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Robust pole assignment in linear state feedback

J. KAUTSKY+t, N. K. NICHOLS?} and P. VAN DOOREN§

Numerical methods are described for determining robust, or well-conditioned,
solutions to the problem of pole assignment by state feedback. The solutions
obtained are such that the sensitivity of the assigned poles to perturbations in the
system and gain matrices is minimized. It is shown that for these solutions, upper
bounds on the norm of the feedback matrix and on the transient response are also
minimized and a lower bound on the stability margin is maximized. A measure is
derived which indicates the optimal conditioning that may be expected for a
particular system with a given set of closed-loop poles, and hence the suitability of
the given poles for assignment.

1. Introduction

The state-feedback pole assignment probiem in control system design is essentially
an inverse eigenvalue problem. The solution is, in general, underdetermined, with
many degrees of freedom. A desirable property of any system design is that the poles
should be insensitive to perturbations in the coefficient matrices of the system
equations. This criterion may be used to restrict the degrees of freedom in the
assignment problem, and to produce a well-conditioned or robust solution to the
inverse eigenproblem. ’

A number of constructive methods for pole assignment by state feedback are
described in the literature (see, for example, Mayne and Murdoch (1970), Maki and
Van de Vegte (1974), Barnett (1975), Gourishankar and Ramar (1976), Moore (1976),
Klein and Moore (1977, 1982), Porter and D’Azzo (1978), Munro (1979), Wonham
(1979), Flamm (1980), Varga (1981), Fahmy and O’Reilly (1982), Minimis and Paige
(1982 a, b)), but many of these are computationally unstable (see Kautsky and Nichols
(1983 b)). A few numerically reliable techniques are available (Varga 1981, Minimis
and Paige 1982 a, b), and in the single-input case, where at most one solution to the
pole assignment problem exists, these methods accurately compute the required
feedback. In the multi-input case, however, where the feedback is underdetermined,
these methods do not generally lead to robust solutions to the problem.

In this paper we describe four algorithms for computing robust solutions to the
multi-input state-feedback pole assignment problem. Two of the methods are
complementary. In all cases the feedback matrix is obtained by assigning linearly
independent eigenvectors corresponding to the required eigenvalues (or poles), such
that the matrix of eigenvectors is as well-conditioned as possible (Wilkinson
1965). The assigned poles are then as insensitive to perturbations as possible and the
resulting feedback matrix is as reasonably bounded as may be expected, given the
original system.
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In the next section the pole assignment problem is defined in detail, and theoretical
considerations are discussed. In §3 we describe the numerical algorithms.

Applications and numerical results are presented in §4, and concluding remarks
follow in § 5.

2. Robust pole assignment
2.1. The robust state-feedback problem

We consider the time-invariant, linear, multivariable system with dynamic state
equation

92x = AX 4+ Bu (1)

where x, u are n- and m-dimensional vectors, respectively, and A, B are real, constant
matrices of compatible orders. Here 2 denotes the differential operator d/dr for
continuous-time systems, or the delay operator for discrete-time systems. Matrix B
is assumed (without loss of generality) to be of full rank. The behaviour of system (1)
is governed by the poles of the system, that is, by the eigenvalues of matrix A. Itis
often desirable to modify the poles of the system in order to obtain certain properties,
such as stability. This may be achieved by using a state-feedback control

u=Fx+v
where F, the feedback or gain matrix, is chosen such that the modified dynamic system
2x =(A + BF)x + Bv (2)

now with input v, has the desired poles.

The state-feedback pole assignment problem for system (1) is formulated precisely
as follows.

Problem 1
Given real matrices (A, B), of orders (n x n, n x m) respectively, and a set of n
complex numbers, ¥ = {4,, 4,, ..., 4,}, closed under complex conjugation, find a real

m x n matrix F such that the eigenvalues of A + BF are 4;, j=1,2,...,n.

Conditions for the existence of solutions to Problem 1 are well known, and the
following theorem is well established (Wonham 1979).

Theorem 1

A solution F to Problem 1 exists for every set & of self-conjugate complex
numbers if and only if the pair (A4, B) is completely controllable, that is, if and only if:

{sTA=ps" and s"B=0}<>s"=0

Indeed, if (4, B) is not controllable, i.e. there exists sT # 0 such that sT4 = usT and
s"B20,thens"(4 + BF)=yus"forall F. Thus uis aneigenvalue of 4 + BF for all F
and it cannot be modified by any feedback control. The pole u is said to be
uncontrollable and must belong to any set Z of poles to be assigned, if a solution to
Problem 1 is to exist. More specifically, the following theorem can be shown to hold
(see Wonham (1979)).
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Theorem 2

If (4, B) is not completely controllable, then a solution F to Problem 1 exists if and
_only if the set ¥ = {¥,, ¥}, contains &, the set of all uncontrollable modes of (4, B).

In the single-input case (m = 1), the solution to Problem 1, when it exists, can be
shown to be unique (Mayne and Murdoch 1970). In the case 1 <m <n, various
solutions to Problem 1 may exist, and, to determine a specific solution, additional
conditions must be supplied in order to eliminate the extra degrees of freedom. In
the case m = n, the pair (A, B) is always completely controllable, and any given closed-
loop system matrix can always be achieved by feedback.

Our aim here is to develop methods for finding a feedback F, solving Problem 1,
such that the closed-loop system is robust, in the sense that its poles are as insensitive
to perturbations as possible. We let x; and y;, j=1,2,...,n, be the right and left
eigenvectors of the closed-loop system matrix M = 4 + BF, corresponding to eigen-
value 1;€ &, that is

Mx;=4;x; YiM=Ay] 3)
If M is non-defective, that is, M has n linearly independent eigenvectors, then M is
diagonalizable and it can be shown (Wilkinson 1965) that the sensitivity of the
eigenvalue 4; to perturbations in the components of 4, B and F depends upon the
magnitude of the condition number c;, where

¢;=1/s;= 1yl Ix;llo/ly]x;1 2 1 (4)

In the case of multiple eigenvalues, a particular choice of eigenvectors is
assumed. (For real 4, the sensitivity s; is just the cosine of the angle between the right
and left eigenvectors corresponding to 4;) More precisely, if a perturbation O(e) is
made in the coefficients of the matrix M, then the corresponding first-order
perturbation in the eigenvalue 4; of M is of the order of enc;. If M is defective, then
the corresponding perturbation in some eigenvalue is at least an order of magnitude
worse in ¢, and therefore, system matrices which are defective are necessarily less
robust than those which are non-defective.

We observe that a bound on the sensitivities of the eigenvalues is given by
(Wilkinson 1965)

max ¢; S K(X) = [ X[, X7, )
J

where k,(X) is the condition number of the matrix X =[x, x,,...,x,] of eigen-
vectors. Furthermore, the condition numbers take minimum value ¢; =1, for all
i=1,2,...,n,if and only if M is a normal matrix, thatis M*M = MM*. In this case
the eigenvectors of M may be scaled to give an orthonormal basis for C", and then
matrix X is perfectly conditioned with x,(X)=1.

We may now formulate the robust pole assignment problem as follows.

