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2 B. HAUT, G. BASTIN, P. VAN DOOREN

1. Introduction

A linear time-invariant discrete-time system
X(k+ 1) = Ax(k) Q)

is known to be stable if and only g(A) < 1.

Models of real world dynamical phenomena often involve pasiquantities. A dynamical system
(1) is calledpositiveif any trajectory of the system starting in the positive antR", remains inR" .
This is the case if and only if the matrixhas only real nonnegative entries. In many cases, it may be
useful to consider systems with a known “nominal” pagnd a unknown pak which may represent
uncertainty :

x(k+1) = (A+ K)x(k). 2
The robustness of (2) will then depend on the size of th&seth that
p(A+K)<1l VKesS

One particular approach consists of considering strudtunatricesK = ElAEZT whereA is the
unknown disturbance arigh andE; are fixed matrices. The problem is then to find stebility radius

of A with respect to nonnegative perturbations of struc{ige EQT) which is defined by
re, (AJE1,E]) :=inf{||A];A > 0,p(A+E1AE] ) > 1}.
All perturbations in the following set
S:={E1AE] | ||| < rr, (AJELED)}

are then shown to yield a stable systdns K. This problem is solved in [5] and a computable formula
is provided.
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MAXIMAL STABILITY REGION OF A PERTURBED NONNEGATIVE MATRIX 3

In this paper we extend these results into a particular tiinecWe will only consider perturbations
matricesA in the setZ of nonnegativediagonal matrices? = {diag{ky,...,km} | ki > 0}. The
parameterg; are the so-called free parameters occurring in the mHtrix; andE, are two matrices
placing the elements in appropriate positionKinThe two matrice€; and E2T have the following
properties : there is a non-zero element in f@md columnj of E; if kj is present in row of K and of
E2T if ki is present in column of K. We clarify this by an example : if

2ki 0 O

K=l 0 0 k|-

ki 0 O
then
2 0
ky O 1 00
A= , El: 0 11 Eér:
0 ko 0 0 1
10

We will restrict ourselves to matrices for which bothE; and E, are nonnegative as wellg; >
0, E» > 0. Notice that if one of the parameters appears in several radgsalumns, it will be repeated
several times in the diagonal matiix

The problem is to find the biggest s8} C {ElAEZT

Ae @} containing the origin and all the

perturbations such that the system remains stable :
S, = {K=EAE] |A€ 2, p(A+K) < 1}
whereA, E;, E», A are nonnegative matrices. Let us point out that this is indastarlike set.

Theorem 1.1. The set $ is a starlike set.

Proof From [1], we know that ifA,B > 0 thenp(A+B) > p(A). Itimplies that ifK € Sy

p(A+K)<1l=p(A+aK)<1l Va 0<a<1
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4 B. HAUT, G. BASTIN, P. VAN DOOREN
andaK € Sy. If K € Sy then
p(A+K)>1=p(A+BK)>1 VB 1<

andpK € Sy. |

Since the spectral radius is a continuous function of thampaterK, the boundary of the s& is

described by
0Sy ={K|3i, k=0& p(A+K)<1 or p(A+K)=1&K>0}

Examples show later that this set is in general not convex.

On the one side, the problem solved in [5] is more general usec@ does not assume that the
perturbatiom is diagonal. But, on the other side, wh&is diagonal, their problem is more restrictive
than the one addressed in this paper. All the operator nordaused by an arbitrary monotonic norm on
R" of a diagonal matrix are equal to the maximum of the elemdirttssomatrix (see [6]). It means that
the setSconsidered in [5] is a box witk < k™ andk{" = ... = k{'and hence a convex subsef. We
will show that there exists a maximum starlike Sgt= {E1AE] | A € 2} for which all matrice in

Sy lead to stablé+ K and we will describe the boundary of this set in terms of poiyial equations.

2. Maximal perturbation of nonnegative matrices

First we develop some new theoretical results and we theseptan algorithm for computingS,.

2.1. Theoretical results

In this section we show that the problem may be decoupled adlemsubproblems involving only a
subset of the parameteks To each of these subproblems there corresponds a stati®e sor which
we obtain an analytical expression. The Sgtis the intersection of the se8s; .
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MAXIMAL STABILITY REGION OF A PERTURBED NONNEGATIVE MATRIX 5
SinceK = ElAEZT is nonnegative and since the eigenvalues are continuogtidas of the matrix
elements, we have that the critical switch betwpen 1 andp > 1 will occur when
p(A+EAE]) = 1.

