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Abstract

Two important classes of quadratic eigenvalue problems are composed of elliptic and hy-
perbolic problems. In [Linear Algebra Appl., 351–352 (2002) 455], the distance to the nearest
non-hyperbolic or non-elliptic quadratic eigenvalue problem is obtained using a global mini-
mization problem. This paper proposes explicit formulas to compute these distances and the
optimal perturbations. The problem of computing the nearest elliptic or hyperbolic quadratic
eigenvalue problem is also solved. Numerical results are given to illustrate the theory.
© 2003 Elsevier Inc. All rights reserved.
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1. Self-adjoint quadratic eigenvalue problems

Given A, B, C ∈ Cn×n, the quadratic eigenvalue problem (QEP)

Q(λ)x = (λ2A + λB + C)x = 0 (1)

has a wide range of applications, from vibration analysis to fluid dynamics. The
recent survey [1] contains a list of its many applications, its mathematical proper-
ties and several numerical methods for this problem class. For self-adjoint QEP, the
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matrices A, B and C are Hermitian. The leading coefficient A is positive definite and
is generally associated to the kinetic energy in mechanical engineering.

In this paper, distance problems related to two important classes of self-adjoint
QEP are studied. A QEP is said to be elliptic if (x∗Bx)2 < 4(x∗Ax)(x∗Cx) for all
non-zero x ∈ Cn and is said to be hyperbolic if (x∗Bx)2 > 4(x∗Ax)(x∗Cx) for all
non-zero x ∈ Cn. Given an elliptic or hyperbolic QEP, our aim is to compute the
smallest perturbation such that the corresponding property is lost by the perturbed
problem. This is clearly a distance problem (how much the problem can be altered
without losing its defining property?). The converse problem is also of interest (what
is the nearest QEP having the desired property?).

In [2], the first distance problem is tackled by making use of the Hermitian
matrix

W(x, A, B, C) =
[

2x∗Ax x∗Bx

x∗Bx 2x∗Cx

]
. (2)

Indeed, det W(x, A, B, C) is strictly positive for all non-zero x ∈ Cn if the QEP is
elliptic and det W(x, A, B, C) is strictly negative for all non-zero x ∈ Cn if the QEP
is hyperbolic. The minimal distance is computed by solving a non-convex global
optimization problem, from which the optimal perturbations can then be recovered.
As there is no guarantee to obtain a global optimum, this optimization problem can
be considered to be difficult to solve efficiently. Moreover, the perturbations have no
easy interpretation in the original polynomial setting.

In the sequel, we propose a simpler approach based on the trigonometric matrix
polynomial

P(ω)=sin2(ω)A + cos(ω) sin(ω)B + cos2(ω)C (3a)

=[
sin(ω)I cos(ω)I

] [
A B/2

B/2 C

] [
sin(ω)I

cos(ω)I

]
(3b)

from which optimal perturbations can be efficiently obtained. Note that P(ω) ≡
Q(λ)/(λ2 + 1) with λ = tan(ω).

Our solutions are based on the minimal and maximal eigenvalues of P(ω), re-
garded as a matrix function of ω. Once the critical frequency ω̂ is identified, an
appropriate eigenvector x̂ of P(ω̂) allows us to construct the optimal perturbation
�Q(λ). Sections 2 and 3 deal with elliptic-related and hyperbolic-related distance
problems, respectively.

Notation. The spectral norm of a matrix X is denoted by ‖X‖2 and its Frobenius
norm by ‖X‖F. The minimal and maximal eigenvalues of a Hermitian matrix X are
denoted by λmin(X) and λmax(X), respectively. Given perturbations �A, �B, �C

of the coefficients, �Q(λ)
.= λ2 �A + λ �B + �C and �P(ω)

.= sin2(ω) �A +
cos(ω) sin(ω) �B + cos2(ω) �C. The identity matrix is denoted by I .
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2. Distance problems related to elliptic QEP

The original definition of ellipticity is not convenient when dealing with distance
problems. However, an important characterization of elliptic systems is obtained by
considering the matrix polynomial Q(λ).

