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Abstract In this paper we derwe a direct method for block tridlagonahzlng a single-input single-output system triple {A, b, c}. The 
method is connected to the nonsymmetnc Lanczos procedure developed m [10,2,1] and also leads to canonical representations of 
such triples 
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I. Introduction 

The Lanczos method is a recursive process for tridiagonalizing a given real or complex matrix A via a 
similarity transformation T. In numerical linear algebra this is typically used for the computation of the 
eigenvalues of A by exploiting the resulting tridiagonal form. The recurrence of the unsymmetric 
Lanczos procedure [12] starts with two (arbitrary) vectors b and c and consists of a biorthogonalization 
of the Krylov sequences 

If 1 cA 

~ =" [b Ab A~a . . .  A"-Xb], ,e~ =" cA2. , (1) 

LcAn-l j 

where n is the order of the unsymmetric matrix A. Notice that for notational convenience, b is a column 
vector and c is a row vector. If n is the dimension of the matrix A, then ~ and ~'~ are also known in 
systems theory as the controllability matrix and observability matrix, respectively, of the system triplet 
{A,b, c}. Also their product X¢"~ = @~n plays an important role in that area. The elements of that matrix 
are all moments h, = cA'-~b of the triplet and along the anti diagonals these elements are easily seen to 
be equal: 

0167-6911/92/$05 00 © 1992 - Elsevier Science Publishers B.V. All rights reserved 



110 (; Golub et al / Dtre~ t block truhagonahzatton of SLgO system 

cb cab  " • c A "  Ib 

cab  

c A n - l b  . . .  c A 2 ( n - l ) b  

h I h ~ h .  

h~ 

hn " " • h 2 n  1 

(2) 

Such a matrix is called a Hanke l  matrtx and its properties with respect to the triplet {A, b, c} have been 
widely studied in the system theory literature [7,5,3]• Recently, the relation between the unsymmetric 
Lanczos procedure in A with starting vectors b and c, and the system theoretic properties of the triplet 
{A, b, c} has been made explicit in a number of papers in order to explain various forms of breakdown of 
the Lanczos method. As a result of this, modifications of the tridiagonal reduction process were 
proposed [10,2,1]. 

In the present paper we develop a direct transformatton method  leading to a block tridiagonal 
decomposition as in [2]. Our form, though, also displays the fine structure in the blocks of the tridiagonal 
form, which has direct similarities with properties of the Hankel matrix X/n. Eventually, from this we also 
derive several (related) canonical forms for a minimal realization of the triplet {A, b, c} under similarity 
transformation {T-1AT, T - l b ,  cT}.  All derivations presented here are tied to matrix decompositions of 
the matrices :n ,  ~ and ~e" and to their rank properties. There are of course strong connections with 
earlier work on canonical forms (see [3,5,7] and further references therein) but the main emphasis here is 
on algorithmic and numerical aspects• For those we refer to further discussions in the concluding 
remarks. Moreover, we feel that the direct elimination procedure given below describes the same results 
in a more straightforward manner• 

2. The unsymmetric Lanczos procedure 

Here we briefly recall the unsymmetric Lanczos procedure in the case that no breakdown occurs and 
relate it to matrix decompositions of ~n, :n and XC'n. Given two linear independent vectors b and c the 
biorthogonalization of the Krylov sequences ~n and :~ (1) can be expressed as follows. Find L and R 
such that 

- Z 1  Y 2  

X2 

.4 = L tAR = (3) 

Ytr 

0 X n Z n 

Here, L and R can be generated from the relations A R  = Re{, A t L  = L A  t where the coefficients d u are 
computed to satisfy the biorthogonalization conditions LtR = I (or a diagonal matrix). The decomposi- 
tion is derived in the following two lemmas where it is also shown that A can be chosen tridiagonal and 
L t = R  -1.  

Lemma 2.1. Let  T be an inverttble transformation. Then 

T - l b  = , T - 1 A T =  

Xn 

X 

X 

with x,  --/: 0 (4) 
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i f  and only i f  

c I X ... X 1 
T-  1 c~" = X 

0 cn 

with c, ~ O. (5) 

Proof. Defining b = T - l b  and .4 = T - I A T ,  it immediately follows that 

z - l ~ n  ~ ~n -A [[9, zzlb, zl2b . . . . .  An-lbl " 

One easily shows then recursivel X that the i-th column o f ^ ~  n has only i non-zero elements and that 
c , = x l x  2 . . . x , ~ 0 .  Conversely, b is the first column of ~n and hence x I = c  I ~:0. Then, one easily 
shows recursively that column i of .4 has only i + 1 non-zero elements and that X,+l = c, + 1/c, ~ O. [] 

From the above lemma it follows that T can be chosen to be unitary. Indeed, consider the QR 
factorization ~n = QR; then T -1 = Q* triangularizes ~ ,  and hence Q * b  = b and Q * A Q  = .4  must have 
the required form (if ~ ,  is invertible). 