Prngem 2

Given (A4, B) and ¢ (as in Problem 1), find real matrix F and non-singular matrix
X satisfying

(A + BF)X = XA (6)
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where A =diag {4, 4, .., 4,}, such that some measure v of the conditioning, or
robustness, of the eigenproblem is optimized.

We remark that the measure v could, for example, be chosen to be v, = | c| .,
where ¢” = [¢,, ¢,, ..., c,] is the vector of condition numbers corresponding to the
selected matrix X of eigenvectors. Alternatively, we could take as a measure of
robustness v, = k,(X), the condition number of matrix X. The measure v, then gives
an upper bound on the measure v,, and both measures attain their (common)
minimum value simultaneously. Other measures are discussed in § 2.5.

The degrees of freedom available in the choice of the feedback F are reflected
precisely by the degrees of freedom available in the selection of the matrix X of
‘eigenvectors. In the case m = 1, if F exists, X is uniquely determined (up to scaling),
and the condition numbers c; cannot be controlled. In the case m = n, X may always
be chosen to be orthogonal, (X = I suffices), and hence to be such that¢; =1,V ). For
a general multi-input system (1 <m <n) we may control the sensitivities of the
assigned poles to a restricted extent by an approprate choice of the eigenvectors
comprising X.

We observe that in the robust pole placement problem (Problem 2) the choice of
eigenvectors which may be assigned is restricted such that the resulting system matrix
A + BF is non-defective. This restriction implies certain simple conditions on the
multiplicity of the poles which may be assigned. In the next section (§ 2.2) we discuss
assignment of the entire eigenstructure of the closed-loop system, and in the following
section we show that minimizing the conditioning of the eigenproblem (6) leads to
other desirable properties in the closed-loop control system. Results on the minimal
conditioning that can be achieved for a given set of poles ¥ = {/,, 4,, ..., 4,} to be
assigned are given in § 2.4, and various robustness measures v, to be used in practice,
are discussed in §2.5. Such measures relate to different numerical methods for
determining the feedback matrix, presented in § 3.

2.2. Robust eigenstructure assignment

Given real matrix pair (4, B) and eigenvalue set ¥, our objective is to choose
eigenvectors, given by X, satisfying (6) and such that the conditioning of the eigen-
problem is minimized. No restriction on the controllability of (4, B) is made, and we
remark that although the uncontrollable modes of the system cannot be affected by
the feedback F, the corresponding eigenvectors may be modified and the conditioning
of uncontrollable modes may be improved by an appropriate choice of X.

It is reasonable now to ask under what conditions a given non-singular matrix X
can be assigned to the problem. The following theorem is easily demonstrated.

Theorem 3

Given A = diag {/,, /,, ..., 4,} and X non-singular, then there exists F, a solution
to (6) if and only if

UTAX = XA)=0 (7)

B=[U,.U, 8
cou]?] .

P 4

R
where

N
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with U = [U,, U,] orthogonal and Z non-singular. Then F is given explicitly by
F=Z 'WYXAX ! - A) 9)

Proof

The assumption that B is of full rank implies the existence of decomposition
(8). From (6), F must satisfy

BF=XAX"'—A4 (10)
and pre-multiplication by UT then gives the two equations
ZF = UNXAX "' - A)
0=UJXAX !'- A)}

from which (7) and (9) follow directly, since X is invertible. o

(11)

We remark that (10) implies that F exists if and only if '
A{XAX ' — A} < (B} = R{U,} (12)

where #{ - } denotes range; that is, #{ XAX "' — 4} is orthogonal to 4°{B} = #{U, },
where .4°{ -} denotes null space, and (7) holds. .

We observe also that the decomposition (8) of B can be taken, for example,
as the singular-value decomposition (SVD), in which case Z= VT  where
I =diag {0, 0,, ..., 0,,} is a positive matrix and V is orthogonal. Alternatively the
QR decomposition could be used, in which case Z i1s an upper-triangular matrix.

‘An immediate consequence of Theorem 2 is the following.

Corollary 1

The eigenvector x; of A + BF corresponding to the assigned eigenvalue 4,6 &
must belong to the space

S, = N {UNA = 4,1} (13)
The dimension of &, is given by
dim (¥)=m+k;, (14)
where
ki, =dim (.+"{[Bl4 — £,1]}) (15)
Proof

From (7) we have directly that
UT(Ax;— ix;) =0, Vj (16)
and, therefore, x;€ &, j=1,2, ..., n, is necessary. We have also, from (15), that
n—k, =rank ([B|A — 4;1]) (17)
and f}'om (7) and (8), using the definition U = [U,, U,], we obtain

h _ Z | UXAa-i
UT[BIA— i) = Ui i ) (18)
0 | UlA—i0)
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But, matrix Z is square (m x m) and invertible, and, therefore
n—m-—k; =rank [(UT(4—4;1)] (19)
from which (14) readily follows. O

The robust pole assignment problem (Problem 2) now reduces to the problem of
selecting independent vectors x;€ &, j=1, 2, ..., n, such that eigenproblem (6) is as
well-conditioned as possible.

From the corollary we may now deduce certain conditions which must be satisfied
if the robust Problem 2 is to have a solution. In the case (A4, B) is completely
controllable, the dimension k;, defined by (15), is zero for all 7. Tt follows then that
the multiplicity of the eigenvalues 4;€ & to be assigned must be less than or
equal to m, since the maximum number of independent eigenvectors which can
be chosen to correspond to 4; is equal to dim (&;) = m.

In the case (A4, B) is not completely controllable, but ¥ ={%,, £} includes
the uncontrollable modes, then a similar result holds. Now if 4 ;€ <, is uncontrol-
lable, then k; >0 and there exist at least k, independent (left) eigenvectors vy,
i=1,2,..., k; oftheclosed-loop system matrix M = 4 + BF for anychoice of F. The
eigenvalue 4; must, therefore, be assigned with multiplicity at least k; , and for the
closed-loop system matrix to be non-defective, the eigenvalue 4; can be assigned with
multiplicity at most m + k; = dim (¥)).

Even when these conditions are satisfied, it is still possible that a solution to
Problem 2 does not exist. Indeed, if x4 is an uncontrollable mode of the pair (4, B)
with k, > 0, and there exists a vector s # 0 such that s7(4 — ul)B =0, s"(4 — ul)? =0,
and s"(4 — ul) =sT # 0, then s| is a left eigenvector of M = 4 + BF, correspondmg to
u, forany F. If also s"B=0, then

s (A+BF —pul)=s"(A—pul)#0

20
sT(4 + BF — pl)> =s"[(A — ul)? + (4 — ul)BF + BF(A + BF — pl)] =0} 20

and, therefore, s is always a left principal vector of M, and the system matrix 4 + BF
is defective for any feedback F. We have thus proved the following theorem.

Theorem 4

A necessary condition for the existence of a non-defective solution to the pole
assignment problem (Problem 1) is that for every u and s the following holds:

{sT™B=0,s"(A—pul)B=0,s"(A—ul)? =0} =>sT(4 —ul)=0 (21)

We note that condition (21) is satisfied trivially for all controllable modes u of
(A, B).

