approach was pro-
posed by Hinrichsen and Pritchard in [11], considering arbitrary pairs of norms, but
it proved to be effective for the rank one case only (and in particular whenl
or [ = 1). Further, both approaches will be reviewed hereafter with emphasis on
properties specifically relevant to our treatment.

For any complex matrix (vector, scala¥j € C'*™, let M, € R'*™, M, € R™*™
denote its real and imaginary parts, respectively, thaf is- M, +jM,. Associate
to M the 2 x 2m real matrix depending on the real parametee (O, 1]:

e B el )

Then the following result holds.

Theorem 3[14]. LetM € C*™. Then
pur(M) = inf o2 (Ny(y)) (12)
y€(0,1]

and the function to be minimized on the right-hand sidd 8f is a unimodal function
on (0, 1].

The remarks below are due to Qiu et al. (see [14]).

Remark 4.

1. The minimization in (12) is quite easy sineg(-) has only one local minimum
which is also a global one, except when the infimum is attainegt fer 0.

2. The mapM — ur(M) is continuous almost everywhere. At its discontinuity
points one has necessarilf, = 0. This leads to a non-continuous function of
A which has also to be maximized on the boundary of the stability region, as
shown by (10). This is not a simple numerical problem; the question is discussed
in some detail in [18].

3. It can be shown thatr (M) = o1(M) if and only if the minimal value o is
attained fory = 1.

Remark 5. Assume that the optimum in (12) is attained for sopag: € (0, 1].
Then the “optimal” perturbation, i.e. the minimum norm real mattixsuch that
det(l — AM) = Q is given by
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d=oyl e vl w] (13)

u= [”x} and v = [v"]
uy Uy

are a pair of left and right singular vectors of the math; (yopy corresponding
t0 02,0pt, SUCh thatulu, = vlv,, uluy, = vlv, and u}uy = v)T,vy. We have used
AT to denote the Moore—Penrose (generalized) inverse of the nfatExcept for
special cases (for which we refer to [14] for more details), it follows from (13) that

rank4 = 2.

As already mentioned, there is an alternative method to determin@nd im-
plicitly rg), proposed by Hinrichsen and Pritchard (see [9,11]). Forany, € R™
anduq, u» € R, define the smallest operator norm of all linear maszR’ — R™
which takeu1, u2 ontovy, v as

B(uy, uzi vy, v2) = iﬂgf A1 s Auy = vy, Aup = v}, (14)
e mx

Note thats = oo if and only if there is nod such thatdug = v1, dus = vo.

If ||4]] = 01(4), a closed formula fo8 can be obtained on the basis of Theorem
4.3 in [11]. Furthermore, the following result holds for arbitrary pairs of norms on
R! andR™, respectively.

Proposition 6. LetM € C™*™, M = M, +jM,. Then

-1
M) = inf 8Mv—Mv,Mv~|—Mv;v,vi| . 15
nr(M) [(vx,v),);&(0,0) (M vy yVy, MxVy yUxs Ux y) (15)

Note that the right-hand sides of (12) and (15) are the same for Euclidean norms,
but, to our knowledge, there is rdirect proof of showing this equivalence in the
general case.

Let us end this section with some additional remarks. Recall&lwn be de-
termined explicitly in the case of Euclidean norms Bhand R”. However, this
approach does not yield an alternative computational scheng foruk: the com-
putational complexity of calculatingg or ur appears to be too high, due to the
optimization oveny, vy.

3. Problem formulation

Consider the polynomial matrix
P(A) = Po+ PiA+---+ PAX, P e K™, i =0k,
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and define the spectrum Bfas
A(P) = {xr e C:detP()) =0}.

The elements oft(P) are called theigenvaluesr zeros of P(1). We shall say that
P (1) is Cy-stable (or just stable) ifl(P) C Cq4 and callCy the stability region. The
typical regions chosen fdty are the open left complex half plane and the open unit
disc.

Let us assume thak (1) is Cy-stable,regular (i.e. detP (1) # 0) and thatP is
non-singular The stability radius of such polynomial matrices is the norm of the
smallest perturbation

SP(A) =8Pg+ 8P+ -+ 8Pk, 8P e K™, i =0k,

needed to “destabilizeP (1), and hence forcing at least one zeroRafr) + s P (1)
to leave the stability regiofty.
Assume that we measure the perturbations via some appropriate norm of a con-
stant matrix4 depending on the coefficients &P (1). Precise definitions off will
be given later. Then thetability radiusof P (1) with respect taCy has the expression

rk(P, Cq) = igf {141 : 31 € Cp st. detP(A) + 8P (1) = 0} (16)

By conventiornry, = +oo if there is nos P(1) such that d&tP (L) + § P (1)) = O for
somei € Cp. Let

detP(L) = auA™ + -+ + a1 + ao.

We rule out the case,; = detP, = 0. In order to see this, let us first deal with the
scalar case, wheR;, = p; € K.

We shall prove thatlurwitz stability radii problems are trivial if the leading coef-
ficient py is zero. Assume e.g. thal = px—1=--- = p;+1 = 0andp; # 0. It then
appears that the degr&epolynomial p(A) hask — [ zeros at infinity (to see this,
observe that the polynomiaf p(1/x) has a zero of multiplicitk — [ at x = 0).

