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An algorithm for computing the antitriangular factorization of symmetric matrices, relying 
only on orthogonal transformations, was recently proposed. The computed antitriangu-
lar form straightforwardly reveals the inertia of the matrix. A block version of the latter 
algorithm was described in a different paper, where it was noticed that the algorithm 
sometimes fails to compute the correct inertia of the matrix.
In this paper we analyze a possible cause of the failure of detecting the inertia and propose 
a procedure to recover it. Furthermore, we propose a different algorithm to compute the 
antitriangular factorization of a symmetric matrix that handles most of the singularities of 
the matrix at the very end of the algorithm.
Numerical results are also given showing the reliability of the proposed algorithm.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Given a symmetric indefinite matrix A ∈ R
n×n with inertia (n−, n0, n+), where n−, n0 and n+ are the number of eigen-

values of A less, equal and greater than zero, respectively, and defined n1 = min{n−, n+}, n2 = max{n−, n+} −n1, there exists 
(see [10] for details) an orthogonal matrix Q ∈ R

n×n such that

A = Q M Q T , M =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 Y T

0 0 X Z T

0 Y Z W

⎤
⎥⎥⎦

}n0
}n1
}n2
}n1

(1)

with Z ∈ R
n1×n2 , Y ∈ R

n1×n1 nonsingular lower antitriangular, W ∈ R
n1×n1 symmetric and X ∈ R

n2×n2 symmetric definite if 
n2 > 0, i.e., X = θ LLT with L nonsingular lower triangular and
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θ =
{

1, if n+ > n−
−1, if n+ < n−

.

When n+ = n− , θ and X are not defined and the matrix M reduces to

M =
⎡
⎣ 0 0 0

0 0 Y T

0 Y W

⎤
⎦ .

Hence, X is symmetric positive definite if θ = 1 and is symmetric negative definite if θ = −1. The matrix M is said to be a 
Block AntiTriangular (BAT) matrix or, equivalently, M is said to be in a BAT form. In this paper we denote a zero submatrix 
by 0, whose size is trivial to determine and by e(k)

j the j-vector of the canonical basis of Rk . If A ∈ R
n×n , we use the

matlab notation A(i1 : i2, j1 : j2) to indicate the submatrix of A made by the rows i and j, for i ∈ {i1, ii + 1, · · · , i2}, and 
j ∈ { j1, j1 + 1, · · · , j2}. Moreover, the machine precision is denoted by ε.

An algorithm for computing the BAT form of the symmetric matrix (1) is described in [10]. The algorithm is backward 
stable relying only on stable orthogonal transformations. At the i-th iteration of the algorithm, i = 2, . . . , n, we use the BAT 
form of A(1 : i − 1, 1 : i − 1) to compute the BAT form of the submatrix A(1 : i, 1 : i) in a recursive way. In this paper we 
refer to the latter algorithm as the S-BAT algorithm.

A block extension of the S-BAT algorithm is proposed in [3], where at the i-th iteration the BAT form of A(1 : i + k − 1,

1 : i + k − 1), k ≥ 1, is computed, yielding the BAT form of A(1 : i − 1, 1 : i − 1). In this paper it is noticed that, although only 
stable orthogonal transformations are performed, the algorithm sometimes fails to detect the exact inertia of the matrix.

In this context, the main aim of the present paper is to analyze a possible cause of the loss of accuracy in the compu-
tation of the inertia with the S-BAT algorithm and to develop a procedure to retrieve the exact one. Moreover, we propose 
a different algorithm for computing the BAT form of a symmetric indefinite matrix aimed to overcome this issue. The idea 
behind the algorithm is to consider a Lanczos-like procedure [7] in order to handle tiny eigenvalues at the end of the algo-
rithm. The new algorithm inherits the nice properties of the Lanczos algorithm, such as the convergence behavior depending 
on the minimal polynomial of the matrix. We will refer to this algorithm as the H-BAT algorithm.

The BAT form plays an important role in a variety of applications, where it is important to update (downdate) the fac-
torization of a symmetric indefinite matrix modified by a symmetric rank-one matrix in a fast and stable way. For instance, 
this problem occurs in tracking the dominant eigenspace of a symmetric indefinite matrix [9]. Moreover, a fast procedure for 
modifying the factorization of an indefinite Hessian is required in optimization problems based on quasi-Newton methods 
[6,7,11].

In [10] it is shown that the BAT factorization of a symmetric indefinite matrix A ∈ R
n×n can be efficiently updated 

in a stable way when modified by a symmetric rank-one matrix with O (n2) floating point operations and, hence, such 
factorization is a good candidate to solve the aforementioned problems. Updating rank-one modifications of factorizations, 
like the LDL factorization [4] of a symmetric indefinite matrix, in a stable way is not so straightforward due to the block 
diagonal matrix D requiring, in the worst case, O (n3) floating point operations.