2.3. Properties of the robust closed-loop system

The objective of the robust pole placement problem is, in essence, to choose a non-
defective system of eigenvectors, given by X, satisfying Theorem 3, such that X is as
well-conditioned as possible. We show now that minimizing the conditioning of X
leads’ {o other desirable properties of the closed-loop system.

From Theorem 3 we derive bounds on the components of the feedback matrix F
and the transient response x(t) (or x(k)) of the closed-loop system (2) in terms of the
condition number k,(X ) and the given data of the problem. We have the following
theorem.
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Theorem 5

The gain matrix F and the transient response x(t), or x(k), of the closed-loop
continuous- or discrete-time system (2), where x(0)=x, and v =0, satisfy the
inequalities

NFl.=s (“A”z"f'm?x{V-jl}"fz(x))/am{B} (22)
J
where ¢,,{ B} denotes the mth (smallest) singular value of B, and
X}l 2 = Kk5(X') - max {1e*"1} = %ol (23 a)
J
or
x(k) 2 £ k2(X) - max {1451} - Ixoll2 (23 h)
J
Proof
From (9) we obtain
NEI S UZ7 G UG I XX " i UAL + 1Al (24)

and from the singular-value decomposition of B we have |Z ~'||, = V|,0,'|B}.
Then the result (22) follows from the orthogonality of ¥V and U =[U,, U,]. The
transient response of system (2) is easily seen to satisfy

x(t) =exp (A + BF)t) xo = X exp (At) X ~'x, (25 a)

or
x(k)=(A + BF)xy = XA*X ~!x, (25 b)
and the inequalities (23) foliow directly upon taking norms. dJ

This theorem demonstrates that given (4, B) and eigenvalue set ¥, minimizing the
conditioning x,(X) of the assigned eigensystem also minimizes a bound on the
feedback gains and a bound on the transient response of the closed-loop system, for
any given initial condition.

Also of interest is the maximum disturbance which can be made to the closed-loop
system such that stability is retained. We have the following (Nichols and Van
Dooren 1984).

Theorem 6

If the state feedback matrix F assigns the set & of stable eigenvalues /, then the

perturbed closed-loop system matrix A + BF + A remains stable for all disturbances A
which satisfy, in the continuous-time case,

|All; <min o,{sI — (4 + BF)} = &(F) | (26)

where a lower bound on d(F) is given by

o

, 8(F) 2 min Re (— 4;)/k(X) @7
J

In the discrete-time case, the closed-loop system remains stable for disturbances A
which satisfy
[All; < min o,{sI —(4+ BF)} = §(F)

s=expliw)
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where

O(F) zmin (1 —|4;)/k,(X)
J

Proof

The first part follows directly from a standard argument. The n x n matrix
M + A= M(I + M~ 'A) is non-singular, assuming M is non-singular, provided

IM™'AlL s IMTHL A, < (28)

that is, provided |All, < iM '{;'=0,{M]}. Hence, the matrix s/ —(4 + BF + A)
can become singular along the imaginary axis, where s =iw, only if ||A}, 2 é(F)
By continuity of the eigenvalues, the matrix A + BF + A is, therefore, stable provided
(26) holds.
From (6), 1t easily follows that
M F)=mino,{sI - XAX '}
20,{X}o,{X '} mineg,{s] — A}

s=iw

ZminRe (= 2)/I X7, 1 X1, (29)
7

which gives the lower bound (27). For the discrete-time case the result is obtained
analogously. C

From Theorem 6 we can deduce a lower bound on the stability margin of the
closed-loop system. The result is given by the following theorem.

Theorem 7

The return difference I + G(s) + A(s)G(s), of the disturbed closed-loop system,
where G(s) = — F(sI — A)”'B, remains non-singular at s =iw for disturbances A(s)
which satisfy || A(iw) ||, < 5(F), where &(F) is bounded below by

S F)Z(F)/IBll, I Fl, (30)

(Taking s = exp (iw) gives the corresponding result for the discrete-time system.)

Proof
It 1s easily shown that
det (s/ — (A + BF + A)) = det (s] — A) det (I + (I + A(s))G(s)) (31
if A= BA(s)F. (See Barnett (1975), for example.) Hence, I + G(s) + A(s)G(s) is non-
singular at s = iw provided
’, 1Al S UBY, 1AGw)l, | Fll, < 8(F) (32)

and (30) follows. O

From Theorems 5-7 it can be seen that if the conditioning x,( X) of the assigned
eigensystem is minimized, then a lower bound on the stability margin of the closed-
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loop system is maximized over all feedback matrices F which assign the given (stable)
eigenvalues.

Minimizing the sensitivities of the assigned poles of the closed-loop system thus
ensures other desirable properties of the system. For given data, the minimal
conditioning that camn be achieved is limited, however, and in the next section we
derive a lower bound on x,(X). In §2.5 we examine other measures of the
conditioning of the eigenproblem (6) which are directly related to k,(X).

2.4. Optimal robustness

In this section we derive a general result on the conditioning of a matrix with
columns selected from given subspaces. A lower bound on the condition number
Kx,(X) is found, where X is an n x n matrix of the form

X=[X, Xz, X] (33)

with n x r; submatrices X ; which are selected from given subspaces &, j= 1,2, ..., k,
which together span the whole space # where #” = R” or o = C", thatis, X ; ¢ &; and

L1+t A=K (34)

We let S; be an n x m; matrix with orthonormal columns spanning the space #; of
dimension m;, and we write .

X;=S$;D; (35)

where D; is an m; x r; matrix, which is of rank r; if the columns of X; are linearly
independent. Matrix X may be written

X=[S,,S,; ....5] diag{D,,D,, ..., D,} =SD (36)
Our aim now is to estimate the minimal condition number «,(X) over all possible

selections D, in (36). We first require the following.

Lemma 1
If S and D are n x s and s x n matrices, respectively, of rank n, (n <), then

IDSD)™ ', Z 5™ Il (37)
Here ‘ +’ denotes the Moore-Penrose inverse, given by
St=VI 'U* (38)
where
S=U,[Z,0][V, V.J*=UZV* (39)

is the singular-value decomposition of S.

Proof

I(SD) is not invertible, then the result is trivial, since S™ is bounded. Otherwise
we write the SVD decomposition of D as

R r
D=[U, U.J|: 0"] Vi=U,LV} (40)
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and then

>
D(SD)™ ! =[U,, Ud][ Od](ZsV?‘Uazd)”U? (41)

Z
ZVru,z) !
0
TV zoV:U‘FI GI 43)
s :U = s - ’U =
a=[%,0] s (U, d]_o 0 (

It can now be shown (see Thompson.(1972), Theorem 1) that

I
{ i

and, since we have here ¢,{G} = a,{Z,}, it follows readily that

Taking norms we have

ID(SD)™ "I, = = 1/6,{E,V*U,) (42)

where

IDSD)™ i, 2 Vo {5 =1S™ |, D

Using this lemma we now establish the following theorem.