Working only with positive matrices, we have that the spdatadius is also an eigenvalue and hence

the above condition is equivalent to
de{A+E;AE] —1)=0

and

de(E;AE] — (1 —A)) =0.

Since defl —A) # 0 (o(A) < 1) we can multiply the previous equation by det A)~* to obtain

det((I —A)E1AE] —1) =0.
Using the fact that

detfMN—1)=0< defNM—1)=0

this is also equivalent to

detE] (1 —A)'E1A—1)=0
whereM := EJ (I — A)"1E; is nonnegative sinc —A)~! = 3 ; A’ andEy, E, are nonnegative. We

can use Lemma 2.1 (see [4]) to transfavirto a normal formi.

Lemma 2.1. Every nonnegative matrix A has a normal form which can oledionder congruent

permutations :

A=PAP" = ©)

where each diagonal blodk; is square, irreducible or just 4 x 1 zero bock.
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6 B. HAUT, G. BASTIN, P. VAN DOOREN
Applying the same permutation fy we defineA = PAPT and have
detfMA—1)=0.
This clearly decomposes in a number of decoupled problems
detM;iAj — 1) =0.
This polynomial equation describes a partafy. The intersection of all these sets leads to the

admissible se$. Let us solve the subproblems :

e LetM; = 0 then defM; A — 1) # O for all boundedh; ;
o LetM; # 0 and irreducible. If the size, of M = [m,,c][‘jczl is small enough, the problem can be

exactly solved.

— If nj = 1, the solution is trivial dgtm1k; —1) =0 fork; = mﬁl.

m1 mpp| [k O _
— If ny =2, we have de —1 | =0orequivalently:
My Mg/ \ 0 ke

(M11Mp2 — My2mp1)Ki ko — My 1k — mpoko +1=0. 4)

The stable region for thi, ks, is thus a starlike set with boundary defined by (4) and
ki2 =0 (see Fig. 1).
— If =3, we have
de(M;i; —1)=0

or equivalently :

det M )kikoks + (Mp1my2 — Myamp2)Kgka + (Miameg — Myamaa)keks

+ (Mp3ma2 — MpoMiz) Kokz + My 1ky + Mpoko +mMesks —1=0. (5)

Copyright(© 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@007;1:1-1

Prepared usingncauth.cls
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Figure 1. The largest set of the paraméteandk, containing the origin such that+ ElAEzT is stable.
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Figure 2. The boundary of the largest dat, k1, k3) containing the origin such thét+ ElAEzT is stable
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8 B. HAUT, G. BASTIN, P. VAN DOOREN

The stable region for thig is thus also a starlike set which boundaries are defined by (5)
andk; 23 =0 (see Fig. 2).

— It may happen that a coefficiektappears in different blocks; . For example, if

a1 an kq
a1 az2 ko
A= , K=
az3 azs ks
3 aus kq
then
R kq R ks
Ag = , Dop=
ko kq

In this case, the admissible set figa, ko, k3) is simply the intersection of the two sets

obtained by analysing the two subproblems. This is illusttan Figure 3.
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Figure 3. The admissible set is the intersection of the twoissible sets.
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MAXIMAL STABILITY REGION OF A PERTURBED NONNEGATIVE MATRIX 9
2.2. Modified problem

In the above analysis the s&g, can become quite complex to describajibecomes large, since one
has to solve polynomial equation of degreé several variables. We describe here two approximation
of the original problem that are easier to compute. The appration consists in finding necessary
conditions to ensure stability (i.e. a subseg).

For example, one can freeze one partictarand express the conditions on the remaining
parameters. This subset will be a sliceSgf. This subset is still starlike in the leftover parameter.

One other possibility is to express a condition on the maxrmnofithek; in the same way as [5]. The
following result is a refinement of the global bound obtaiirefb]. Let p; be the spectral radius o;;

then
det(l\?liiAii —-1) # 0 fOI’Aii < pifll

det(l\?lii&i —|) =0 fOI’Aii = pifll.

Proof Letx; be the Perron vector of the irreducible matill. It is well known (see [4]) that for an
irreducible matrix the so-called Perron vectpcorresponding to the (positive) Perron rppis strictly
positive. Therefore

MiX; = pix;, X >0
then clearly

(Mip =) =0  Ai=p7 0

Also for A < p 1

det(Miij —1) #0
since there exists a scaling

|0 WD), =p
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10 B. HAUT, G. BASTIN, P. VAN DOOREN

and clearly

HDflMiiAiiDHm = HDilMii DAii <1l

HOO

Therefore we can claim that all matric&sn the following set
A1 )
R any bounded value b =0
s=<A| =PAPT  Aj<

A - if o #0
A o} pi #

are such that

p(A+EAE]) < 1.