I.,emma 2.2. Let  T be an invertible transformation. Then 

X Y2 

X2 
T - 1 A T =  

0 

c T =  [y,O . . . . . . . . .  O] 

Yn 

X n X 

wtth y, v~ O, x, --/: O, 

"X1 ~ 

° 1 
, T - l b  = " , ( 6 )  

0 

i f  and only i f  

with c, -~ O, o, ~ O. 

X • • • X 

x 

Cn 

0 

and ~'nT= (7) 

" ' "  X O n 

Proof. Apply the above Lemma on {A, b} and {A t, ct}. The tridiagonal form of .4 = T - ~ I T  follows from 
the fact that it is both upper Hessenberg and lower Hessenberg. 1:3 

An immediate corollary of the above two lemmas is now the following• 

Corollary 2.1. Let  ~i'~n be the n × n Hankel  matrix (2) corresponding to the system triplet {A, b, c} where n 
is the dimension o f  A .  Then there exists a transformation to a system {T-1AT,  T - l b ,  cT} as in (6) i f  and 
only i f  all the leading principal minors o f  "~n are non-zero. 
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Proof. If there exist such a system {T IAT, T lb, cT} then 

o ll x 
> (  . . . 0 n C n  

is a LU decomposition of ,¢U n without pwoting. Since the o, and c, are non-zero, all leading principal 
minors of ~;'~, must be non-zero. 

Conversely, if this property holds then there exists a LU decomposmon of )F  n with nonsingular L and 
U factors: 

~ = L ' U .  

Since X n also equals cen~ ~ we have that L-IGn a n d  (~nU -1 must be each others reverse. Takmg 
T = ~ , U - 1  and T-1 = L-1@~ yields (7) and hence also (6). [] 

When ~F n does not have all leading principal minors non-zero, then one can not obtain an 
unreduced tridiagonal form (6), but instead one can always reduce {A, b, c} to a block tridiagonal form 
of the same type as (6). As one would expect this is linked to a block LU decomposition of X n and the 
block sizes are related to the index set for which the leading principal minors of ~'~n are non-zero. A 
proof  of this based on the Lanczos recursion can be found in [10,2]. In the next section we derive a direct 
algorithm for this decomposition. 

When ~n  does not have full rank n then either ~n or ~n (or both) are singular and {A, b, c} is said 
to be non mimmal. For simplicity we assume in the following sections that the system {A, b, c} is 
mmzmal (i.e. ~n and ~,, are non singular) and we comment  on the general case in the concluding 
remarks. 

3. A direct elimination procedure 

We start by reducing our minimal system {A, b, c} to the form (4) by a unttary transformation T 1 = Q. 
The new system {Q*AQ, Q'b ,  cQ} A= {if, ~, ~} has an unreduced Hessenberg matrix / f  since ~n has full 

5 3 for the construction of rank^({A, b} is controllable). The total flop count for this reduction is 5n 
{A, b, ~} and an extra n 3 for the construction of Q [11]. 

Since in this coordinate system ~n is upper  triangular, one can only allow uppertr iangular transforma- 
tions to further reduce {A,/~, ~} to (possibly block) tridiagonal form. Suppose in this coordinate system 
6kl is the first non-zero element in the row vector ~ (we call this element Yl in the future). Then partition 
the system {A,/~, 6} into the first k 1 co lumns/ rows and the remaining n - k  1 ones as in Figure 1. We 
then show in Figure 2 how to eliminate by a unit upper  triangular matrtx T 2 all of ( 2 and all of A12 
except for the first row. There  we marked the order in which the rows m the system matrices are 
eliminated and the rows of X 2 are calculated by the numbers 1 to k 1. This order is crucial in order to 
guarantee that previously created zeros are not destroyed afterwards. The pivot elements that are 
actually used to zero out the consecutive rows are: Yl for row 1, xk, for row 2, up to x 2 for row kl. The 
total flop count for the transformation T 2 is ½nkl(n-  k 1) for updating the system triplet and an 
additional nk ~(n - k~) for updating the transformation matrix. 