Theorem 8
If X, S, D are defined as in (33) and (36), then

KoS) = ST, 187 2 S /[1+ (k= 1) cos O] - Ko X) S JlkIko(X)  (45)
where 6, 1s the minimum angle between any two subspaces %, and %}, defined by
cos 6min = max H S;‘S; “2 g 1 (46)

i#®j

Proof

Since the columns of matrices S;,j =1, 2, ..., k are orthonormal by definition, we
have

ISD|; 2 max |[S;D;ll, = max | D[, = || DIl (47)
J J
and, therefore,

Kko(SD)=|ISD i, W(SD)™ |, 2 Dl I(SD)™ ], (48)
Then‘.b'y the multiplicative property of the norm and by Lemma 1
Ko(X)=kSD)2 | D(SD)" |, 2 157 1l (49)

Now, if we let x be any vector of unit norm, partitioned conformably with S, such that
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T T T
xT =(x], x], ..., x]), then

I1Sx |3 =

k k k
gz Ix¥x;| + Z z M2 11 %11, cos 6

Kk
s+ {(.":\:1 jgl (R APR xj”2>— 1} €0S O pmin

k 2
<1+ {( Y| ij|2> - 1} COS G (50)
j=1

But, by the Cauchy-Schwarz inequality we have

k 2 k
(; uxjuz) gk(_; nx,~u§> =k (1)

and it follows that for any x with ||x|, =1,

ISx3 <1+ (k—1)cos b, (52)
Thus

ISI; < /01 + (k= 1) coS Bnis)

and from (49) we obtain
Ko X) /T + (k= 1) 08 6] Z IS ™ I, IS, = KyS) (53)
The second inequality in (45) then follows directly from (46).

Since Theorem 8 holds for all matrices X of form (33), the inequality (45) gives a
lower bound on the minimal conditioning of X, and we must have

min x,(X) = x,(S)//(k) (54)

We remark that this result is quite general and holds over all choices of {r;}} such that

r;<m;, Y rj=n (55)
j=1
For a particular choice of {r;}} (for example r; = 1, V j) the lower bound given by (54) is
not necessarily realizable, however. In particular, if any submatrix of S, composed of
p <k of the submatrices S; with jeJ,, has rank less than
q= 2: rj
JjelJp
then a non-singular matrix X cannot be selected; if this submatrix of S has numerical
rank less than g, or in other words, if the ratio of its first and qth (non-zero) singular
values, 0,/0,, is large, then the solution X must of necessity be badly conditioned, even
though the condition number x,(S) may be of reasonable size. .
We observe also that the result (54) holds for any scaling of the matrix X, and the
minimum may not be realizable if a particular scaling is imposed. For example, if the
blocks X, j=1,2, ..., k, are constrained to have orthonormal columns, then we may
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take the matrix § = X with m; =r; and apply Theorem 6 with S replaced by S. The
unconstrained matrix X, dcnved from S, with minimal conditioning then satisfies
\/ (k)x,(X o) 2 k5(X), by (47). This suggests that the optimal ‘block-scaling’ cannot
give much better conditioning than a scaling in which the columns of the blocks X ; are
chosen to be orthonormal.

In the next section we examine other measures of robustness and demonstrate
their mathematical relations to the measure x,(X) of the conditioning of the
eigenproblem (6).

2.5. Measures of robustness

We now investigate relations between the condition numbers c; (or sensitivities) of
the closed-loop poles, defined by (4), and various measures v of the robustness of the
eigenproblem (6). We have seen already (§2.1) that v, =x,(X), the condition
number of the matrix X of eigenvectors, provides an upper bound on the measure
vi=lc| = max {c;}. We here derive other measures v of robustness which can be

bounded in terms of k,(X) and which take their minimal values simultaneously when
the eigenproblem (6) is perfectly conditioned, that is, when the assigned poles are as
insensitive as is possible.

We assume that the right eigenvectors X; of the closed-loop system matrix are
normalized such that ||x;||, =1, and write

Y =(y,Y2 -y, ]T=X""1 (56)

Then the condition numbers are given by

c;=\y;ll.21 (57)
and we have

1/2
IXUe=n'2 IX 'e=1Y = (ZC}) (58)

J

where || - || 1s the Frobenius norm. If we define the measure v, by
vi=n Y2IX g (59)

then vy =n"'?|c|, and v, takes its minimal value, unity, if and only if ¢;=1,V .
Furthermore, vy =n"'"| X | | X "'l =n" 'k X), and by the equivalence of norms
(Wilkinson 1965) we obtain

1ZSvySvySv, Snv, (60)

The measures v,, v,, v, are, thus, mathematically equivalent, and the three measures
take their minimal values simultaneously when the eigensystem is perfectly con-
ditioned and X is unitary. We note that if v, = k,(X) is close to unity, that is,
(v, —1)=¢, e<1, then the measures v, and v; are also close to unity, that is
(vi —1)Zeand(vy— 1) <& Furthermore,if any of the three measures is close to unity,
then the sum of the squares of the condition numbers, | ¢ |2, is near to optimal, that is
(v,—1)Se (v;—1)<Le or (vy — 1) < g implies (n~ 2| cll, — 1) L.

Ifa real diagonal scaling D = diag {d,,d,, ..., d,}, withd; > 0V j, is applied to the
matrix Y7 of left eigenvectors, we find

1/2 12
”XD_,“anD-IHFE(y}.-z) , uox-lnanDYTnF=(decf) (61)
J

J
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and we may define a weighted measure
vy(D)= |DX "¢/l Dl¢ (62)

Then v4(D) = || De|,/I D¢, from (61), and we have also v4(D)= k(XD ')/x(D).
The measure v,(D) clearly takes its minimal value, unity, if and only if ¢; =1,V j, or,
equivalently, X is unitary; thus, v4(D) attains its minimum simultaneously with the
other measures. By norm equivalences, we have also

(1/k(D))v3 £ v3(D) £ k5(D)v, (63)

where k(D) = max d;/min d;, and v,(D) is equivalent to the measures v, v,, v,.

J

The square o;' the measure v,(D) is proportional to a weighted sum of the squares
of the condition numbers. By choosing appropriate weights the relative condition-
ing of each eigenvalue can be controlled. Different weightings correspond to
different scalings of the eigenvectors. Taking d; =1,V j, corresponds to taking the
eigenvectors to have unit length. In this case n'/2vy(I) = n'/?v; = | c|,, so that v, is
directly proportional to the /,-norm of the vector ¢ of condition numbers. With
di=cj'*j=12,..,n wefind

Ke(D)vy(D) = kXD~ 1) =3 ¢;=lc|, (64)
J

and the [,-norm of the vector of condition numbers is obtained. This choice of
weights corresponds to the optimal scaling of the eigenvectors, with respect to the
Frobenius norm (Smith 1967). We note that the weights d; here are dependent on the
condition numbers c¢;;, More generally, we observe that with a suitable scaling,
dependent on ¢, any weighted /,-norm of ¢ can be achieved. In particular, if
I =diag {y,,72, ---» ¥} and we choose d}=9y2c?"% j=1,2,...,n, then

III"CII"—Z)"’C"—deCf =x{XD " )/ID™ I = | D|#v3(D) (65)
j
We remark that it is not easy in practice to implement scalings which are dependent
on the condition numbers, and constant weights d, j=1,2, ..., n, independent of
¢, v j, are primarily used.