In such a situation, there exist arbitrarily small perturbatigms p1, . . ., dpr such
that p(A) + Sp(1) has a zero in the unstable pé&rt C~ of the complex plane. For
example, choosép; = 0 for all i ##/ 4+ 1 andép;+1 = —ep; With € > 0 but arbi-
trarily small; then the zeros/% of the perturbed polynomial appear to be given by
the roots of the polynomial equation

K (= epr + pix 4+ proax® 4+ -+ pix! + pox!th) = 0. (17)
This polynomial has a zero of order— [ — 1 atx = 0, while its other zeros are the
solutions of—ep; + pix + - - - + pox!T1 = 0; in particular, they satisfy the relation
1
X =¢€- E(Pz—lxz + pr—2x® + -+ prx! + pox'™Y). (18)
For ¢ sufficiently small and in view of the polynomial zero continuity theorem, the

above equation has a solution of the foxma= € + ((¢?), arbitrary close ta& > 0
for e — 0. Therefore, the perturbed polynomial is unstable.
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To sum up, it appears that thitstance to instability of a polynomial with zero
leading coefficienis inherently zero. The same is true for matrix polynomials with
singular leading coefficient matrix; indeed, the above argument can be extended to
cover the matrix case without difficulty. It is left to the reader to verify that the
various formulas for the stability radii presented in this paper are coherent with this
property; for example, one find®; = 0 in (39) as expected in cagg}) is singular
at infinity. Let us finally note that the stability radii theory of polynomials can be
retrieved as a particular case of the stability radii theory of polynomial matrices.

Thus one can rewrite (16) as

ri(P, Cg) = igf {I4] : 31 € 9Cgy st. det(P (1) + 8P (1)) = 0}. (19)

For any polynomial matri¥ and for everyi,g € C introduce
vic(P, 2o) = inf {||4] : det(P (20) + 8P (20)) = O}, (20)
i.e.vk (P, L) is the norm of the smallest perturbation needed to make one eigenvalue
of P equal torg. From (19) and (20), one obtains
rk(P; Cg) = inf v (P, 1). (21)
A€8Cq

Therefore, the computation ofc(P, A) appears to be the key issue in evaluating
the stability radius oP. Moreover,v is involved as well in determining the real or
complexpseudospectraf polynomial matrices (see [8,12]).

Let us consider the following perturbation structures:

A1=[5PQ 8Pk],
8 P
Ap=|
| & Pk (22)
8 P
A3z =
L 8Py

The corresponding polynomial matrix perturbatfi(A) can be expressed, respec-
tively, as

!
Al
SPOy=M1| . |=[I A - AI]4
Akr
I
&I
=[r et - gt |, (23)
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where thet; € C are arbitraryg; + 0. For anya for which P (1) is invertible, intro-
duce

I
Al
M) = | . | P,
Akr
M) =P~ YW [1 A1 - A1, (24)
I
E1rl
M3 &) =] . |Pw[1 &gu - gl
E KT

By using the well-known equality det+ AB) = det(/ + BA), one can deduce
from (23) and (24) that

detP(\) +8P(L) =0 < det/ +5P() P71(0) =0
— det/ + P71 sP(1) =0
— det/ +4,M;(0)) =0, i=1,3. (25)

Let us check, for instance, (25) wheg= 2. One has
detP(\) +8P(L) =0 < det/ + P"1(1)P(1) =0
— det(l + P AL --- A1) =0
= det(] + M>(1)42) = 0.
Remark 7. The perturbation structure$; and 4, are dual to each other, because

solving the problem forl; yields automatically a solution fot, and hence for.
Henceforth, we shall restrict our discussionttpand As.

The following preliminary result holds.

Lemma8. The complex and real stability radil9) of the matrix polynomiaP (1)
with respect to the perturbation matrik are, respectivelygiven by

-1
re(P, Cg; A1) = inf M)~ = | sup |M1(M)]| (26)
1€dCq 1€dCq

and

-1
rg(P, Cg; A1) = Agg{jgu@l (M1(V) = Lsgg MR(Ml(/\))] : (27)
€olg
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Proof. Since P(1) is Cy4-stable, P (1) is invertible for anyx € 9Cqy, SO M1(1) is
well defined. For the perturbation structurgsg relation (20) reads
vic(P, A; A7) = iAnf {I141] : det(P(») + 8P (1)) = 0}.
1

In view of the equivalences in (25), the above equality can be transformed into
v (P, A3 A1) = iAnlf {lI41] : det + A1M1 (1)) = 0}, (28)

for any A for which P (1) is invertible. If I = C, Lemma 2 shows that
ve (P, As A1) = [Mi()| 7, (29)

and (26) follows automatically from (28) and (21). AnalogousljsiE R, it follows
from definition (9) that

ve(P, 4 A1) = gt (M1() . (30)
In view of (21), equality (27) holds as well.C]

Remark 9.
1. Using a similar argument, one can also deal wittucturedperturbations. As-
sume e.g. that the coefficients &P (1) are expressed &, = DAE;, i = 0:k,

whereD and E; are given, andi is the perturbation. LeE(X) := Eg + E1A +
.-« + ExAk. Itis not difficult to see that

det(P(L) + 8P(L) =0 < detl + AE(\)P~1(.)D) = 0.

Replacing nowM;(1) by E(A)P~1(1)D into (26) in Lemma 8, one retrieves
precisely Theorem 2.2 in [16] or Lemma 2.5 in [8].

2. One can expregsr(M1(1)) either via Theorem 3 (when considering Euclidean
norms) or via Proposition 6 (when considering arbitrary norms).

The problem4 = 43 is a constrained problem which is much more difficult to
solve due to the block diagonal structure 4§. Further, some upper and lower
bounds for the stability radius d? (1) will be given in the case wherd = 43 and
when consideringp-norms. These bounds are expressed in terms of the stability
radius determined in Lemma 8, by using the available structure and by choosing
appropriate scalais.