Theorem 1. The self-adjoint QEP (1) with A positive definite is elliptic if and only
if Q(λ) is positive definite for all λ ∈ R

Proof. This standard proof is based on the quadratic polynomial

x∗Q(λ)x = (x∗Ax)λ2 + (x∗Bx)λ + (x∗Cx), (4)

where x is any non-zero vector. Since A is positive definite, this polynomial is pos-
itive for all non-zero vector x if and only if (x∗Bx)2 − 4(x∗Ax)(x∗Cx) is strictly
negative for all non-zero vector x. Thus, the matrix polynomial Q(λ) is positive
definite on the real line if and only if the QEP (1) is elliptic. �

Corollary 2. The self-adjoint QEP (1) with A positive definite is elliptic if and only
if P(ω) is positive definite for all frequencies ω ∈ [−(π/2), π/2].

A Hermitian quadratic polynomial Q(λ) (or the associated trigonometric matrix
polynomial P(ω)) is therefore said to be elliptic if the corresponding QEP (1) is
elliptic.

Two distance problems related to elliptic QEP are:

• If Q(λ) is elliptic, find

�Q(λ) = λ2 �A + λ �B + �C (5)

of smallest norm∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥ (6)

such that Q(λ) + �Q(λ) is not elliptic.
• If Q(λ) is not elliptic, find

�Q(λ) = λ2 �A + λ �B + �C (7)

of smallest norm∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥ (8)

such that Q(λ) + �Q(λ) is elliptic.

The first distance problem is solved in both spectral and Frobenius norms by the
following theorem.
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Theorem 3. Let Q(λ) be elliptic. Any perturbation �Q(λ) such that Q(λ) + �Q(λ)

is not elliptic satisfies the inequality

rE �
∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥
2

�
∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥
F
, (9)

where rE = minω λminP(ω) > 0. Moreover, equality holds for the rank-one pertur-
bations[

�A �B/2
�B/2 �C

]
= −rE

([
sin(ω̂)

cos(ω̂)

] [
sin(ω̂) cos(ω̂)

]) ⊗ (x̂x̂∗) (10)

with ω̂ = arg minω λminP(ω) and P(ω̂)x̂ = rEx̂ (‖x̂‖2 = 1).

Proof. In order to get compact mathematical expressions, let us define the matrix
function

f (ω) =
[

sin(ω)I

cos(ω)I

]
. (11)

Any perturbation of Q(λ) which makes it non-elliptic must also perturb the appro-
priate eigenvalues of P(ω) so that it is not a strictly positive polynomial anymore. For
a given frequency ω, standard perturbation theory can be applied to P(ω). Because
of the inequality

λmin(P (ω)) − λmax(�P (ω)) � λmin(P (ω) + �P(ω)), (12)

any perturbation such that P(ω) loses its definiteness satisfies the following inequal-
ity

λmin

(
f (ω)∗

[
A B/2

B/2 C

]
f (ω)

)
�

∥∥∥∥f (ω)∗
[

�A �B/2
�B/2 �C

]
f (ω)

∥∥∥∥
2
.

(13)

From norm consistency,
∥∥∥∥f (ω)∗

[
�A �B/2

�B/2 �C

]
f (ω)

∥∥∥∥
2

�
∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥
2
‖f (ω)‖2

2. (14)

As f (ω)∗f (ω) = I , we have that ‖f (ω)‖2 = 1. Therefore, a minimization with re-
spect to ω yields

rE �
∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥
2
. (15)

The inequality ‖ · ‖2 � ‖ · ‖F is well known.
Let ω̂ = arg minω λminP(ω) and P(ω̂)x̂ = rEx̂ (‖x̂‖2 = 1). The perturbations de-

fined by[
�A �B/2

�B/2 �C

]
= −rE

([
sin(ω̂)

cos(ω̂)

] [
sin(ω̂) cos(ω̂)

]) ⊗ (x̂x̂∗) (16)



Y. Hachez, P. Van Dooren / Linear Algebra and its Applications 371 (2003) 31–44 35

satisfy∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥
2,F

= rE

and produce a non-elliptic polynomial. Indeed, by construction, we have

x̂∗(P (ω̂) + �P(ω̂))x̂ = 0 (17)

from which we conclude that the polynomial P(ω) + �P(ω) is not strictly positive
definite. As the quadratic polynomial Q(λ) + �Q(λ) is non-elliptic, our perturba-
tion is optimal. �

Remark 4. The above theorem also handles the case where only the matrix A is
perturbed. In that case, the non-elliptic QEP is obtain by modifying the matrix A so
that it loses positive definiteness.

Example 5. The QEP defined by

A =

2 0 0

0 3 0
0 0 4


 , B =


7/4 0 0

0 15/2 0
0 0 5


 , C =


7/2 1 0

1 8 1
0 1 4




(18)

is elliptic, see Fig. 1. Its minimal distance to a non-elliptic QEP is rE = 0.8460 and
the critical frequency is ω̂ = −1.0011. The optimal perturbations are obtained via
the eigenvector x̂ = [

0.3281 −0.8972 0.2956
]T.