The conditioning v, = x,( X)) of the eigenproblem (6) is optimal (v, = 1) if and only
if the matrix X of normalized right eigenvectors x;,j =1, 2, ..., n, is unitary, as we
have already observed (§2.1). In essence, the aim of the robust pole placement
problem is, therefore, to select eigenvectors x;e ), such that ||x;{, =1 and the
vectors x; are as ‘orthogonal’ as possible to each other. We now consider as a
measure of ‘orthogonality’ the distance between the matrix X of eigenvectors and
some unitary matrix X. The unitary matrix X is taken to be such that each column
x; of X is the (normalized) orthogonal projection of the column X; of X into the space
9’ » (The distance between X and X is then the minimal dnstance between X and any
matrix of normalized eigenvectors belonging to the required subspaces.) Without
loss of generality we may assume that x; is scaled so that X¥x; is real and positive, and

then we have
»

X%, = | S, = /[1 - ¢]1=cos 6, < 1 (66)

where 6; is the angle between R; and x; (its projection into &), ¢;=sin 6, and the
columns of matrix S; form an orthonormal basis for the space #;. As a fourth
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measure of the conditioning of the eigenproblem, we may then take

112 12
v‘=n'”2<z¢f) En"”z(Zsinz 9j> (67)

Clearly,0 < v, <1, and v, = 0if and only if the set of eigenvectors {x;} is orthonormal
and the condition numbers ¢; =1, V j.

The square of the mcasure v4 Is proportional to the sum of the squares of the sines
of the angles between the eigenvectors x; and a (‘closest’) orthonormal set of
vectors. A weighted sum may also be used as a measure. We define

1/2 1/2
R

where D = diag {d,, d,, ..., d,}, as before. Here 0 < v (D) <1, and v (D) is minimal if
and only if the eigenvectors are orthonormal. We note that v, = v,(/).

To establish a relationship between the measure v,(D) and the other measures of
conditioning we first show that v,(D) is equivalent to || D(/ — X*X)||. Denoting the
elements of A=1— X*X by d,j» we find that since {[x;{, =1 and X is unitary, then

IX*x; 0, =1=1 +Z|5,‘j|2—25,, (69)

where 6jj =1—X7x; is real and positive. From (66) we have also J;;< 1 and

1+65—-26;,=1—¢; (70)
and, therefore
20, =¢7 +0;,S I+, (71)
We conclude then that §,; < ¢/, and from (69) we obtain
¢f§25,‘j=2|5u|2§2¢,@ (72)
k
It follows that
min d} max dk
2 < d 2 __ <2 2 2
max df _;; kjl ”DAH = Z d) (73)
and, therefore
(1/5(D) | D |¢va(D) < | DA ¢ < /(2K (D) || Dll¢ve (D) (74)
We now observe that in the special case D = I,
nvyi= X T e = X T X e = —A) " g (75)
and if |All <1, then
I =) e =TI+ IARS A2+ A/l = [ Allg) (76)
1

From (74)-(76) we thus obtain
, F<vy S 14 /Q2ve/ll = /(2n)v,) (77)

prdv’ided vy <(2n)” Y2 If vy is small, that is, v, < ¢, then vy is close to unity, that is,
(vy— 1)< /(2)e + O(e?), and |ic|, is near optimal.
In the case D # I, then the measures v4(D) and v,(D) can be compared. We obtain
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now
IDgvy(D)= DX ""fg= DX ' X | = |1 DU - &) " |; (78)
and then D(I —A)™' =(I — DAD ™')™ 'D implies that, if | D™ '||g|| DAl < I,
IDU~A) M < ”‘D”F/(l — D™ ¢IDA|g) (79)
From (74) and (78), it then follows that
I vy(D) £ /(1 = \/2)xo( D)D) (D)) (80)

provided v4(D)< 1 /\/(2)K2(D)KF(D). The measure v,4(D) thus attains its minimum
simultaneously with v (D), and if v4(D) is small, then v4(D) is close to unity and the
weighted /,-norm of the vector of condition numbers is near optimal.

In summary, we have defined four measures of the conditioning of the eigen-
problem (6):

vi=|cly
v, = Ky(X)

- 2 l!
vi= [ X "g/m'? = felly/n'?

12y
V= (z sin? 81-) /"n"2
J /

where ¢ = [¢c,, ¢, ..., ¢,] is the vector of condition numbers, X =[x, x,, ..., X,] is the
matrix of eigenvectors and 6; are the angles between eigenvectors x; and certain
corresponding orthonormal vectors X, j = 1, 2, ..., n. These measures all attain their
minimal values simultaneously when the eigenproblem (6) is perfectly conditioned and
the assigned eigenvalues are as insensitive as possible. If any of the measures is
minimized, then an upper bound on the sum of the squares of the condition numbers
is minimized.
Two weighted measures of conditioning are also defined:

1;2 1.2
v3(D)= (DX ~M /I D g = (Z dfcf) / (Z df)
1/2 /
vu(D) = (z 42 sin’ ej> [(®ah

These measures are minimal when the eigenproblem 1s perfectly conditioned, and
minimizing these measures minimizes an upper bound on a weighted sum of the
squares of the condition numbers. A suitable set of weights is given by d; ' =
Re(—4) in the continuous-time case, or d;'=(l—|4;|) in the discrete-time
case. Then minimizing v4(D), or v4(D), corresponds to maximizing a lower bound on
the stability margin of the closed-loop system, as given by Theorems 6 and 7 of § 2.4,
with an appropriate scaling of the eigenvectors. For this choice of weights eigen-
values close to the imaginary axis, which are most likely to become unstable, are
required to have much better conditioning, and hence to be less sensitive to
distu;bances, than those which lie far away from the axis.

In the next section we describe numerical methods for iteratively constructing a
well-conditioned set of eigenvectors from the required subspaces. The procedures all
aim, at each step of the iteration, to reduce the value of one of the measures discussed
here.
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3. Numerical algorithms for robust pole assignment
3.1. Basic steps

We now consider the practical implementation of the theoretical results discussed
in § 2. We describe four numerical methods for obtaining solutions to the robust
pole placement problem (Problem2). Two of the methods are complemen-
tary. The procedures all consist of three basic steps:

Step A

Compute the decomposition of matrix B, given by (8), to determine U,, U, and Z;
construct orthonormal bases, comprised by the columns of matrices S; and §; for the
space &; = A" {U(A — 4;1)} and its complement, &, for ;e £, j=1,2,...,n.

Step X

Select vectors x;=S;w;e¥; with ||x;,=1, j=1,2,...,n, such thai X =
[x,.%,.....%,] is well conditioned.

Step F

Find the matrix M = 4 + BF by solving MX = XA and compute F explicitly from
F=Z'UYM — A).