The transformation T 2 has now the following effect on the matrices ~n and ~n. Since T 2 is unit upper  
triangular, T f  l~n remains upper  triangular (in fact its diagonal elements do not change). The matrix ~, ,  
on the other hand, was a full matrix and G ~  is now block triangular (see Figure 3) with o~ = v l  and 

0 t = O t _ l X k l _ t +  2 f o r  l = 2 . . . .  , k 1. 

Redefine A" = T21AT2 partit ioned into blocks A11, A12, A21 and ~f.22 as in Figure 2. If we now let the 
first row of A~2 play the role of a new g vector, the last column of A21 play the role of a new b vector 
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AXl 

0 A21 

A12 = 

A22 

X 1 X 

X2 ,o 

• o o. 

Xk~ 

Yl 
X 

X 

Xkl+ l  

Fig. 
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X . . . . . .  X 

: 

X . . . . . .  X 

X . . . . . .  X 

" ° .  
Xkl+2 

",o "o. *. 

X n X 

and 422 play the role of  a new A matrix, then the above procedure can be repeated. If k 2 is the first 
non-zero e lement  in that row c (we call this e lement Y2) and if we define r I = k~ and r 2 = k I + k2, then 
a similar step embedded into Figure 2 would yield Figure 4 with an updating transformation 

= Ik2 X 3 ] "  

In -- r 

( 9 )  

As before, T31T21~n is still upper triangular and ~,T2T 3 has the form shown in Figure 5 with 
Or, + ~ = Or, " Y2 a n d  Or1 +, = Or1 +,_  ~ " X r 2 _  , +2 f o r  i = 2 . . . .  , k 2. 

= 

Ikl X 2  

~ - k l  

kx 

T2-1 A ~2 

X 1 X . . . . . .  

" , .  
X2 

"o. " .  

Fig 2 
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× 
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. . . . . .  0 
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°.° 
Xkl+2 

° , ,  " .  ; 

X n X 

* - - 1  

~ 2  
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OnT2 = 

X l  X 

X2 
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T-I~ T-I~T 
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X l  X 

X2 
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X 

X 

Xrl  +1 X 
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Y2 
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• ,• • ° ,  .* 

~ r2  X 
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Y3 

~ r 3 + l  

Y4 
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X . . . . . .  X 
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From here on, it is easy to see by induction that the block tridiagonal form shown in Figure 6 is 
obtained by a product of updating unit upper triangular transformations T,, which we denote together by 
the matrix T (we choose p = 4 blocks for illustration). Each diagonal block .4,, is upper Hessenberg and 
unreduced. Each off diagonal block has only one non-zero element in the upper right corner• The 
corresponding T - ' ~ ,  is upper triangular and ~ , T  is block lower triangular. We thus have a block L U  
factorization of • ,  as illustrated in Figure 7. The 'anti triangular' shape of the k, × k, diagonal blocks of 
~ , T  is easily checked by induction. It also follows from this that the leading principal minors of 2 f  n are 
non-zero if and only if those of ~ , T  are non-zero. Because of the special structure of this block 
triangular matrix one readily sees that the non-zero leading principal minors are those of dimension 

) 

r~= ~,k,, j = l  . . . .  , p .  ( 1 0 )  
t = l  

The k,'s are thus the 'rank increases' of the nonsingular leading principal submatrices of 2",, as was also 
observed in [5,10]. Notice that the minimality assumption guarantees that rp = n, which cares for a 
proper ending of the recursive block reduction• 

Remark 3.1. By flipping around the diagonal blocks in Figure 6, i.e. performing a state space transforma- 
tion 

T = diag . . . . . .  

I,L 1 1 

( 1 1 )  
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F~g 7 

one obtains its dual form, where the role of /~ and 6 is interchanged and A is lower Hessenberg. The 
"profile' (1.e. the pattern of zero and non-zero elements) of Figure 6 is then just its transpose. Also ~'nT 
~s then lower triangular and T-~ '~  upper block triangular. Their 'profile" is then each others transpose 
again• This is used in the various canonical forms presented in the next section 

R e m a r k  3.2. If we define n 0 = n, n, = n, ~ - k, = n - r, then the total operation count for updating the 
system {A, /~, ~} to (A, b, 6} is 

p - 1  nt_lk~n, 
flops = Y'~ 2 (12) 

t=l 
and twice this amount for accumulating T. The above flop count is in fact maximized when all k, = 1 (the 

3 Notice that this is much less than the preliminary mdiagonal case!) and the flop count is then only ~n . 
reduction to {A, /~, ~}. 