Lemmal0. Letvk(P, A; 4;),i =1, 3, be introduced as i30). Then for allx for
which P (1) is invertible the following inequalities hotd

(k+ 1) H9v(P, & A1) < vic(P, 4; A3)
<wk(P, A 41, 1/p+1l/g=1 (31)
Proof. The proof is very simple and left to the reader; it is based on the definition

of v combined with the following facts:
1. If I' = (diag(l';))i=1%, then
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111l p = max|[Iillp . (32)
i=1k
LUr=[I1T ... []e K™ Iy e K™ 1= Y% I;, then
max | Il < Il < K7 max|iFillp,  1/p+1/q =1. (33)

The inequalities are tight in the sense that they can be reached for parfigular
ielk. O

The following result is a direct consequence of equality (21) and of the previous
lemma.

Corollary 11. The following inequalities hold

(k 4+ 1)"Yiari(P; Cg; A1) <r(P; Cg; A3)
<r(P; Cg; 41), 1/p+1/qg=1 (34)

4. Complex stability radii

The aim of this section is to obtain a computable version of the formula (26) when
consideringp-Holder norms. In order to prove something aboutpheorms for the
perturbation structures (24), we first need the following lemma. For the proof, see

(6].

Lemma 12.
1. For every Hdolder(or p) norm and vectors x and, yone has the multiplicative

property
lx®@yllp = lxliplyllp- (35)
2. The following identities hold true for the induced matrix p-norm

@ DM©G* @ Dllp =llx @ Il IMIlpI1y* & Il
= [xlp 1M plIy*Ilp- (36)

We can now state the main result of this section.
Theorem 13. For all A for which P (1) is invertible one has the relation
ve(P, & 4) =inf{[14;], : de(P () + 8P (1)) = 0}
= |ldi W) P11, (37)

whered; (1) for 4;, i = 1, 3, is respectively equal to
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k 1/p k
di(1) = (Z w) and ds()) = (Z |A|">. (38)
i=0 i=0

Proof. Let us prove first (37) fof = 1. By rewriting the equality (29) updated to
p-norms and by applying then Lemma 12 to the particular structurg@h.), one
obtains

1 -1

N

ve(P, A A1) = [MaIt = | 1P,
)\k
P
= (lda P~ wl,)

Leté e C*. According to statement 2 in Lemma 12,

1 1

1 1 s14 &7

IM3(A, ) ,~ = | IP~M)p .
sotll, 1Ll

= (1Pl lx i) ™

k
< (nm)—lnp <Z Jxi| |yl~|)>
i=0

= (ldls)PO) M) Yp+1/g=1

-1

The above inequality is nothing else than the Holder inequality, applied to the vectors
x andy. Equality is reached when these vectorsdual to each other, which is the
case forlg;| = |x|~'/4. Furthermore, it can be shown that the above lower bound is
actually reached fot3, although it is constrained to be block diagonal. To that aim,
let us construct a particular perturbation fy which establishes equality. Latand

v be two vectors of unip-norm such thaP~1(1) u = ||[P~1(1)]| ,v and letv, be the

dual ofv. Hence|v}; v| = 1 with |[v}||, = 1. The matrix entries P3, defined by

_ B IPURNETIATTEAY
A3: 8P = —(Ids)PTHO)1,) v (- ) (39)

yield equality in its lower bound and also satisf® (1) = —(| P(A) 1]l ,) "tuv? so
thats POV P~ 1(\)u = —u and(P(L) + §P(V))v = 0.

Analogously, one can verify that the “optimal” destabilizing perturbatignis
given by
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_ AP\
A1 6Pi=—(||d1(k)pP(k)_1||p) 1uv;; (%) O (40)

This is now used in the following characterization of the stability radius of poly-
nomial matrices.

Theorem 14. The smallest perturbation of a polynomial matfixi) causing a zero
of P(A) + AP (1) to reach the boundar§Cy of the stability regiorCq is given by

re(P, Cg; 4;) = | i

inf {11411, : det(P(1) + AP (1)) = 0}
i A€Cq

— inf ;)P
A€0Cq

-1
=1{ sup ||d; (A)P(A)—lnp} : (41)
1€0Cq

whered; (1) for 4;, i = 1, 3, are defined as in Theorefr8.

Remark 15.
1. The result of Theorem 13 can be generalized to matrices of thexXf@n, in
the sense that

irA1f {41, : det + A(x ® M)) = 0}
= [lx[l, M 1M1, or,
= |x ||Il||M||;1, for block diagonal perturbations (42)
The proof follows closely the line of the proof of Theorem 13.
2. Theorem 14 is an extension of Corollary 2.4 in [16] totlb@-moniccase. For the

sake of simplicity, we only consideradstructuredstability radii. If the overall
perturbation matrix (agl;) can be represented in block row form, then Theo-

rem 14 can be easily extended to the structured case as well, see [8, Lemma

2.5).

5. Real stability radii

The main purpose of this section is to derive a computable formulafdt, Cg;
A41). Inthe second part of the section, we determine the minimum norm perturbations
which are actually attaining the corresponding stability radii.