Standard library software for obtaining QR and SVD (singular value) decompo-
sitions of matrices and for solving systems of linear equations (Dongarra et al. 1979)
are used to accomplish these steps. The first and third steps, Step A and Step F are
identical for all the methods. The key step is Step X. Here the vectors x,
j=1,2,...,n are chosen by an iterative process to mimimize one of the measures of
conditioning described in § 2.5. These measures are all equivalent in a certain sense,
and when they are close to unity, the sensitivities ¢, of the assigned eigenvalues /; are
all close to minimal.

We first discuss the two basic steps common to all four methods.

3.1. Step A

The required decomposition of B is found in Step A by either the SVD or QR
method, as discussed in § 2.2.  We note that the QR decomposition is computation-
ally less expensive, but that the SVD decomposition gives useful information on the
singular values of B.

Construction of the bases for &#; and 5% is also achieved by QR (Case 1) or SVD
(Case 2) decompositions as follows.

Case 1 (QR)
We determine the QR decomposition of (UN(A — 4;1))T partitioned as

R,
(U4 =41 ) =[S, Sj][: 01:'

Then S, S, are the required matrices.
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Case 2 (SVD)

We determine the singular value decomposition of U(4 — /;I) in the partitioned
form

Ul(A~4,1)=T,[I,0]1[S,S;]"

where I'; is the diagonal matrix of singular values. Then the columns of S, S give
the required orthonormal bases.

We note that the decompositions can be carried out most efficiently if the matrix
[B| A] is first reduced to staircase form (see Van Dooren (1981)). This requires less
than n’(3n + m) operations. The number of operations needed to find each subspace
is then m(n — m)(2n — m), or a total of O(n*m) operations.

3.2. Step F

The matrix M = XAX ~! is constructed in Step F by solving the equation
XTMT =(XA)T for MT using a direct L-U decomposition (or gaussian elimination)
method. This process is stable for a well-conditioned matrix X. The computation
of F is then achieved by straightforward matrix multiplication in the case Z is given
by the SVD process, or by using back substitution to solve the equations
ZF = UYM — A) in the case Z is given by the QR process.

The computation of M requires O(n?) operations and the computation of F needs
O(nm?) operations. We remark that the total amount of work required in Steps A
and F is comparable to the number of operations needed for one iteration in Step X,
and is not a significant factor in the total operation count.

33, Step X

We describe four methods for accomplishing the main step, Step X, in the basic
algorithm. The methods are each iterative and each aims to minimize a different
measure of the conditioning of matrix X, although two of the methods use comple-
mentary measures. We discuss the techniques only for the case where the eigen-
vectors are required to be real. Detailed descriptions of the methods, together with
modifications for the complex case and other special cases, are given elsewhere
(Kautsky and Nichols 1983 a, Kautsky et al. 1984).

3.3.1. Method 0

The objective hereis to choose vectors x; € #;,j = 1, 2, ..., nsuch thateach vector is
as orthogonal as possible to the space spanned by the remaming vectors; that is, such
that the angle between vector x;&€ #; and the space ; = {x;, i # j) is maximized for all
j. Equivalently, we choose x;€.4; to minimize the angle between x; and the
normalized vector y; orthogonal to the space 2, V.

The solution is found by an iteration in which each vector x; is replaced by a new
vector with maximum angle to the current space Z; for each j=12,...,n in

turn. The new vector is obtained by the QR method. The decomposition

%
X=X, %o ooy Xy Xy gy oens X,] = (9, Yj][o;.]

is formed, in order to find y; orthogonal to Z;, and then the projection of y;into &},
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given by

is the vector in ; which has minimum angle to ¥;. The iteration is continued until
the reduction in v, = k,( X), after a full sweep of the process (j = 1, 2, ..., n), 1s less than
some positive tolerance. Any set of independent vectors x;€ &; can be taken to give
the imtial matrix X.

In effect, at each step of the iteration a rank-one update to the matrix X is made
such as to minimize the sensitivity of the eigenvalue 4; The vector ¥] is just the
normalized left eigenvector corresponding to /4, and therefore the condition
¢;= 1/lyjx;| is minimized by the choice of x;, The conditioning of the remaining
eigenvalues 4, i # j is disturbed, however, when the new vector replaces the old vector
x;, and the overall conditioning is not necessarily improved at each step. The process
does not necessarily converge to a fixed point, therefore. The method is simple to
implement, however, and gives good solutions in practice. At each step j of the
iteration, the QR decomposition of X is obtained by a rank-one update of the
decomposition of X ;_,, which requires O(n?) operations. The computation of x; as
the projection of y; into &; requires O(nm) operations, and the operation count for one
full sweep of the procedure is thus O(n*) + O(n’m).

3.3.2. Method 1

As in Method 0, the solution is here found by an iteration in which a rank-one
update i1s made to matrix X at each step. The objective of the update is now to select
a new vector x;€ .%;, for each j=1,2,...,n, such as to minimize the measure of
conditioning v;(D) = || DX ~ ' ||}/|| D ||¢ discussed in § 2.5, over all x;e &, at each step.
Thus, at each step, a non-linearly constrained least-squares problem must be
solved. This can be accomplished explicitly by QR decompositions. The measure
v3(D) represents a weighted sum of the squares of all the condition numbers c;, and
hence, the overall conditioning of the solution X is improved at each step of the iteration
and the process converges. Any set of independent vectors x ;€ ;may be used to start
the procedure. The iteration is stopped when the reduction in the measure v,(D), after
a full sweep (j=1,2, ..., n) is less than a given tolerance.

The technique for determining the update at step j is described here for the case
D=1 (A complete discussion of the process is given elsewhere (Kautsky et al.
1984).) The problem is to find w; with |w;| =1 to minimize || X ~'|z where
X;=§;w; and X;=[x,,X,, NS TEETS JVUTNS & is assumed known. We may
write

HX " e =IIS;w X3 e =10y, YT le =1 YT g

By QR decomposition we obtain

Rj
X;= [Qj’ qj][:OT]

or p;
Ri' —p;R'QIS;w; ||
T

where p; = 1/(q;S;w;). Using |w;|, =1, we find, therefore, that to minimize | Y7||¢

and then Y TX =/ implies

1Y e =
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R 1QTS.

Here p; is a normahzmg factor, dependent upon w;, which may be eliminated by
making a further orthogonal decomposition. We find unitary matrix P such that

we must minimize

p} +p IR QIS Wi, =

2

q!S; =0;erP] =0o,el[P,p;,] =0,p]
and then p; ! =0g;pjw;. Writing W, = p, PJw; we obtain
piw;=p;P;Pw;=(P,PTw;+p,;p]w,)/(0;p]w))
=0; (PW;+p)

The problem thus reduces to the linear least-squares problem

R;'Q/S;
[ Jj J J](ijj'*'pj) ‘
I I Iz

which is solved for Ww; by a standard technique using a further QR decomposi-
tion. The required update is then given by '

min

X;=S;W;=(p;0))"'S{P;W;+p)
where the normalizing constant p; is determined by
P} = PIWIW; = 0j HWiW, + 1)

In practice, this procedure gives solutions very similar to those of Method 0,
although it is rather more complicated to implement. The computation of the QR
decompositions of X; (by a rank-one update of the decomposition of X;_,) and of

q]S; requires O(n 2) and O(2m) operations respectively, and the solution of the least-
square problem for W uses O(nm?) operations. The principal expense at each step of
the iteration is in thc computation of R/ 'QFS;, (obtained by back-substitutions)
which requires O(n’*m) operations. A full swecp of the process, therefore, requires a
total of O(n®m) + O(n’m?) operations. Method 1 is thus rather more expensive per
sweep than Method 0, but it is guaranteed to converge.

