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1. Introduction

A linear time-invariant discrete-time system

x(k+1) = Ax(k) (1)

is known to be stable if and only ifρ(A) < 1.

Models of real world dynamical phenomena often involve positive quantities. A dynamical system

(1) is calledpositiveif any trajectory of the system starting in the positive orthantRn
+ remains inR

n
+.

This is the case if and only if the matrixA has only real nonnegative entries. In many cases, it may be

useful to consider systems with a known “nominal” partA and a unknown partK which may represent

uncertainty :

x(k+1) = (A+K)x(k). (2)

The robustness of (2) will then depend on the size of the setSsuch that

ρ(A+K) < 1 ∀K ∈ S.

One particular approach consists of considering structured matricesK = E1∆ET
2 where∆ is the

unknown disturbance andE1 andE2 are fixed matrices. The problem is then to find thestability radius

of A with respect to nonnegative perturbations of structure(E1, ET
2 ) which is defined by

rR+(A;E1,E
T
2 ) := inf{‖∆‖ ;∆ ≥ 0,ρ(A+E1∆ET

2 ) ≥ 1}.

All perturbations in the following set

S:=
{

E1∆ET
2 |‖∆‖ < rR+(A;E1,E

T
2 )

}

are then shown to yield a stable systemA+K. This problem is solved in [5] and a computable formula

is provided.
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MAXIMAL STABILITY REGION OF A PERTURBED NONNEGATIVE MATRIX 3

In this paper we extend these results into a particular direction. We will only consider perturbations

matrices∆ in the setD of nonnegativediagonal matricesD = {diag{k1, . . . ,km} | ki ≥ 0}. The

parameterski are the so-called free parameters occurring in the matrixK, E1 andE2 are two matrices

placing the elements in appropriate positions inK. The two matricesE1 andET
2 have the following

properties : there is a non-zero element in rowi and columnj of E1 if k j is present in rowi of K and of

ET
2 if ki is present in columnj of K. We clarify this by an example : if

K =











2k1 0 0

0 0 k2

k1 0 0











,

then

∆ =







k1 0

0 k2







, E1 =











2 0

0 1

1 0











, ET
2 =







1 0 0

0 0 1







.

We will restrict ourselves to matricesK for which bothE1 and E2 are nonnegative as well :E1 ≥

0, E2 ≥ 0. Notice that if one of the parameters appears in several rows and columns, it will be repeated

several times in the diagonal matrix∆.

The problem is to find the biggest setSD ⊆

{

E1∆ET
2

∣
∣
∣
∣

∆ ∈ D

}

containing the origin and all the

perturbations such that the system remains stable :

SD :=
{

K = E1∆ET
2 | ∆ ∈ D , ρ(A+K) < 1

}

whereA,E1,E2,∆ are nonnegative matrices. Let us point out that this is in fact a starlike set.

Theorem 1.1. The set SD is a starlike set.

Proof From [1], we know that ifA,B≥ 0 thenρ(A+B)≥ ρ(A). It implies that ifK ∈ SD

ρ(A+K) < 1⇒ ρ(A+ αK) < 1 ∀α 0≤ α ≤ 1
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4 B. HAUT, G. BASTIN, P. VAN DOOREN

andαK ∈ SD . If K 6∈ SD then

ρ(A+K)≥ 1⇒ ρ(A+ βK)≥ 1 ∀β 1≤ β

andβK 6∈ SD .

Since the spectral radius is a continuous function of the parameterK, the boundary of the setSD is

described by

∂SD = {K | ∃i, ki = 0 & ρ(A+K)≤ 1 or ρ(A+K) = 1 & K ≥ 0}

Examples show later that this set is in general not convex.