A straightforward consequence of Theorem 1 is that the set of elliptic QEP is
an open convex set. Computing the distance between a non-elliptic QEP and this
set, which is our second distance problem, is therefore a badly defined problem.

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2
0

2

4

6

8

10

12

ω

λ i(P
(ω

))

Fig. 1. Eigenvalues of P(ω) for Example 5.
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However, the distance to the closure of this set and the associated boundary point
can be easily obtained. This problem can be solved using the recent parametrization
of non-negative matrix polynomials by positive semidefinite matrices [3].

Theorem 6. The Hermitian quadratic polynomial λ2A + λB + C is non-negative
on the real line if and only if there exists a matrix X such that[

A B/2 − X

B/2 + X C

]
� 0 (19)

and X = −X∗.

Indeed, the closure of the set of elliptic QEP is exactly the set of Hermitian qua-
dratic matrix polynomials non-negative on the real line, see Theorem 1. Depending
on the measure, the following convex problems provide us with the asymptotically
optimal perturbations:

• Spectral norm
min τ,

s.t. τ 2I �
[

�A �B/2
�B/2 �C

] [
�A �B/2

�B/2 �C

]∗
,

(20)[
A + �A B/2 + �B/2 − X

B/2 + �B/2 + X C + �C

]
� 0,

�A = �A∗, �B = �B∗, �C = �C∗, X = −X∗.
• Frobenius norm

min

∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥
2

F
,

s.t.

[
A + �A B/2 + �B/2 − X

B/2 + �B/2 + X C + �C

]
� 0, (21)

�A = �A∗, �B = �B∗, �C = �C∗, X = −X∗.

Both optimization problems can be recast as semidefinite programming problems in
a straightforward manner. Therefore, they are efficiently solvable in polynomial time
(up to any given accuracy) using modern interior-point methods [4–6].

An arbitrarily close elliptic QEP is then obtained from their solutions using an
appropriate shift. For instance, the polynomial Q(λ) + �Q(λ) + εI is elliptic, for
all ε > 0. Note that both optimization problems allow us to handle structured per-
turbations.

If we are only interested in the spectral norm, an optimal unstructured perturbation
is easy to obtain.

Theorem 7. Let Q(λ) be non-elliptic. Any perturbation �Q(λ) such that Q(λ) +
�Q(λ) is elliptic satisfies the strict inequality
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−rE <

∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥
2
, (22)

where rE = minω λminP(ω) � 0. For ε > 0, an arbitrarily close perturbation �Q(λ)

corresponds to �A = �C = (−rE + ε)I and �B = 0.

Proof. This proof is completely similar to the first part of the proof of Theorem 3
and is therefore omitted. �

Unfortunately, we were not able to obtain an explicit expression of the optimal
perturbations for the Frobenius norm.

Example 8. As shown on Fig. 2, the QEP defined by

A =

1 0 0

0 2 0
0 0 3


 , B =


7/4 0 0

0 15/2 0
0 0 5


 , C =


3/2 1 0

1 6 1
0 1 2




(23)

is neither elliptic nor hyperbolic. Its minimal distance to a boundary point of the
set of elliptic QEP’s is equal to −rE = 0.5163. The semidefinite formulation for the
spectral norm produces the optimal perturbations

�A =

 0.1639 −0.0698 0.0455

−0.0698 0.3047 −0.0126
0.0455 −0.0126 0.2644


 ,

(24)

�B =

−0.2008 0.0190 −0.0463

0.0190 −0.3208 0.0077
−0.0463 0.0077 −0.4003


 ,

�C =

 0.1062 −0.1081 0.0300

−0.1081 0.2476 −0.0379
0.0300 −0.0379 0.2278


 (25)

with ∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥
2

= 0.5163 = −rE.

If the Frobenius norm is used, we obtain

�A =

 0.0247 −0.1497 0.0605

−0.1497 0.2314 −0.1454
0.0605 −0.1454 0.1092


 ,

(26)

�B =

−0.0194 0.1123 −0.0658

0.1123 −0.1680 0.1525
−0.0658 0.1525 −0.1298


 ,
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Fig. 2. Eigenvalues of P(ω) for Example 8.