394 Y. Genin et al. / Linear Algebra and its Applications 351-352 (2002) 381-410

5.1. Closed formulas

First, we give appropriate state space realizations for the rational matrix function
M1()) defined in (24). Introduc& := I, ® 0,,

0}1 In
Ay = € RK+Dnx(k+1in
Oﬂ Il’l
| —Po ... —Pr-1 —P
_ (43)
On
On
By :=| . | € R&+Dnxn,
_In
Straightforward computations show that
1
v
M1y =| . | P7'0) = E — A)~'By. (44)
AkT

In accordance with definition (3) and relation (6), the formula (44) shows that the
real stability radii problems of polynomial matrices are equivalent togeattured
stability radii problems of “companion” pencils, lik&, A1). Furthermore, the real-
ization (44) enables us to express the real and imaginary paMg @f) in terms of
initial data. Let

A=Ay +j)\.y and Mi(A) := M1 +jM1,y~
HereMy ., My, are real matrices of the same dimensiodas Then one has
M1, =Re(LE — A7t By
_ 2 —1,71-1
=[(O«E — AD) + ASEOLE — A1) E| "B (45)
M1y =Im[(AE — A1) "] By
=~y O E — AD T E — AD) +22EGE — ADTE] By
An explicit formula forur(M1(2)) is given below.

Lemmal6. LetM;, andMy , be given by(46). Then

. My —yMiy
Mi()\)) = inf Y 46
He(M1(d)) ye<0,1102<[)/‘1M1,y My« D (46)



Y. Genin et al. / Linear Algebra and its Applications 351-352 (2002) 381-410 395

in the Euclidean norm casand

-1
ur(M1(h)) = [ min  §(Myxu — M1 yv, M1 v+ My yu; u, v)} (47)
(u,v)#(0,0)

for arbitrary pairs of norms.

Proof. The proof of relations (46) and (47) is a direct consequence of Theorem 3
and Proposition 6, applied td1(1). O

By combining now Lemmas 8 and 16 we obtain the main result of the paper.

Theorem 17. The real stability radiusg(19) of the polynomial matrixP (1) with
respect to the perturbation matrix; is given by

-1
rR(P,Cg;A1)=|:sup inf oz([ M. _yMl”’D} (48)

-1
reaCqvE0.1] Yy Myy o My
for Euclidean norms and

re(P,Cgq; 41) = inf 8 (Myyu — Myyv, M1 v + M1yv; u, v)
g A€0Cy ’ - ' -

(,0)#(0.0)
(49)

for arbitrary pairs of norms.

Some additional comments are given below.

Remark 18.

1. The state-space realization (43) is not unique. One can consider realizations that
are more convenient to a specific purpose. In this respect, alternative state-space
realizations where is non-singular are used when computing the Hurwitz sta-
bility radius (see (78)).

2. Formulas (46) show thay ,, M, , depend explicitly on the real and imaginary
parts ofa, i.e. A, anda,, respectively. When considering Hurwitz or Schur sta-
bility, M1, and M3,y will depend on a single real parameter, suclwas = A,
for Hurwitz stability or & = A, + ji, for Schur stability.

3. Although they have at this moment only some theoretical relevance, equalities
(47) and (49) might prove to be useful whesiHdlder norms are considered, pro-
vided that an efficient computation af; in (47) is available.

As already mentioned, we can derive for the third case lower and upper bounds in
terms ofrr(P; Cg; 41). The resultis a direct consequence of Corollary 11pfes 2
andliK = R.
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Lemma 19. The following inequalities hold
(k+ 1)"M2rg(P; Cg; A1) < ru(P; Cg; 43) < ru(P; Cg; 41). (50)

Special attention will be paid (whem = 2) to the particular structure @1 (%).
This structure will be fully exploited in the light of Theorem 3, in order to reduce
the complexity of the minimization over when calculating and to obtain simpler
expressions for the smallest “destabilizing” perturbations.

According to formula (11) define

M1 —y Mz,
N1(A, =N, = a7 . 51
1A, y) Mo (V) [y My, My, (51)

AP = X 0) Y00, X, Y e R, i =0k,

then
X0 Yo
X1 Y1
Mlx = : 5 Ml,y =
Xk Yi

Let A = Ay +jAy = p(cosd +jsing) = pd’, p >0, 6 € [0, 2r). Associate tor
the matrix

Ao [Ax —)\y} _) [cos@ —sin@}

Ay Ax sing cosH
and let
_|lr O
Dy = [0 1]
A —Y Ay
o _ -1 _ X YAy
Ay := Ni(y) = DyAD, _[V% A }
_ cosd —y sinf
=Ply-lsing  cosv |

From the definition ofx;, ¥; and sincg4 ® I,,)) = A' ® I,, one gets

(X, Y| _ Xo —Yo|_ |Xo —Yo|,
5 o]l ][ wem

As (D, ® I,)"1 = D;l ® I, the above equalities imply that
.2 (1 B, Xo —vYo
yflyi X; i| - (Ay ® In) |:V1YO Xo

X0 —yYo ;
5wl e . 52)
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We have used the identitd ® B)(C ® D) = (AC) ® (BD).
Consider the permutation € %2 defined byr(1: 2k +2) = (1: 2: 2k + 1,
2:2: 2k + 2) and introduce now the orthogonal matrix

II = [en(l)en(z) e (2k42) ] e R(2k+2)><(2k+2)’

wheree; € R denotes théth column of the identity matriXo». Let

Xo -vYo 2nx2n
No(A,y):=Np-1y,=| _ € R and
ot ¥):= N [J/ Yo Xo }
I
4, (53)
A1(n, ,y) — : e RZ(/(-HL)XZ.
Ak

Y
Then

(T ® 1) N1(%, y) = (A1(x, y) ® I,) No(X,y)
as (52) shows. SincH is orthogonal we deduce that for everye (0, 1],

02(N1(A, y)) = 02((A1(%, ¥) ® In)No(%, ¥)). (54)
SinceAIAl is positive definite, one can findraal spectral factol for A;, that is,
AIAl = LILl. For instance, a Cholesky factor can be always obtained, but it has no
rational expression in terms gfandai. Thus relation (54) reads

02(N1(%, y)) = 02((L1(X, ¥) ® 1) No(%, ¥)), (55)

whereL1(x, y) € R?*2is a Cholesky factor o] (A, y) A1(k, y).
The following result is a direct consequence of Lemma 8 and Theorem 3, com-
bined with relation (55).