The problem may thus be split into several subproblemsefsiibproblems are small enough, we
may have some analytical necessary and sufficient conditlbthe subproblems are more complex,
to ensure thap (A+ ElAEZT) < 1, sufficient conditions may be used such as freezikgoa imposing

that for eachVij # 0, A < p 2.

2.3. Algorithm

The results presented in the previous section can be useshgiract the se§y, in the following

manner :

1. Compute the matriM := EZT(I — A)E; and perform permutations to put it under the normal

form (3). This can be done by applying the following algamith

(a) Use Tarjan’s algorithm [7] to find the set of strongly cented subgraphs associated to the
graphG defined by the Adjacency Matrd2® (M2 = 1 if M; j # 0, M2 = 0 otherwise).

(b) Consider a new grap®’ whose nodes represent the strongly connected subgrapbs : tw
nodesi and j of G’ are connected if there exists one edge between a no@eifthe
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MAXIMAL STABILITY REGION OF A PERTURBED NONNEGATIVE MATRIX 11

subgraph and a node ofs in the subgraplj. The adjacency matrix of this new graph
G can be computed simply from2d by first summing up the rows corresponding to the
same subgraph and then summing up the columns correspdndimgsame subgraph.

(c) Identify a leafi of the graphG’ (which always exists because there is no cycl&inand
permute the columns and the rowshMfcorresponding to the subgrapht the beginning

of the matrix. Suppress nodlérom G'. Repeat 1c untiM is in canonical form (3).

2. For each of thé; blocks, express the condition cﬂh?l;i Aii —1) =0 which describes a part of the
boundary ofS,. If the size ofVi; is too high, a more restrictive condition such as first fregz

ki or a condition in term ob(|\7|ii) can be used.

It can be now claimed that, if
(k1,...,kn) € Sy

then

p| A+E; Bl | <1

3. Application to the control of hyperbolic systems of canagion laws

As a matter of illustration, we present in this section anligapion to the control design for hyperbolic
systems of conservation laws, with a typical example frortewegays networks management (see e.g.

[2]). We consider a set dfl systems of two linear conservation laws of the general form :

ahi(t,x) +dkai(t,x) = 0 (6)
aqi(t,x) + aBoxhi(t,x)+ (a —B)oai(t,x) = 0 )
Copyright(© 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@007;1:1-1
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12 B. HAUT, G. BASTIN, P. VAN DOOREN

t andx are two independent variables : a time variab#e[0, +-0) and a space variablec [0, L]

on a finite interval ;

(h,q) ; [0,4) x [0,L] — Q C R? is the vector of the two dependent variables (g, x) and
q(t,x) are the two states of the system) ;

e o andp are two real positive constants.

The first equation (6) is a conservation law wihhthe conserved quantity arg the flux. The
second equation (7) is a conservation law witithe conserved quantity ar@h; + (o — 3)q; the
flux. A typical example is given by the shallow water equatidhat are used for the modelling of
1-D water flow in open channels and where (6) is a mass conganequation and (7) a momentum

conservation equation.

As a matter of illustration, we shall consider here the catina of three reaches as represented in
Figure 4. In this case, the model (6)—(7) represents thdashalater equations linearised around a

steady state with

hi(t,x) = Hi(t,x)—Hi

I
o)
x
I
o)

gi(t,x)

whereH;(t,x) andQ;(t,x) are the water level and the flow rate in the pools respectivdiijle H; and
Q are the steady-state set points. The control variablefarowvs between the reachgs= g; which
can be achieved by choosing the appropriate vertical posif the spillways located between the
pools.
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— Qs

H(t,x) — .

Hy(t, z) —

Qalt.x) Hy(t, )

Figure 4. A canal with three reaches and four gates.

The six boundary conditions necessary to have a well-posstdra are

q1(t,0) = uw
qutl) = u
RtLl) = u
g(t,L) = us

ql(ta L) = qZ(taO)

qZ(taL) = Q3(ta0)

The first four conditions are imposed by the controls. The ta® conditions express the flow

conservation.

As shown e.g. in [2], it is convenient to work with tRReemann coordinatedefined by the following

change of coordinates :

a(t,x) = q(t,x)+Bhi(t,x)
bi(t,x) = qi(t,x)—ahi(t,x).