�C =

 0.0163 −0.0898 0.0745

−0.0898 0.1283 −0.1683
0.0745 −0.1683 0.1548


 (27)

with ∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥
F

= 0.5899.

In Theorems 3 and 7, our solutions are based on the quantity

rE = min
ω

λminP(ω), (28)

which can be computed in polynomial time (up to any given accuracy). Indeed, this
problem can be recast as a convex optimization problem, for which a global mini-
mum can be easily obtained. Of course, other standard methods in linear algebra can
also be adapted. In particular, the bisection and level set methods described in [2,7]
can be modified in a straightforward way to obtain a global minimum.

3. Distance problems related to hyperbolic QEP

There also exists a characterization of hyperbolic systems in terms of the matrix
polynomial Q(λ).

Theorem 9. The self-adjoint QEP (1) with A positive definite is hyperbolic if and
only if Q(λ) is negative definite for some λ ∈ R.

Proof. See the proof of Theorem 1 in [8]. �
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Corollary 10. The self-adjoint QEP (1) with A positive definite is hyperbolic if and
only if P(ω) is negative definite for some ω ∈ [−(π/2), π/2].

As before, there are two distance problems related to hyperbolic QEP:

• If Q(λ) is hyperbolic, find

�Q(λ) = λ2 �A + λ �B + �C (29)

of smallest norm∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥ (30)

such that Q(λ) + �Q(λ) is not hyperbolic.
• If Q(λ) is not hyperbolic, find

�Q(λ) = λ2 �A + λ �B + �C (31)

of smallest norm∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥ (32)

such that Q(λ) + �Q(λ) is hyperbolic.

Let us focus on the first distance problem. First, note that hyperbolicity of the QEP
(1) is lost by adding to A a perturbation of spectral norm equal to λmin(A), which
makes this matrix lose its definiteness. Hereafter, these perturbations �Q(λ) with
�B ≡ 0 and , �C ≡ 0 are said to be trivial. Of course, there also exist non-trivial
perturbations.

Theorem 11. Let Q(λ) be hyperbolic. Any non-trivial perturbation �Q(λ) such
that Q(λ) + �Q(λ) is not hyperbolic satisfies the inequality

−rH �
∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥
2

�
∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥
F
, (33)

where rH = minω λmaxP(ω) < 0. Moreover, equality holds for the rank-one pertur-
bations[

�A �B/2
�B/2 �C

]
= −rH

([
sin(ω̂)

cos(ω̂)

] [
sin(ω̂) cos(ω̂)

]) ⊗ (x̂x̂∗) (34)

with ω̂ = arg minω λmaxP(ω) and P(ω̂)x̂ = rHx̂ (‖x̂‖2 = 1).

Proof. As Q(λ) is hyperbolic, the matrix P(ω) is negative definite for at least one
frequency ω. In order to get at least one non-negative eigenvalue at all frequen-
cies, the eigenvalues of P(ω) must be shifted by a quantity greater than −rH =
− minω λmaxP(ω). This is a necessary condition for P(ω) to have a non-negative
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eigenvalue at the frequency ω̂ = arg minω λmaxP(ω). Therefore, the lower bound on
the norm of the perturbation is

−rH �
∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥
2
. (35)

The inequality ‖ · ‖2 � ‖ · ‖F is well known.
The perturbations defined by[

�A �B/2
�B/2 �C

]
= −rH

([
sin(ω̂)

cos(ω̂)

] [
sin(ω̂) cos(ω̂)

]) ⊗ (x̂x̂∗) (36)

satisfy∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥
2

= −rH

and yield a non-hyperbolic polynomial. Indeed, the perturbation �Q(λ) is non-
trivial so that the leading coefficient A + �A of Q(λ) + �Q(λ) is still positive
definite. Since we have

x̂∗(P (ω) + �P(ω))x̂

= [
sin(ω̂) cos(ω̂)

] [
x̂∗(A + �A)x̂ x̂∗(B + �B)x̂/2

x̂∗(B + �B)x̂/2 x̂∗(C + �C)x̂

] [
sin(ω̂)

cos(ω̂)

]
= 0,

(37)

the Schur complement of the two-by-two matrix[
x̂∗(A + �A)x̂ x̂∗(B + �B)x̂/2

x̂∗(B + �B)x̂/2 x̂∗(C + �C)x̂

]
(38)

with respect to its (1, 1)-entry is necessarily equal to 0. Up to the positive factor
x̂∗(A + �A)x̂, this is equivalent to

(x̂∗(B + �B)x̂)2 − 4(x̂∗(A + �A)x̂)(x̂∗(C + �C)x̂) = 0. (39)

Since x̂ is a non-zero vector, Q(λ) + �Q(λ) is by definition non-hyperbolic. �

Remark 12. In general, the above theorem does not handle any trivial perturbations.
It is therefore of paramount importance to compare the distance −rH with λmin(A)

in order to select the optimal perturbation. The complete procedure is illustrated in
Examples 13 and 14.