Theorem 20. The real stability radius(19) of the polynomial matrixP (1) with
respect to the perturbation structurg is given by

-1
ra(P; Cgi AD) = | sup inf o2 (L10h, ¥) ® L)Npoigy() | - (56)
)\ea@gye(ovl]

5.2. Minimum norm perturbations
Subsequently we shall derive simpler expressions for the minimum norm pertur-

bation4, attainingur (M1 (1)) for given for which detP () #+ 0.
Let 41 be the minimum norm “destabilizing” perturbation that attaipg M1(1)).

Let
[Mx} and [vx}
Uy Uy
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be a pair of left and right singular vectors of the matkix(A, y) corresponding to
the “optimal” 2. Then one has (see (11))

My -y Mz Vj| |:ij| |:uxi|
, . _ _ 57
|:y_1Ml,y Ml,x Uy o2 Uy ( )

By exploiting the structure oMy, and My, one infers from (57) that for every
i elik,

Ux,0

X; —vYi||vx Uy, i Uy k
_ =0 Tl = : 58
|:V Y Xi i||:“y:| ? |:“y,i:| Uy,0 (58)

LUy, k_|

and by replacing now relation (52) into (58) we obtain

j Xo —yYo| [vx Ux,i
AL, Q1 = .
“y &t [V_1Y0 Xo ] [”y] 7 [”y,i}

Writing now (58) fori = 0, one deduces from above that

i Ux 0| _ |Ux,i
iy @ 1 [r0] =[], (59)
or, in a more compact form, for every 0:k,

)\i 71)\i .
[uxo uyo0] |:—)/X)J' V)J' y:| =[uri uyi] &= A;/Ug = UI.T. (60)
y X

HereU; := [uy,; uy;] € R"™?and)l := p cos¥, Al := p'sinig, i = O:k.

Since4; is the minimum norm “destabilizing” perturbation that attajng(M;
(1)), formula (13) reads

1= o5 o M([ZH [1x “y])_l[:ﬂ

=: [A]_’o A11 ... Al,k]~ (61)

By combining now (61) with (60) one can write

Ay = —o5 o M(BH [us uy]>_1[UOT ul ... U7l

=0, t(WHT[L 4, ... 45] . . (62)
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Here

WHT =[or 0] ([ﬂ [ vy])_l
—[oe v] (BH [is uy])_l

as Remark 5 states. Relation (62) also shows that for ever§: k,
Ari=—oy P (VHTAL U . (63)
Essentially relying on formula (63) the following result holds.

Theorem 21. For everyx € C which is not a root of P and for evelye 0:k, we
have

Av; = =05 0(N1) (VHT AL UG (64)
Furthermore
k
SP(L) = —agjpt(zvl) vhT [Z Al A;/Opt:| ug. (65)
i=0

6. Computational aspects

The aim of this section is to show how the real and complex stability radii can
be computed efficiently in some important situations. In the Euclidean norm case
(p = 2), the algorithm proposed in this paper is based on a crucial result, connecting
the singular values of a rational transfer function matrix and the imaginary or unitary
eigenvalues of a corresponding Hamiltonian or symplectic pencil.

A common representation of a general rational mattix C”*" (1) is

G() =CO\E — A~ B+ D,
whereA, E € C"", B e CV"™, C € CP*" and D € CP*™. So as to consider an
arbitrary rational matrix together with one of its realizations, let us use the notation
ME—A | —B
C D

Note the sign convention used abo@\) is in fact the Schur complement bf: —
A. Let us begin with the continuous-time case.

G() = [

Proposition 22. LetG(s) = C(sE — A)"1B + D andleté > Obe such thaDg :=
D*D — £2] is non-singular If (sE — A) is a regular pencil and has no generalized
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eigenvalues on the imaginary axteen for all w € R, & is a singular value o6 (jw)
if and only ifjw is a generalized eigenvalue of the Hamiltonian pencil
sZL(E,G)—AH(E,6)
_[E o0 A—BD;'D*C —BD;'B*
=lo E* §2C*(DD* - §21)7'C  —A* 4+ C*DD;'B*

:[ c*C sE*—I—A*}_[C*D] (D*D —§*D7H [D*C B

Proof. Leté > 0 andw € R. Let us prove that
det(G*(jw)G (jw) — £21) =0
— det(jwZ(E, G)— H(E,G)) =0, (66)

where G*(s) := ET(—E) = B*(—sE* — A*)~1C* 4+ D*. To that aim, let us first
note the relation

G*(jw)G(jw) — €21 = D*D — €% + D*C(jwE — A)"'B

+ B*(—jwE* — A")7IC*D

+ B*(—jwE* — A")7IC*C(jwE — A)7B

|:wa —A 0
c*C JoE* 4+ A*

-B
C*D
D*C B* | D*D—¢7]

= 7.
As the Schur complement of the upper left corner 4f is recognized in
G*(jw)G(jw) — £21, one has

. . jwE — A 0
det(G*(jo)G (jw) — 521) det<[JwC*C (wE* 4 A*D =det¥. (67)

Furthermore, considering the Schur complememot= D*D — £2in & yields
the relation

_ wa —A 0 . —B -1 % %
dets = detD; det([ c*C jwE*+4*| " |cop | P [D*C  B*]
= detD; detjw? — K). (68)

By combining now (67) and (68), it follows that

det(G*(jo)G(jw) — £°I) detjwE — A) detjwE* + A*)
= detD; detjw? — ). (69)
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Since dewE — A) # 0, de(jwE* + A*) # 0 for everyw € R, and asD; is non-
singular, it appears that (66) holds and this completes the praof.