On the one side, the problem solved in [5] is more general because it does not assume that the

perturbation∆ is diagonal. But, on the other side, when∆ is diagonal, their problem is more restrictive

than the one addressed in this paper. All the operator norms induced by an arbitrary monotonic norm on

R
n of a diagonal matrix are equal to the maximum of the elements of the matrix (see [6]). It means that

the setSconsidered in [5] is a box withki ≤ km
i andkm

1 = . . . = km
n and hence a convex subset ofSD . We

will show that there exists a maximum starlike setSD = {E1∆ET
2 | ∆ ∈ D} for which all matricesK in

SD lead to stableA+K and we will describe the boundary of this set in terms of polynomial equations.

2. Maximal perturbation of nonnegative matrices

First we develop some new theoretical results and we then present an algorithm for computing∂SD .

2.1. Theoretical results

In this section we show that the problem may be decoupled in smaller subproblems involving only a

subset of the parameterski . To each of these subproblems there corresponds a starlike setSDi for which

we obtain an analytical expression. The setSD is the intersection of the setsSDi .
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MAXIMAL STABILITY REGION OF A PERTURBED NONNEGATIVE MATRIX 5

SinceK = E1∆ET
2 is nonnegative and since the eigenvalues are continuous functions of the matrix

elements, we have that the critical switch betweenρ < 1 andρ ≥ 1 will occur when

ρ(A+E1∆ET
2 ) = 1.

Working only with positive matrices, we have that the spectral radius is also an eigenvalue and hence

the above condition is equivalent to

det(A+E1∆ET
2 − I) = 0

and

det(E1∆ET
2 − (I −A)) = 0.

Since det(I −A) 6= 0 (ρ(A) < 1) we can multiply the previous equation by det(I −A)−1 to obtain

det((I −A)−1E1∆ET
2 − I) = 0.

Using the fact that

det(MN− I) = 0⇔ det(NM− I) = 0

this is also equivalent to

det(ET
2 (I −A)−1E1∆− I) = 0

whereM := ET
2 (I −A)−1E1 is nonnegative since(I −A)−1 = ∑∞

i=1Ai andE1,E2 are nonnegative. We

can use Lemma 2.1 (see [4]) to transformM to a normal formM̂.

Lemma 2.1. Every nonnegative matrix A has a normal form which can obtained under congruent

permutations :

Â = PAPT =











Â11 0

. . .

∗ Âmm











(3)

where each diagonal block̂Aii is square, irreducible or just a1×1 zero bock.
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Applying the same permutation to∆, we define∆̂ = P∆PT and have

det(M̂∆̂− I) = 0.

This clearly decomposes in a number of decoupled problems

det(M̂ii ∆̂ii − I) = 0.

This polynomial equation describes a part of∂SDi . The intersection of all these sets leads to the

admissible setSD . Let us solve the subproblems :

• Let M̂ii = 0 then det(M̂ii ∆̂ii − I) 6= 0 for all bounded∆̂ii ;

• Let M̂ii 6= 0 and irreducible. If the sizeni of M̂ii = [mr,c]
ni
r,c=1 is small enough, the problem can be

exactly solved.

– If ni = 1, the solution is trivial det(m11k1−1) = 0 for k1 = m−1
11 .

– If ni = 2, we have det













m11 m12

m21 m22













k1 0

0 k2







− I







= 0 or equivalently :

(m11m22−m12m21)k1k2−m11k1−m22k2 +1 = 0. (4)

The stable region for thek1,k2 is thus a starlike set with boundary defined by (4) and

k1,2 = 0 (see Fig. 1).

– If ni = 3, we have

det(M̂ii ∆̂ii − I) = 0

or equivalently :

det(M̂ii )k1k2k3 +(m21m12−m11m22)k1k2 +(m13m31−m11m33)k1k3

+(m23m32−m22m33)k2k3 +m11k1 +m22k2 +m33k3−1 = 0. (5)
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1
m11

1
m22

k2

k1

Figure 1. The largest set of the parameterk1 andk2 containing the origin such thatA+E1∆ET
2 is stable.

1
m11

0

k1

1
m22

0

k2

1
m33

0

k3

Figure 2. The boundary of the largest set (k1,k1,k3) containing the origin such thatA+E1∆ET
2 is stable
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The stable region for theki is thus also a starlike set which boundaries are defined by (5)

andk1,2,3 = 0 (see Fig. 2).