Example 13. The QEP defined by

A =

1/2 0 0

0 3/2 0
0 0 5/2


 , B =


7/4 0 0

0 15/2 0
0 0 5


 ,

(40)
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Fig. 3. Eigenvalues of P(ω) for Example 13.

C =

−1/2 1 0

1 4 1
0 1 0




is hyperbolic, see Fig. 3. Its minimal distance to a non-hyperbolic QEP is −rH =
0.4161 and the critical frequency is ω̂ = −0.9080. The optimal perturbations are
obtained via the associated eigenvector x̂ = [

0.6831 0.5617 0.4667
]T.

Example 14. The QEP defined by

A =

1/2 0 0

0 3/2 0
0 0 5/2


 , B =


7/4 0 0

0 15/2 0
0 0 5


 ,

(41)

C =

−3/2 1 0

1 3 1
0 1 −1




is hyperbolic, see Fig. 4. As the distance −rH = 0.8263 is greater than the mini-
mal eigenvalue of A, the optimal perturbation is the trivial one. We get that �A =
−0.5e0e

T
0 , �B = 0 and �C = 0 where e0 is the first canonical vector.

Let us now consider the second distance problem. Since the set of hyperbolic
QEP’s is not closed, we can only expect to compute a boundary point. As before, an
arbitrarily close hyperbolic QEP can then be obtained using an appropriate shift.
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Fig. 4. Eigenvalues of P(ω) for Example 14.

Theorem 15. Let Q(λ) be non-hyperbolic with positive definite A. Any perturbation
�Q(λ) such that Q(λ) + �Q(λ) is hyperbolic satisfies the strict inequality

rH <

∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥
2
, (42)

where rH = minω λmaxP(ω) � 0. For any ε > 0, an arbitrarily close perturbation
is [

�A �B/2
�B/2 �C

]
= −(rH + ε)

([
sin(ω̂)

cos(ω̂)

] [
sin(ω̂) cos(ω̂)

]) ⊗ I (43)

with ω̂ = arg minω λmaxP(ω).

Proof. As Q(λ) is non-hyperbolic, the matrix P(ω) has at least one non-negative
eigenvalue at all frequencies ω. In order to make P(ω) hyperbolic, we need to shift the
eigenvalues of P(ω) by a quantity strictly greater than rH = minω λmaxP(ω). At the
corresponding frequency ω̂ = arg minω λmaxP(ω), P(ω) could then become negative
definite. Therefore, the strict lower bound on the norm of the perturbation is

rH <

∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥
2
. (44)

For any ε > 0, the perturbations defined by[
�A �B/2

�B/2 �C

]
= −rH(1 + ε)

([
sin(ω̂)

cos(ω̂)

] [
sin(ω̂) cos(ω̂)

]) ⊗ I (45)

satisfy∥∥∥∥
[

�A �B/2
�B/2 �C

]∥∥∥∥
2

= rH(1 + ε)

and yield an hyperbolic polynomial.
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Indeed, at the frequency ω = ω̂ and for all unit vectors x, x∗(P (ω) + �P(ω))x �
−rHε. At the frequency ω = ω̂, P(ω) + �P(ω) is thus negative definite and the
polynomial Q(λ) + �Q(λ) is hyperbolic. �

Example 16. The QEP defined in Example 8 is neither elliptic nor hyperbolic. Its
minimal distance to a boundary point of the set of hyperbolic QEP’s is equal to rH =
0.5957. The critical frequency is ω̂ = −0.9785 and the associated perturbations are

�A = −0.4101(1 + ε)I3, �B = 0.5519(1 + ε)I3,

�C = −0.1857(1 + ε)I3
(46)

with ε > 0.

In Theorems 11 and 15, our solutions are based on the quantity

rH = min
ω

λmaxP(ω). (47)

Although this problem cannot be recast as a convex optimization problem, other
standard methods in linear algebra can be applied to obtained the global minimum.
In particular, the bisection and level set methods described in [2,7] can be modified
in a straightforward way.
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