The discrete-time counterpart of Proposition 22 is stated below without proof. In
this case, one can apply the same argument as above.

Proposition 23. LetG(z) = C(zE — A)~1B + D and leté > Obe such thaDg :=
D*D — 2] is non-singular If the pencil(zE — A) is regular and has no general-
ized eigenvalues on the unit circlthen for everyw € R, £ is a singular value of
G(¢?) if and only ifé® is a generalized eigenvalue of the symplectic pencil

_|E BDng* B A— BDng*C 0
~“|lo a*—c*DD;'B* | [2c*(DD* ~€2DC E*

E—-—A 0 —B _
= [Z Cc*C ZA* _ E*:| - |:C*Di| (D*D - %.21) ! [D*C ZB*] .

6.1. The complex case

The complex stability radius can be computed efficiently in céde) =
d(x)P(A)~Lis rational inx for A € dCq. This is obviously true for the unit circle
since thel()) functions are constant:

di() = (k+DYP, dz(n) = (k + D).
For the j» axis, one can substitute fag(1) the following polynomials of the same
amplitude:

k
dn) =Y (-j»)’ fore>0
i=0 (70)

k
d(n) = Z(jx)i for v < 0,
i=0
so that two different rational functions have to be considered depending on whether
w is assumed to take positive or negative values.dr@x), one can only make this
substitution for the special casps= 1, 2, co. For p = 2, one finds
dijo)? = A+ o® + - + ™) = |d ()%,
whered (1) is the (stable) spectral factor oflw? + - - - + %, equal to
k

AL . in
d(h) = E (k +sin—— —Jcosm) . (71)
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For the casep = 1, d1(A) reduces tad(r) as given by (70), while forp = oo,
d1(») simplifies into maxd, |w|¥}, whence has the same amplitude as the rational
functions

da) =1foro <1, dO) =jo* foro > 1.

Note that in each of these cases, the constructed polynattialhas degreé or
less, i.ed(A) = Zf:l d;A'. The transfer function matrid (1) P (1)~ admits then
a generalized state space realization of the féfhE — A1)~ 1By =: G(1) where
C = [dol, d11, --- di1,] and withE, A1, B1 given by (43).

For the 2-norm, the corresponding complex stability radius reduces t& he
norm of the transfer functio& (1):

oy = supo1 (G(f(®))), (72)

weR

where f(w) is the parameterization dfCgq in terms ofw € R, ando1(M) is the
largest singular value of the mati. This calculation can be carried out iteratively
by a repeated computation of the real zerp®f the matrix function

G*(f(@) G(f (@) — o2, (73)

based on Proposition 22 or 23. These apply to the generalized state-space model
G (%) = C(LE — A1)~ 1By yielding the following Hamiltonian and symplectic pen-
cils:

: -2 ' j,_ 2
JwE — Aq —0, B;|_Bi6 and d°E — A —G_.“”oo B1Bj . (74)
c*C JoE* 4+ A7 c*C e"”A’{—E*

respectively.

This procedure yields efficient algorithms to find the maximum of the scalar func-
tion o (w) = 01(G(f (w))) [1,5,10], in term of recursive eigenvalue computation of
the associated Hamiltonian or symplectic pencil.

For p = 1, oo one still has a rational matrix to deal with, but the largest singular
value calculation degenerates into the largest sum of absolute values of a column or
row of G(). This is a scalar piecewise rational function, which can be maximized
using symbolic manipulation programs: each “piece” is rational and the “branching
points” are the zeros of some polynomial.

In the special case of scalar polynomials, obviousB(1) 1|, = [p(x) 72| If
moreover,p = 1, 2, oo, thend (i) can also be chosen polynomial, so that one has
to find the maximum of the absolute value of a scalar rational funafioh) =
d(A)/p() on dCq. The zeros old’ (A)p(r) — p’'(1)d(x) are then the extrema of
this function and it suffices to look for the largest of thege 2 1) values. This can
be obtained in ©?) flops using polynomial root finding algorithms. Note that other
approaches have been proposed in the literature for complex and real stability radii
of scalar polynomials [11,13].
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6.2. The real case

The real stability radius can be computed efficiently for Hurwitz and Schur
polynomial matrices in the Euclidean norm case, by updating the algorithm
proposed by Sreedhar et al. in [18] to deal with generalized state-space models,
like M1(1) appearing in (44). In order to compute the real stability radius in the
continuous-time and discrete-time cases, one evaluates (48)yfer C~ and for
Cy = D, respectively. As it is shown in [18}g is computed iteratively. For the
sake of completeness we shall present the basic ideas behind the development
in [18], by specifying, when necessary, the changes related to our specific
situation.

The algorithm is based on the connection between the singular values of a transfer
function matrix and the imaginary (or unitary) eigenvalues of a related Hamiltonian
(or symplectic) pencil. Such a relationship has been described by Propositions 22
and 23, respectively.