– It may happen that a coefficientki appears in different blockŝ∆ii . For example, if

A =















a11 a12

a21 a22

a33 a34

a43 a44















, K =















k1

k2

k3

k1















then

∆̂11 =







k1

k2







, ∆̂22 =







k3

k1







.

In this case, the admissible set for(k1,k2,k3) is simply the intersection of the two sets

obtained by analysing the two subproblems. This is illustrated in Figure 3.

min( 1
m11

,
1

m44
)

1
m33

0

k3 min( 1
m22

,
1

m33
)

k2

k1

k3

Figure 3. The admissible set is the intersection of the two admissible sets.
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2.2. Modified problem

In the above analysis the setsSDi can become quite complex to describe ifni becomes large, since one

has to solve polynomial equation of degreeni in several variables. We describe here two approximation

of the original problem that are easier to compute. The approximation consists in finding necessary

conditions to ensure stability (i.e. a subset ofSDi ).

For example, one can freeze one particularki and express the conditions on the remaining

parameters. This subset will be a slice ofSDi . This subset is still starlike in the leftover parameter.

One other possibility is to express a condition on the maximum of theki in the same way as [5]. The

following result is a refinement of the global bound obtainedin [5]. Let ρi be the spectral radius ofMii

then

det(M̂ii ∆̂ii − I) 6= 0 for ∆̂ii < ρ−1
i I

det(M̂ii ∆̂ii − I) = 0 for ∆̂ii = ρ−1
i I .

Proof Let xi be the Perron vector of the irreducible matrixM̂ii . It is well known (see [4]) that for an

irreducible matrix the so-called Perron vectorxi corresponding to the (positive) Perron rootρi is strictly

positive. Therefore

M̂ii xi = ρixi , xi > 0

then clearly

(M̂ii ρ−1
i I − I)xi = 0 ∆̂ii = ρ−1

i I

Also for ∆̂ii < ρ−1
i I

det(M̂ii ∆̂ii − I) 6= 0

since there exists a scaling

∥
∥D−1M̂ii D

∥
∥

∞ = ρi

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2007;1:1–1
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and clearly

∥
∥D−1M̂ii ∆̂ii D

∥
∥

∞ =
∥
∥D−1M̂ii D∆̂ii

∥
∥

∞ < 1.

Therefore we can claim that all matrices∆ in the following set

S=







∆ |











∆̂11

. . .

∆̂mm











= P∆PT ∆̂ii <







any bounded value ifρi = 0

ρ−1
i I if ρi 6= 0







are such that

ρ(A+E1∆ET
2 ) < 1.

The problem may thus be split into several subproblems. If the subproblems are small enough, we

may have some analytical necessary and sufficient conditions. If the subproblems are more complex,

to ensure thatρ(A+E1∆ET
2 ) < 1, sufficient conditions may be used such as freezing aki or imposing

that for eachM̂ii 6= 0, ∆̂ii < ρ−1
i I .

2.3. Algorithm

The results presented in the previous section can be used to construct the setSD , in the following

manner :

1. Compute the matrixM := ET
2 (I −A)−1E1 and perform permutations to put it under the normal

form (3). This can be done by applying the following algorithm :

(a) Use Tarjan’s algorithm [7] to find the set of strongly connected subgraphs associated to the

graphG defined by the Adjacency MatrixMad (Mad
i, j = 1 if Mi, j 6= 0, Mad

i, j = 0 otherwise).

(b) Consider a new graphG′ whose nodes represent the strongly connected subgraphs : two

nodesi and j of G′ are connected if there exists one edge between a node ofG in the

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2007;1:1–1
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subgraphi and a node ofG in the subgraphj. The adjacency matrix of this new graph

G′ can be computed simply fromMad by first summing up the rows corresponding to the

same subgraph and then summing up the columns correspondingto the same subgraph.