Finally, symmetric indefinite matrices arise in a block form in numerous saddle point problems [2], so that the BAT 
factorization can be applied [12].

The paper is organized as follows.
The analysis of the cause of failure in detecting the inertia of the algorithm proposed in [10] and the procedure to retrieve 

the exact one are described in Section 2. In Section 3 a new algorithm for computing the anti-triangular factorization of 
symmetric matrices is presented. The numerical examples are described in Section 4 followed by the conclusions.

2. Numerical issues

In this section we analyze a cause of failure of the S-BAT algorithm [10] in detecting the numerical inertia when com-
puting the antitriangular factorization of a symmetric matrix.

Let us define the τ -inertia of a symmetric matrix A ∈ R
n×n , denoted by Inertia(A, τ ), as the triple (n̂−, ̂n0, ̂n+), where 

n̂−, ̂n0 and n̂+ are the number of computed eigenvalues smaller than −τ , smaller or equal to τ in absolute value, and 
greater than τ , respectively, with τ > 0 a fixed tolerance.

We shortly describe the i-th iteration of the S-BAT algorithm, i = 2, . . . , n.
At the i-th iteration, the computed BAT form of the principal submatrix A(1 : i −1, 1 : i −1) is used to reduce the principal 

submatrix A(1 : i, 1 : i) to BAT form. At the end of the i-th iteration, we have the following “partial” BAT factorization

A = Q (i)

[
M(i)

1 C (i)T

C (i) T (i)

]
Q (i)T

where M(i)
1 ∈ R

i×i is in a BAT form with inertia (i+, i0, i−), C (i) ∈ R
(n−i)×i , T (i) ∈ R

(n−i)×(n−i) symmetric and Q (i) ∈ R
n×n

orthogonal.
For the sake of simplicity, we assume that i0 = 0. The case i0 > 0 can be handled in a similar way. The submatrix M(i)

1

looks like
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Fig. 1. Displacement and modification of the entry α from position ( j, i1 − j + 1) to (1, i1) by means of a sequence of Givens rotations applied to the left 
(→) followed by a multiplication by a permutation matrix P̂ T to the right (←). In each matrix, the nonzero entries are denoted with the symbol × in gray, 
the entry to be annihilated by the multiplication of the Givens rotation is denoted with ⊗, the entries smaller than α in absolute value are denoted by α̂, 
and the rows to be modified are depicted in black, while the columns swapped by the application of the permutation matrix P̂ T to the right are depicted 
in black.

M(i)
1 =

⎡
⎣ 0 0 Y T

0 X Z T

Y Z W

⎤
⎦ }i1

}i2
}i1

,

where 2i1 + i2 = i.
In the S-BAT algorithm, for a fixed threshold τ > 0, M(i)

1 is considered “τ -numerically” singular if one of the entries in 
the main antidiagonal of Y is, in absolute value, less than τ , i.e., if

|Y ( j, i1 − j + 1)| < τ, for a j ∈ {1, . . . , i1}. (2)

In the sequel we will show that the matrix M(i)
1 can be τ -numerically singular even if condition (2) is not satisfied and we 

propose a procedure to recover the τ -inertia.
To this end, let us suppose that (2) holds for a j ∈ {1, . . . , i1} and let α = Y ( j, i1 − j + 1).
We proceed in the following way.
Let Ĝk ∈ R

i1×i1 , k = j + 1, j + 2, . . . , i1, be the sequence of Givens rotations such that, for Q̂ 1 = Ĝ i1 · · · Ĝ j+2Ĝ j+1,

Q̂ 1Y P̂ T =
[

α̂

Ŷ â1

] }1
}i1

(3)

with α̂ ∈ R, |α̂| ≤ α, â1 ∈ R
i1−1, Ŷ ∈ R

(i1−1)×(i1−1) nonsingular antitriangular and P T ∈ R
i1×i1 is a permutation matrix 

swapping the columns i1 − j + 1 and i1.
The transformation (3) is depicted in a graphical way in Fig. 1 for a matrix Y of order 6.
Let

Q 1 =
⎡
⎣ P̂

Ii2

Q̂ 1

⎤
⎦ .