6.2.1. Hurwitz stability radius

Assume that1(P) C Cg = C™. In this case, the boundary of the stability region
is the imaginary axis. Then take= jw in (48) and rewrite it in accordance with (51)
as

ret(P, C7; A1) = supur(Mi(jo)) = sup |nf 2 (Mo, y)). (75)
weR weRVE
Our first goal is to find someational matrix function él(y, M1(jw)), which is
unitarily equivalent toN1(jw, y). Then one can apply Proposition 22 in order
to determine the singular values @f;(jw, y). To this aim introduce for any
y €(0,1],

G mston =g | mdon g 5] (76)

It follows from (76) thatG1 and N, are unitarily equivalent, hence they share the
same singular values and we can limit our attentiotrigy, M1(jw)). Further (see
relations (7) and (8) in [18])

~ ) 1 1 I [M 0 1 1
S o T A

Here M1(jw) stands for the complex conjugate &f; (jw). Since M1 is areal ra-
tional matrix function ins it foII~ows that M1(jow) = M1(—jw) is a rational matrix
function in jw as well. HenceG1(y, Ml(jw)) is rational in jo. Below we derive
appropriate state-space realizations @, in order to apply Proposmon 22, For,
consider the alternative state-space realizafii(s) = Cl(sE Al) 131 + Dl,
where
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0, I,
E=L®P A= € Rw<kn,
0, I,
—Py ... —Pro2 —Pr1
0,
§1 — 9}1 c Rknxn’ 61 — {liﬂ c R(k+1)n><kn’ (78)
: 01
I,
0,
-~ Oﬂ
Dl - ) c R(k—&-l)nxn’
pt
and Q1 :=[-P Py — P *P1 ... — P{1Pc_1] € R™*¥. Comparing (78) with

(43), one notices thatE — A; has all its eigenvalues i6~, while sE — A; has at
leastn infinite eigenvalues. In order fob1 to verify the assumptions of Proposi-

tion 22 we consider here for technical reasons the alternative realization (78), even
though the expressions (43) are simpler. Elementary algebraic manipulations show
now that

G1(y, Mi(jw)) = C1,, (jE — A1) "*B1, + Du, (79)

i.e.G1(y, M1(jow)) is rational in jv. Here

~ [a1 o0 ~ [E 0] ~ [D1 O
Al_[o —AJ’ E= [0 E] Dl_[o Dl]
B L Bi  yBi Gro— L CL vGi
Y= 2|y B B |0 YT 2|y G —Ci”

The following result is in fact a reformulation of Proposition 22 updated&@r
(y, M1(jw)) given by (79) and (80).

(80)

Theorem 24. Lety € (0,1] and & > 0 be given such thaD{ D1 — &2/ is non-
singular. Then for everyw € R, & is a singular value otz1(y, M1(jw)) if and only
if jw is a generalized eigenvalue of the Hamiltonian penc (¢, G1(y, M1)) —
H(E, Gi(y, M1)).

Due to Theorem 24 and relation (76), the computation of the singular values of
Ni(jo, y) in (75) reduces now to the computation of the generalized eigenvalues of
the Hamiltonian pencit Z (&, Gl(y, M1)) — H (&, Gl(y, My)).
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6.2.2. Schur stability radius

The stability region is in this case the open unit disc, thatlis?) ¢ Cq = D.
Consequently, the boundary i.e. the unit circle is parametrizedye“. Then one
infers from (48) and (51) that

ret(P,D; A1) = sup puwr(M1(€%))
wel0,2n)

sup inf az(Nl(e' ). (81)
wel0,2n) Y€(0.1]

Clearly, relations (76) and (77) hold f(Ml(e"") as well. ButMl(elw) Mi(e71?)
is a rational matrix function ini@, henceGl(y, M1(6%)) is rational in &. Straight-
forward computations show that

Gi(y, M1(8?)) = C1,,(8”E1 — A1) 1By, (82)
where

. _ |41 O -~ [-E O

Al—[o E} El—[o AJ’

x 1| —-B1 —yB: s 1T 1 yer

Bl'y_ﬁ[—y_lBl By |’ Cl’y_Tz y U —der|- (83)

The analogue discrete-time result to Theorem 24 is stated as follows.

Theorem 25. Let y € (0, 1] and & > 0 be given Then for everyw € R, £ is a
singular value ot;l(y, Ml(el‘*’)) if and only |fel‘*’ is a generalized eigenvalue of the
symplectic pencit% (&, Gi(y, M1)) — 7 (¢, G1(y, M1)).

The proof follows immediately by applying Proposition 235@(;/, M1(€)) in
(82) and (83).

6.2.3. Keyideas

Theorems 24 and 25 reduce the computation of the singular valugs(sf y)
at a given frequency = jw or A = d® to the computation of the generalized eigen-
values of a corresponding Hamiltonian or symplectic pencil.

Denote byf (w) either jo or 2. Define

() = pr(M1(f (@) = yei?()fl] 02(G1(y, Mi(f (@))))
= yei[]Ofl] o2 (N1(f (@), ¥)) = 02(G1(ygs, Mi(f (@)))).

The goal of the algorithm is to maximiZ&(w) overw € R since
A% := Supi(e) = rg (P; Cg; A1),

weR
as relation (48) shows.
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Assume that such a unique maximizer exists and let
o* = arg maxu(w).
weR

Suppose that at each iteratibr= 0, 1, . .. & _1 is the best known lower bound f6*
so far and lety; be the current trial frequency. Suppose further tbiats known to
lie in a certain “maximizing” open s&?;. At each iteration, one has to perform two
basic steps (see Figs. 1 and 2).