(c) Identify a leafi of the graphG′ (which always exists because there is no cycle inG′) and

permute the columns and the rows ofM corresponding to the subgraphi at the beginning

of the matrix. Suppress nodei from G′. Repeat 1c untilM is in canonical form (3).

2. For each of thêMii blocks, express the condition det(M̂ii ∆̂ii − I) = 0 which describes a part of the

boundary ofSD . If the size ofM̂ii is too high, a more restrictive condition such as first freezing a

ki or a condition in term ofρ(M̂ii ) can be used.

It can be now claimed that, if

(k1, . . . ,kn) ∈ SD

then

ρ











A+E1











k1

. . .

kn











ET
2











< 1.

3. Application to the control of hyperbolic systems of conservation laws

As a matter of illustration, we present in this section an application to the control design for hyperbolic

systems of conservation laws, with a typical example from waterways networks management (see e.g.

[2]). We consider a set ofN systems of two linear conservation laws of the general form :

∂thi(t,x)+ ∂xqi(t,x) = 0 (6)

∂tqi(t,x)+ αβ ∂xhi(t,x)+ (α −β )∂xqi(t,x) = 0 (7)

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2007;1:1–1

Prepared usingrncauth.cls



12 B. HAUT, G. BASTIN, P. VAN DOOREN

where :

• i = 1, . . . ,N

• t andx are two independent variables : a time variablet ∈ [0,+∞) and a space variablex∈ [0,L]

on a finite interval ;

• (h,q) ; [0,+∞)× [0,L] → Ω ⊂ R
2 is the vector of the two dependent variables (i.e.h(t,x) and

q(t,x) are the two states of the system) ;

• α andβ are two real positive constants.

The first equation (6) is a conservation law withhi the conserved quantity andqi the flux. The

second equation (7) is a conservation law withqi the conserved quantity andαβhi +(α − β )qi the

flux. A typical example is given by the shallow water equations that are used for the modelling of

1-D water flow in open channels and where (6) is a mass conservation equation and (7) a momentum

conservation equation.

As a matter of illustration, we shall consider here the connection of three reaches as represented in

Figure 4. In this case, the model (6)–(7) represents the shallow water equations linearised around a

steady state with

hi(t,x) = Hi(t,x)− H̄i

qi(t,x) = Qi(t,x)− Q̄i

whereHi(t,x) andQi(t,x) are the water level and the flow rate in the pools respectively, while H̄i and

Q̄i are the steady-state set points. The control variables are the flows between the reachesui = qi which

can be achieved by choosing the appropriate vertical position of the spillways located between the

pools.

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2007;1:1–1

Prepared usingrncauth.cls



MAXIMAL STABILITY REGION OF A PERTURBED NONNEGATIVE MATRIX 13

H1(t, x)

Q1(t, x)

Q2(t, x)

Q3(t, x)

H2(t, x)

H3(t, x)

Q3

Q2

Q1

Q0

Figure 4. A canal with three reaches and four gates.

The six boundary conditions necessary to have a well-posed system are

q1(t,0) = u0

q1(t,L) = u1

q2(t,L) = u2

q3(t,L) = u3

q1(t,L) = q2(t,0)

q2(t,L) = q3(t,0).

The first four conditions are imposed by the controls. The last two conditions express the flow

conservation.

As shown e.g. in [2], it is convenient to work with theRiemann coordinatesdefined by the following

change of coordinates :

ai(t,x) = qi(t,x)+ βhi(t,x)

bi(t,x) = qi(t,x)−αhi(t,x).

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2007;1:1–1
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With these coordinates, the system (6)-(7) is rewritten under the following diagonal form :

∂t







ai(t,x)

bi(t,x)







+







+α 0

0 −β







∂x







ai(t,x)

bi(t,x)







= 0 ∀i ∈ 1, . . . ,3 (8)

and the boundary conditions are expressed as :

αa1(t,0)+ βb1(t,0)

α + β
= u0

αa1(t,L)+ βb1(t,L)

α + β
= u1

αa2(t,L)+ βb2(t,L)

α + β
= u2

αa3(t,L)+ βb3(t,L)

α + β
= u3

αa1(t,L)+ βb1(t,L)

α + β
=

αa2(t,0)+ βb2(t,0)

α + β
αa2(t,L)+ βb2(t,L)

α + β
=

αa3(t,0)+ βb3(t,0)

α + β
.