3.3.3. Methods 2/3

The objective of Method 2 is to determine an orthonormal set of vectors X,
j=1,2,...,n, such that some measure of the distance between the vectors x ;jand the
subspaces &, is minimized; then the required eigenvectors x;, j =1, 2, ..., nare taken as
the normalized projection of X; into &, The resulting x; are approximately
orthogonal to each other and the conditioning of X is expected to be reasonably close to
unity. The complementary objective of Method 3 is to select orthonormal vectors X
such as to maximize the distance between the vectors and the complementary spaces .9’
and then project X; into ;.

The measure of dlstancc to be minimized in Method 2 is the weighted sum of the
squares of the sines of the angles between the vectors and the subspaces, given by

-(paw)”(54)"
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where
¢j= sin 9,‘ = IIS}-‘i,-!Iz

is the sine of the angle 6; between X; and its projection x; into ;. As shown in § 2.5,
minimizing v,(D) corresponds to minimizing v,(D), and if v,(D) is sufficiently small,
then

1/2
iDcl, = (Z d;c})
J

is also small and the solution X =[x,, X, ..., X,] is well-conditioned (in a weighted
sense).
The complementary measure to be maximized in Method 3 is given by

1/2 1/2
¥4(D) = <Z d; cos? 9,-) /(Z df) =1—vyD)

where

The solution obtained by Methods 2 and 3 are identical, but the complementary
measure is computationally more efficient to use when m<n—m.

N The vectors % are determined iteratively by applying plane rotations to the matrix
X =[x, x,,....%,] such that each rotation reduces (or increases) the measure v,(D)
(or ¥4(D)) by an optimal quantity. Initially any orthogonal matrix, say X = I, may be
taken. At each step of the iteration two indices 1 £j < k < n are selected and the two
vectors X ;, X, of the current matrix X are updated by a rotation in the plane which
maintains their orthogonality and minimizes

A} +didi =d? || ST, +dE | SER, |13

(or equivalently, maximizes di(1—@})+di(1—¢})=d?|S*R;% +dF||SFR,3).
The required rotation is easy to compute explicitly. (See Kautsky and Nichols
(1983 a)for details.) Therotationsare applied in a natural order in sweeps through the
matrix, each full sweep comprising in(n — 1) rotations. (In practice itis generally more
economical to perform only rotations which result in significant improvements at
first) The sweeps are repeated until the improvement in the measure is less than a
specified tolerance. The projections of the resulting vectors X; into subspaces .%;, for
j=1,2,..., n, are then determined explicitly by

x; = 8,S3%;/lI St 115

The procedure generates the same iterates for Methods 2 and 3 and is
convergent. The computation of each rotation requires O(n — m) (or O(m)) opera-
tions and the update of matrix X takes O(n) operations. The operation count for a
full sweep of the process is, therefore, O(n*) + O(n’m), making it of the same order of
efﬁcie'ncy as Method 0. In practice, however, Methods 2/3 require fewer sweeps
than either Methods O or 1 to obtain a solution, and the procedure 2/3 is, in general,
the least expensive of the techniques.

In cases where a well-conditioned solution is obtainable, the three methods
produce similar results and Methods 2/3 are preferred. In cases where the pole
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assignment problem, itself, is poorly posed, that is, where KZ(S)/\/H > 1, then
Methods 2/3 do not perform well, since the conditioning | Dc ||, is only bounded by
the measure v,(D) when it is sufficiently small. Method 1 is then the more reliable
technique to use. We note that in such cases Methods 2/3 can be used to produce a
reasonable initial sqlution for use with Method 1.

We remark that Klein and Moore (1982) have proposed a pole placement
algorithm which uses the plane rotation technique of Methods 2/3 to make rank-two
updates to matrix X with the objective of minimizing the measure || DX ! ||, used in
Method 1. In their algorithm the optimal rotation which minimizes the measure
cannot be obtained explicitly, however, and an ‘inner’ iteration process must be
performed to obtain each update. Similar solutions to those constructed by

Method | appear to be obtained, and comparisons for a particular example are
presented in § 4.2.

3.4. Implementation

The three steps, Step A, Step X and Step F of the numerical methods described in
§§ 3.1-3.3 have been implemented using the system MATLAB (Molar 1981). This
system uses standard library routines from the software packages LINPACK
(Dongarra et al. 1979) and EISPACK (Smith et al. 1976). For experimental purposes
we have developed a set of executive files for use with MATLAB to carry out the
various steps of the pole assignment procedures. These files, together with a number
of test examples, have been incorporated in a small package which is available on
request from the authors. In the next section of the paper some of the test examples
are presented and the numerical results obtained by the pole placement procedures for
these examples are reported.

4. Applications

The four procedures described in § 3 have been applied to a number of examples
collected from the literature. In some cases, the given control system is unstable, and
a feedback matrix which stabilizes the system is to be assigned. In other cases, the
system is already stable, and the objective of the pole assignment is to move some of
the eigenvalues into new positions in the left half-plane, and also to improve the
conditioning of the system. To illustrate the behaviour of the methods, we give here
the results obtained for two test problems. (Other results are given in Kautsky and
Nichols 1983 a, Kautsky er al. 1983 b.)

4.1. Example 1. Chemical reactor (Munro 1979)

n=4 m=2

[ 1380 -02077 6715 —5676 |
05814 —4290 0 06750
AT 1067 a3 —e6sa 5893
| 00480 4273 11343 —2104 |
BTz"o 5679 1136 l~136jl
[0 0 —3146 0

EIG(A) = 1991, 6:351 x 1072, —5:057. —8-666
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This system is unstable and a feedback matrix is required to stabilize the
system. We therefore move the two positive real modes into the left-half plane,
keeping the original stable modes. We assign the set & = {—0-2, —0-5, —5-0566...,
—8:6659...}. The condition of S is k,(S) = 3-761 and a feedback system with good
conditioning is expected.

In Table 1 (ag) various measures of the conditioning of the solutions obtained after
two sweeps of the procedures are shown. (The weights are taken here as D=1
The magnitude of the gain matrix F, given by || F||,, is also given in the table. In
Table 1 (b) the same results are shown for the converged solutions, together with the
number of iterations required for convergence to a tolerance of 10~ °. The computed
feedback matrices are given in Appendix 1.

(a) Solutions after two sweeps (b) Solutions at convergence
Number
of
Method Jic|, «x(X) el IFfl,  Jell, ®(X) lell; fiFli; sweeps
0 1-82 343 328 1-47 - - - - -
1 1-79 338 327 1-44 1-76 332 323 1-40 106
2/3 2:36 4-56 371 1-16 237 4-54 368 1-17 6

Table 1. Conditioning: Example 1.