4. C a n o n i c a l  form 

In this section we still assume {A, b, c} to be minimal. It was shown above that the block tridlagonal 
form of Figure 6 is intimately connected to the block LU decomposition of H~ shown in Figure 7. What 
are the degrees of freedom left over for these profiles? From the properties of L U  decompositions [4] it 
is well known that the only degrees of freedom left over in a decomposition with this latter profile is a 
block diagonal matrix: 

= I UI U~ Tup 

L 
where each block 
Figure 6 become U,211A,_ 1,,U~ and U, JA,,,_ ~U,_ 1 respectively, and they both have still only one non-zero 
element in the top right corner• The diagonal blocks become U,-~A,.,U, and their profile can be affected 
by this, as is shown in the following iemma. 

Lemma 4.1 [12]. An unreduced upper Hessenberg matrix can always be transformed by an upper triangular 

(13) 

u,, 
is k, × k, and upper triangular• It is readily seen that the off diagonal blocks m 

[ ~1 . . . . .  ~r 1 1 
H i =  

1 

H~= 

where the a, determine the charactertsttc polynomial of  H. 

r 1 
Ol I 

(14) 

stmtlartty U-  I HU to either one of  the two forms: 
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T_lb l cT T-1AT ] = 

1 c~ 1 

1 
OLr 1 

OLrl +1 O'r2 

1 

1 

Fig 8. 

Olr2+l  . . . . . .  O~r3 

1 

1 

These are also known as companion forms of the matrix H. They both determine U completely up to 
a scalar factor d, which obviously cancels out in U- IHU. This factor d in turn can be used to make either 
the elements of ( and .4,_ 1., equal to 1, or those of/~ and .4,.,_ ~ equal to 1. In each of those two cases p 
elements are involved which can be put equal to 1 by an appropriate choice of the p scalar factors d,, 
still free to choose in the U, factors of (13). Depending on these choices we now present two types of 
canonical forms of a minimal system {A, b, c} under state space transformations T. We first choose to 
put the non-zero elements of/~ and A,,,_ 1 equal to 1. We use p = 3 blocks for illustration in Figure 8. 

For this form T - I ~ ,  is unit upper triangular and G,T is block lower triangular with anti dtagonal 
blocks of size k, × k,. A variant of this form is to choose the non-zero elements of ( and A,_ ~,, equal to 
1. The resulting form is easily checked to be almost identical to Figure 8, except that the /3, elements 
now occur below the block diagonal• Then T-~ .~n is no more identity on the diagonal but GnT has unit 
anti diagonal blocks. Both these variants are connected to decompositions of X ,  of the type described in 
Figure 9. These are connected to the work of [2] as discussed in the next section. 

Another  type of canonical form uses the second companion form of Lemma 4.1. Again we use p = 3 
for illustration in Figure 10. Now T - ~ n  is block upper triangular with identity on each diagonal block 
and ~',T is block lower triangular with anti triangular blocks of size k, × k,. We thus have a decomposi- 
tion of "~n of the type shown in Figure 11. The variant here of choosing upper block diagonal elements 
equal to 1 maintains this profile but the identity matrices in U become diagonal matrices while the anu 
triangular matrices in L have now l 's on the anti diagonal. For each of these four forms there is of 
course yet a dual form where the diagonal blocks .4 ,  are lower Hessenberg. 

Hn = L . U  = IJ 
Fig 9. 
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T - l b  T - 1 A T  = 

1 

1 

A 
O~r I 

1 OL 1 

1 

92 

t~'e 2 

1 O~ra +1 

1 

Fig 10 

Ogr 3 

61'r2+1 

7-{~ = L U =  

Fig 11 

From the above discussions it is readily seen that all these forms can be derived from one another by 
just moving around block triangular factors and scalings between the L and U factors of ~n  in Figures 9 
and 11. These forms are therefore essentially identical• They indeed all have the same nonzero elements 
{ a , , / =  1 . . . . .  n} and {/3, t=  1 . . . . .  p}. Notice that the form in the work of [10] is in fact related to 
Figures 10 and 11. 