We consider the situation where each controlui(t) is a linear function of only one state variable, as

follows :

u0 function ofb1(t,0) u0 = k′0b1(t,0)

u1 function ofa1(t,L) u1 = k′1a1(t,L)

u2 function ofa2(t,L) u2 = k′2a2(t,L)

u3 function ofa3(t,L) u3 = k′3a3(t,L).

With the following reparametrization :

k0 = −
β
α

+
(α + β )

α
k′0

ki = −
α
β

+
(α + β )

β
k′i i = 1, . . . ,3
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the boundary conditions are written as :




















b1(t,L)

b2(t,L)

b3(t,L)

a1(t,0)

a2(t,0)

a3(t,0)





















=





















0 0 0 k1 0 0

0 0 0 0 k2 0

0 0 0 0 0 k3

k0 0 0 0 0 0

0 − β
α 0 1+ β

α (k1) 0 0

0 0 − β
α 0 1+ β

α (k2) 0





















︸ ︷︷ ︸

A+K

·





















b1(t,0)

b2(t,0)

b3(t,0)

a1(t,L)

a2(t,L)

a3(t,L)





















(9)

where A is fixed andK has a fixed structure but the values of its non-zero entries are linear

combinations of the “free parameters”ki . In this case,K is the part of the matrix which reflects the

choice made by the operator for the control parameters andA reflects the conservation of the flow.

The problem studied here is to find the largest range of valuesfor the control parameterski such

that the system remains stable. Stability means here that, from any smooth enough initial condition,

the Cauchy problem for system (8) with boundary conditions (9) has a unique classical solution that

exponentially converges to the origin.

From Theorem 6 in [3], we know that a sufficient stability condition is that :

ρ(|A+K|) < 1

where|A+K| denotes the matrix whose entries are the absolute values of the entries ofA+K. We are

thus interested in finding a setSsuch thatρ(|A+K|) < 1 ∀K ∈ S.

From [1], we know that ifA,B≥ 0 thenρ(A+B)≥ ρ(A). It implies that

ρ(|A+K|) ≤ ρ(|A|+ |K|)

and the setSmay be found using the algorithm presented in Section 2.3.

If we apply the algorithm proposed in Section 2.3 with the following numerical values :

α = 3.6

β = 2.6,

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2007;1:1–1
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we obtain that there exists three blocksM̂ii (one of dimension 2 and two of dimension one). The

different coefficients must be bounded as follow

|k0k1| < 1

|k2| < 1.38

|k3| < 1.38

in order to guarantee the stability of the system. This decomposition in three blocks is quite natural

since only the two first parameters influence the stability ofthe first reach. If the first reach is stable,

only the parameterk2 has an influence on the stability of the second reach. Eventually k3 controls the

stability of the third reach.

The decoupling of the problem in smaller subproblem allows to increase the possible value of some

parameters which may have a positive influence on the global behaviour of the system. In the example

of Section 3, if we take the sufficient condition presented in[5] all the parameters must be bounded by

1. The decomposition in subproblems allows us to increase the value ofk3 andk4 up to 1.38. It also

allows to selectk0 > 1 providedk1 is small enough and conversely.

4. Conclusions

In this paper, we have considered the problem of finding the largest set of perturbation such that a

positive matrix remains stable. We have extended the results of [5] in the particular case where the

perturbation matrix∆ is diagonal. In this case, the problem can be decoupled in smaller subproblems.

For each of the subproblems, necessary and sufficient analytical conditions were derived to describe the

starlike sets of admissible parameters. Outside of these sets, the perturbation destabilises the system.
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These sets, which are not necessarily convex, contain the largest admissible ball described in [5].
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