Copyright(© 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@007;1:1-1

Prepared usingncauth.cls



14 B. HAUT, G. BASTIN, P. VAN DOOREN
With these coordinates, the system (6)-(7) is rewritteneuige following diagonal form :

a(t,x) +a O a(t,x) )
+ Ox =0 viel,...,3 (8)
bi (t,X) 0 _B bi (t,X)
and the boundary conditions are expressed as :

Cfal(t, 0) + Bbl(tvo)

a+p - W
aay(t,L)+ Bba(t,L) "
a+p !
aag(t,L)+Bby(t,L) u
a+pB -
aaG(tv L) +Bb3(ta L) - u
a+pB -
aar(t,L)+Bby(t,L) aax(t,0)+ Bby(t,0)
a+pB N a+pB
aap(t,L)+pBby(t,L) aag(t,0)+ Bba(t,0)
a+pB N a+pB '

We consider the situation where each contr@) is a linear function of only one state variable, as

follows :

Up function ofby (t, 0) Uo = kpbs (t,0)
uz function ofay (t,L) up = Kjag(t,L)
up function ofa(t,L) Uz = Koap(t,L)
us function ofag(t,L) uz = ksag(t,L).

With the following reparametrization :

B, (a+B)
= LIS D
ko a a k6
a (a+pB) .
ki = _E+ 5 K i=1,...,3
Copyright© 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@007;1:1-1

Prepared usingncauth.cls



MAXIMAL STABILITY REGION OF A PERTURBED NONNEGATIVE MATRIX 15

the boundary conditions are written as :

by(t,L) 0 0 0 ke 0 0\ (bit,0)
ba(t,L) 0 0 0 0 ko 0| |b2t0
bs(t,L) _ 0 o 0 0 0 ks ‘ bs(t,0) ©)
au(t,0) k 0 0 0 0 o| |au
ay(t,0) 0 -8 0o 118w 0 0| |aL
aa(t,0) o o -B 0 1+58k) o) \astL)

A+K
where A is fixed andK has a fixed structure but the values of its non-zero entrieslinear

combinations of the “free parameterg’ In this caseK is the part of the matrix which reflects the
choice made by the operator for the control parameter®aeflects the conservation of the flow.

The problem studied here is to find the largest range of vdtuethe control parameteils such
that the system remains stable. Stability means here tloat, &ny smooth enough initial condition,
the Cauchy problem for system (8) with boundary conditid@)sh@s a unique classical solution that
exponentially converges to the origin.

From Theorem 6 in [3], we know that a sufficient stability cdiwoh is that :
pA+K[) <1
where|A+ K| denotes the matrix whose entries are the absolute valube efitries oA+ K. We are
thus interested in finding a sBsuch thap(|JA+K|) <1 VKeS
From [1], we know that ifA, B > 0 thenp(A+ B) > p(A). It implies that
P(IA+K]) < p(JAl+[K])
and the sef may be found using the algorithm presented in Section 2.3.
If we apply the algorithm proposed in Section 2.3 with thédwing numerical values :
a = 36
B = 286,
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16 B. HAUT, G. BASTIN, P. VAN DOOREN

we obtain that there exists three blodids (one of dimension 2 and two of dimension one). The

different coefficients must be bounded as follow

lkoks] < 1
ko < 138
ks < 138

in order to guarantee the stability of the system. This dgmusition in three blocks is quite natural
since only the two first parameters influence the stabilitsheffirst reach. If the first reach is stable,
only the parametdt, has an influence on the stability of the second reach. Eviiyntiacontrols the
stability of the third reach.

The decoupling of the problem in smaller subproblem allanisitrease the possible value of some
parameters which may have a positive influence on the glafeiour of the system. In the example
of Section 3, if we take the sufficient condition presentefb]rall the parameters must be bounded by
1. The decomposition in subproblems allows us to increasedhue ofkz andk, up to 1.38. It also

allows to selecky > 1 providedk; is small enough and conversely.

4. Conclusions

In this paper, we have considered the problem of finding thgekt set of perturbation such that a
positive matrix remains stable. We have extended the esiilf5] in the particular case where the
perturbation matrix is diagonal. In this case, the problem can be decoupled ifiensabproblems.
For each of the subproblems, necessary and sufficient &#lgpnditions were derived to describe the
starlike sets of admissible parameters. Outside of thesethe perturbation destabilises the system.
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These sets, which are not necessarily convex, containtpesadmissible ball described in [5].
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