First compute the optima} at the current frequenay;

v =ag inf a2(N1(f (@), ¥))-

Despite the higher dimension @f; this only involves at each step the SVD of a
2n x 2n matrix, as relation (54) shows. Moreover, by denoting= f (wx) one has
that

02((L10w. ) ® I)Np-1,) (1)) = 0,4 (N D) Lk 1)1 @ ).

Hence the computation of the real and imaginary part8 of(i;) is replaced by a
simple inversion of a 2 by 2 upper or lower triangular maftixAx, ). Thus

* = inf oL Liwe, ) 1@ 1)) . 4
v = arg int o, (Npoo () a0k ) @ 1) (84)

The secondstep consists in finding an improved lower bounditq as well as
the next “maximizing” set211 and within a new trial frequency poimt1. If
w(wi) > &1, take& = (wx) = 02(G1(y, M1(f(wr)))) as the new estimate of
w*, otherwise keep the old estimate, thatjs—= &;—1. Locate now the “level-set” of
frequencies, sa%H, defined as

Qi1 = {0 € R: 02(N1(f (@), 1)) = 02(Ga(y - M1(f (@) > &}

0.8
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Fig. 1.



Y. Genin et al. / Linear Algebra and its Applications 351-352 (2002) 381-410 407

0.8

0.7

06

03

0.2

1 2

10

Frequency (rad/s)

Fig. 2.

By Theorem 24 (or Theorem 25), the pure imaginary (or unitary) eigenvalues of
the Hamiltonian (or symplectic) penm]f(gk, Gl(Vk , M1)) — A (&, Gl()/k , M1))
(or z% (&, Gl(Vk , Ml)) — 7 (&, Gl(Vk , M1))) are exactly those for which some
singular value oCl(yk , M1(f (w))) equalst;. The endpoints of the frequency in-
tervals Wheraz(al(y,;", M1(f(w)))) equals or exceeds must be among these and
can be identified using derivative information of the imaginary (or unitary) general-
ized eigenvalues.

Let (o, &) € (K, L), (F,%)}. If ;s thelth generalized eigenvalue, assumed
simple, of.«Z — A&, then

o (& - mEE0)u o
= T (85)
Here v; andu; are a pair of right and left eigenvectors associated,;tand are
automatically obtained when computing the generalized eigenvalues of the pencil
o —)\E.
By using formula (85) one can deduce that

06 oA -1 -
5 = %(wz) = ( J—EI(Sk)> for Ay = jay (86)
and
¥ 9% . le jor
51 = @(a)l) = | —je % (é ) for o, = €. (87)

By using equalities (86) and (87) in conjunction with (85), one can actually prove
thats; ands; are bothreal. The trick of the proof is the relation betweepandv;.
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Because of the Hamiltonian and symplectic structure of the considered pencils, one
can show, respectively, that

~ 0 I]. . 0 I].
uy = 7 0 V] and uy = ej‘“I 0 vy.

The sign ofs; (or s;) at different crossing point; (or «;) can now be used to
determine therp-intervals of interest. For complete details see [15,18].
Since any frequency poiat notin Q;Jrl satisfies

() < 02(Gay, Mi(f (@) < &,
the global maximizew* cannot lie outside?, , ,, if @, # #. Thus, by setting
Q1 =Q +1 N &, we can bracket* at every iteration. Several possibilities to
choosewy+1 in Q41 are proposed in [15,18]. For instance, &gt equal to the
mid-point of the largest interval contained® 1.

Algorithm.

Input: Py, P1, ..., P;. Tolerancer > 0.

Output:rp(P; Cg; A1), w* = arg max.eg i(w).

Initialization: k = 0, pickwo, &0 = ur(M1(f (wo))), Lo = (0, 00).

1. Computey;’, &.

2. ComputeQ 1 = Q1 N .

3. Computevy41.

4. k < k + 1. If an appropriate stopping criterion (in termsr)fis satisfied STOP.
Otherwise GOTO 1.

Step 1 involves a golden section search gveft each iteration one has to com-
pute a SVD of am x n matrix (see (84)). Ifr is the number of steps required by
the search ovep, then the complexity of Step 1 is(@°r). For instance, in order to
obtain a four-digit accuracy opppt, One needs about= 20 iterations on the golden
section search. The complexity of Step 2 is that of a Hamiltonian or symplectic
eigenvalue problem of dimensiom? (see (80)) or 2(k + 1) (see (83)), that is,
O((2nk)3) or O((2n(k + 1))3).

Numerical tests suggest that the rate of convergence is quadratic; conditions under
which this can be proved are under investigation.

7. Conclusions

In this paper, an efficient computational scheme to compute the real (unstructured)
stability radius of non-monic polynomial matrices has been presented. We adapt-
ed the numerical algorithm proposed in [18] to deal with generalized state-space
realizations. This enables us to consider both non-monic polynomials and polyno-
mial matrices. The proposed approach can be extended immediately to deal with
structured stability radius computation as well.
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Several problems are clearly left open. A first important goal would consist in ex-
tending the result of Theorem 3 to arbitrg;ynorms. Secondly, one should improve
the optimization scheme overas it shows up in relation (12).

Obtaining closed formulae for the real stability radius in thecase is known
to be a difficult problem in the literature. Nevertheless it is hoped that an appro-
priate design of efficient optimization schemes could be of significant help in that
respect.
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