In all cases, well-conditioned solutions, close to the optimal attainable, are
determined after only two sweeps of each procedure. The converged results,
obtained by Methods | and 2/3, have slightly better overall conditioning, measured by
k,(X) or |lc|,, (although with Method 2/3, the maximum condition number

max ¢; = | ¢ . is increased slightly, as is the magnitude || F ||, of the gains). Method 1
j

is very slow to converge in comparison with Method 2/3.

Method 0 is not convergent in this case, and the best result is actually obtained
after only one sweep of the procedure.

To demonstrate the robustness of the solutions obtained, the computed feedback
matrix F is rounded to three significant figures and the eigenvalues of the resulting
closed-loop system matrix are calculated. Rounding the gain matrix F corresponds
to introducing maximum absolute errors of +4107 > max {|B||F|}; into the system
matrix. For robust solutions such perturbations shodld only cause errors of the
same order of magnitude ( x n) in the poles of the feedback system. For this example,
the absolute and percentage errors in each assigned eigenvalue due to the pertur-
bation of the closed-loop system matrix are given in Table 2. The absolute errors are
of the expected order of magnitude. The eigenvalues of the perturbed system are all
within less than 3% of the assigned values and most of the errors are considerably
smaller. It may be observed that, for this example, although the overall conditioning
obtained with Method 2/3 is somewhat worse than that obtained by Methods 0 and 1,
the effect of the perturbations in F is rather less, particularly in the case of the smallest
eigenvdlue.

The conditioning of individual eigenvalues can be controlled by the choice of the
weights used in Methods | and 2/3. To illustrate the effect of using the weighted
measures vy(D) and vy(D), we give in Table 3 the condition numbers ¢; for each
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Method 0t Method | Method 2/3
4 Absolute % Absolute % Absolute %
—-02 0-0051 25 0-0012 0-60 0-0005 025
-05 00032 0-64 0-0018 0-35 0-0012 025
—50566... 0-0039 0-08 0-0004 001 00015 0-03
—8:6659... 0-0067 0-08 0-0003 0-003 0-0022 003

tResult after two sweeps.

Table 2. Perturbation errors: Example 1.

Condition number ¢; Condition number ¢,
Method 1 Method 2/3
Weights

d; 1 Vihl 1A 1 VIl Y152
Aj=—02 1-48 1-28 1-33 2:37 1-58 1-55
-05 1-76 1-91 2:20 1-08 1-65 1-70
—5-0566... 1-45 1-69 5-00 2:36 1-46 1-45
—8-6659... 1-81 1-96 429 1-07 1-79 1-79

Table 3. Weighted conditioning: Example 1.

assigned eigenvalue /; obtained after five sweeps of each procedure with various
choices of D = diag {d;}. The overall conditioning of the solutions obtained with the

weighted measures is worse than in the case D = [, as expected, but the conditioning of
the smaller eigenvalues is improved.

42 Example 2. Distillation column (Klein and Moore 1982)

n=5 m=2
-—01094 00628 0 0 0 7
1306 —2:132 09807 0 0
A= 0 1595 —3-149 1547 0
0 00355 2632 —4257 1855
L0 000227 0 01636 —01625 ]
gt [0 00638 00838 01004 0-0063]
[0 0 ~01396 —0206 —00128

EIG(A" = — 007732, —0-01423, —0-8953, —2-84i, —5-982

We assign the eigenvalue set & = { —0-2, —0-5, —1-0, — 1-0 + 1-0i}, which includes
a ce'mplcx conjugate pair. The condition number k,(S)= 5778 is large for this
choice of poles, and we cannot expect to obtain a very well-conditioned solution to the
feedback problem. In Table 4 the various measures of the conditioning of the
solutions obtained after five sweeps of Methods 1 and 2/3 are shown, together with the
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Method el« Ka(X) el BF Y,
1 15-3 394 224 3115
2/3 300 66:1 441 2831

Table 4. Conditioning: Example 2.

magnitude || F ||, of the gain matrix. The computed feedback matrices are given in
Appendix 1. The solution obtained by Method 1 is considerably better conditioned
than that determined by Method 2/3, although neither is very robust, as
expected. We note that the gains are large here, which is anticipated, since
| All, = 6246, and o,{B} = 0057 and the ratio || A|,/o,{B} indicates the order of
magnitude of || F||,.

In Table 5 the errors in the assigned poles due to rounding the computed feedback
matrices derived by Methods 1 and 2/3 are shown. Corresponding results for
solutions to this test problem constructed by two other algorithms, given in
Gourishanker and Ramar (1976) and Klein and Moore (1982), are also shown. The
percentage errors due to perturbations in the closed-loop systems obtained by
Methods 1 and 2/3 are all reasonably small and are comparable with the solution
derived in Klein and Moore (1982). These three procedures all give solutions which
are much less sensitive to general perturbations in the system coefficients than the
solution obtained in Gourishankar and Ramar (1976).

/; Method 1 Method 2,3 Method KM+ Method GR}
-02 [-8% 1-5% 2:5% 73%
-05 0-1% 0-2% 1-2% 85%
-10 0-2% 5:0% 0-3% 40%
-1+l 24% 1-9% 30% 130%

t+Klein and Moore (1982).
1 Gourishanker and Ramar (1976).

Table 5. Percentage errors: Example 2.

4.3. Summary of results

For problems where well-conditioned solutions may be expected, that 1s, where the
conditioning k,(S) is reasonably close to unity, the four methods described here all
perform well and lead to robust solutions to the pole assignment problem. The
measures of robustness used closely reflect the actual eigenvalue sensitivities, and the
condition x,( X ) of the assigned eigenvectors, X, determined by all the methods, are
near to the optimal bound KZ(S)/\/ n. The components of the gain matrices F are
also as reasonably small as may be expected, given A4, B and the choice of the assigned
eigenvalue set . We note that the upper bound given by (22) (Theorem 5)
considerably overestimates the computed magnitude || F ||, of the gain matrix, which is
found generally to be of the same order of magnitude as || 4|,/0,{B}. As expected
for these problems, small perturbations in the gain matrices lead to proportionately
small errors in the assigned poles.

In most cases, for problems where k,(S) is small, good results are obtained by all
three procedures after only two sweeps of the iteration in Step X. Further iteration
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Appendix 1. Computed feedback matrices
Example 1

Method 0 (result after two sweeps)

(023416 —011423 031574 —0-26872
F=_1-1673 — 028830 068632 —0-24241]
Method 1
[0-14454 —0051421 013265 —0-12868
P=l i1 —0033345 078416 —0-23384:|
Method 2/3
F=”0-10277 —063333 —011872 0-14632]
| 083615 052704 —025775 0-54269
Example 2
Method 1
[ —47690 10201 —21370 17986 —42552
F=_—22-596 30633 —48077 33799 2-2776:|
Method 2/3
F='—159-68 69844 —16524 12523 —45-748]
| —99-348 79892  — 14158 —59382 —12542
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