5. Concluding remarks 

The approach presented in this paper assumed everywhere that the system {A, b, c} is minimal. In a 
sense this is not a restriction since controllability and observability are implicitly checked by the 
algorithm. Indeed, the reduction to upper Hessenberg form (Figure 1) would detect the uncontrollable 
subsystem (when x, = 0) and one would only continue with the controllable subsystem {A c, b c, co}. The 
recurrence (Figures 2-4-6) applied to that subsystem would detect its observable subsystem {A~,,, bco, C~o} 
(when some y, = 0) and one would stop the procedure there. The links with ,,T¢" n and the canonical forms 
are of course still valid for the minimal subsystem {Aco, bco, Cco} of {A, b. c}. The canonical forms 
presented in the previous section are not really new since they are essentially to be found in the work e.g. 
of [7,5,1]. The novelty here is the simplicity of their derivation from elementary matrix operations and of 
their mutual connection• 
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The direct matrix derivation presented here also makes sense because of some advantage over the 
Lanczos type recurrence of [10,2,6]. We therefore discuss the differences below. The complexity of the 

5 3 I 3 ~rt  3 flops are needed for calculating direct approach is appealing. In the worst case, 3n + ~n = -  
{/i,/~, ~} in the block form of Figure 6 or even in any of the canonical forms. The calculation of the 

1 3 4 3 flops. The Lanczos procedure on the other hand, requires transformation T itself takes n 3 + xn = 3n 
A c,, but if A is sparse this may be relatively cheap, say 2mn 2, where m is 2n matrix products Ab, and t t 

the number of non-zero elements in one row/column of A. For sparse systems the Lanczos procedure 
also has the advantage of not requiring to store A as such, whereas the direct method would require this. 
The biorthogonalization requires in total 2n 3 flops, but this includes the construction of T and T-~. If 
full reorthogonalization is not requested then this figure can be replaced by lOkn 2 where k is the 
average block size of the diagonal blocks. The numerical stability of the direct approach is, normally 
superior to that of the Lanczos procedure. In the first stage of the direct approach, only unitary 
transformations are performed. The rank tests there involve the off diagonal elements x, of the 
Hessenberg matrix (4) which are computed from orthogonal similarity transformations. In the Lanczos 
procedure the rank tests involve scalars or block matrices, which are computed from non-unitary 
transformations of the original {A, b, c} triplet. In the direct approach, similar disadvantages are 
encountered in the second stage as well. The upper triangular transformation eliminating the elements 
above the diagonal of A, may be very ill-conditioned. When using a threshold 6, instead of checking for 
non-zero elements, one can bound the condition number of the updating triangular transformations T, 
by some function of & This is far less obvious in the Lanczos procedure, where the condition number of 
the matrices T and T-1, constructed during the process, is far more difficult to monitor. 

A final disadvantage of the Lanczos procedure is the multiplication with the A and A t matrices, 
which cause instability when the eigenvalues of A have a large spread (when A is 'stiff'). This is e.g. one 
of the reasons why reorthogonalization is needed in the Lanczos procedure. This drawback is typical for 
the Lanczos procedure and is not encountered in the direct approach. Similar remarks already hold for 
the first step of our approach, which constructs the Hessenberg form {A, /;, ~} in (9), from which the 
controllable subsystem can be determined [11]. Any approach based on the Krylov sequence A'b  may 
suffer from instabilities which do not occur in direct methods and the Lanczos-based methods are 
therefore to be avoided when controllability is to be detected [9]. But as mentioned in [9,8], trying to 
transform a system to a canonical form is in general not recommended. For this reason one could stop 
the reduction procedure in this paper after the block tridiagonal form of Figure 6. Proceeding beyond 
that involves diagonal blocks in companion form (14), which is known to be delicate [8]. The dense block 
tridiagonal form is therefore a good compromise when one is only interested in finding the block 
structure of the Hankel matrix in Figure 7. All this does not preclude possible instabilities in the block 
tridiagonalization. But the big advantage here is that one can easily check when instabilities may occur. 
The pivots y, and x, are precisely the elements to be inverted in subsequent steps of the algorithm, and 
putting a threshold on those will keep future transformations bounded. In short, we feel that the direct 
approach is probably the most sensible and flexible way to proceed towards one of the forms described in 
this paper. 
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