Then

M(i)
2 = Q 1M(i)

1 Q T
1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 Ŷ T

0 0 0 α̂ âT
1

0 0 X â2 Ẑ T

0 α̂ âT
2 γ̂ âT

3

Ŷ â1 Ẑ â3 Ŵ

⎤
⎥⎥⎥⎥⎥⎥⎦

}i1 − 1
}1
}i2

}1
}i1 − 1

, (4)

with [
α̂
â1

]
= Q̂ 1

⎡
⎣ 0

α
Y j+1:i1,i1− j+1

⎤
⎦ ,

[
âT

2

Ẑ

]
= Q̂ 1 Z ,

[
γ̂ âT

3

â3 Ŵ

]
= Q̂ 1W Q̂ T

1 .

Therefore |α̂| ≤ |α|. Let us consider the submatrices

K =
⎡
⎣ 0 0 α̂

0 X â2

α̂ âT
2 γ̂

⎤
⎦ , K1 =

[
X â2

âT
2 γ̂

]
.

We observe that, in exact arithmetic, if α̂ > 0, then Inertia(K ) = (1, 0, i2 + 1) if θ > 0, Inertia(K ) = (i2 + 1, 0, 1) if 
θ < 0. Nevertheless, we will see that, in floating point arithmetic, K can be numerically singular, therefore implying that 
Inertia(K ) = (1, 1, i2) if K1 is indefinite or Inertia(K ) = (0, 1, i2 + 1) if K1 is definite.
Let P̂2 ∈ R
(i2+2)×(i2+2) be a permutation matrix such that
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K2 = P̂2 K P̂ T
2 =

⎡
⎣ X â2 0

âT
2 γ̂ α̂

0 α̂ 0

⎤
⎦ ,

and let

P2 =
⎡
⎣ Ii1−1

P̂2
Ii1−1

⎤
⎦ .

Hence K2 can be decomposed as

K2 = θ L̂ L̂T + K3,

where

L̂ =
⎡
⎣ L

wT

0

⎤
⎦ and K3 =

⎡
⎣ 0 0 0

0 γ̃ α̂
0 α̂ 0

⎤
⎦ ,

and w = θ L−1â2, γ̃ = γ̂ − θwT w.
Hence K , and thus M(i)

1 , are either numerically definite, indefinite or singular if this is also the case for the submatrix

K̂3 =
[

γ̃ α̂
α̂ 0

]
.

The eigenvalues of K̂3 are respectively

λ1,2(K̂3) = γ̃

2
±

√
γ̃ 2

4
+ α̂2.

Therefore, if∣∣∣∣ α̂γ̃
∣∣∣∣ <

√
ε

2
(5)

then K̂3 is numerically singular with numerical eigenvalues λ1(K̂3) = 0 and λ2(K̂3) = γ̃ .
In this case, we can consider the Givens rotation G̃2 such that

G̃2 K̂3G̃ T
2 =

[
0

λ2(K̂3)

]
.

Let

Q̂ 2 =
[

Ii2

G̃2

]
and Q 2 =

⎡
⎣ Ii1−1

Q̂ 2
Ii1−1

⎤
⎦ .

Then

Q̂ 2 K2 Q̂ T
2 = θ

⎡
⎣ L

wT
1

wT
2

⎤
⎦

[
LT w1 w2

]
+

⎡
⎣ 0 0 0

0 0 0
0 0 λ2(K̂3)

⎤
⎦ ,

with [
wT

1

wT
2

]
= G̃2

[
wT

0

]
.

Let Q̂ 3 ∈ R
(i2+2)×(i2+2) be the product of the Givens rotations Q̂ 3 = Gi2−1Gi2−2 · · · G2G1 such that

Q̂ 3

⎡
⎣ L

wT
1

wT
2

⎤
⎦ =

⎡
⎣ 0

L̂
ŵT

2

⎤
⎦ }1

}i2
}1

, (6)

with L̂ nonsingular lower triangular and ŵ2 ∈ R
i2 . The transformation (6) is depicted in a graphical way in Fig. 2 for i2 = 4. 
Then
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Fig. 2. Annihilation of the main diagonal of the lower trapezoidal matrix by a sequence of Givens rotations described in (6). The same notation of Fig. 1 is 
adopted.

Q̂ 3 Q̂ 2 P̂2 K P̂ T
2 Q̂ T

2 Q̂ T
3 = θ

⎡
⎣ 0

L̂
ŵT

2

⎤
⎦

[
0 L̂T ŵ2

]
+

⎡
⎣ 0 0 0

0 0 0
0 0 λ2(K̂3)

⎤
⎦ =

⎡
⎣ 0 0 0

0 X̂ w̃2

0 w̃T
2 γ̃

⎤
⎦

where

X̂ = θ L̂ L̂T , w̃2 = θ L̂ŵ2, γ̃ = θŵT
2 ŵ2 + λ2(K̂2). (7)

Hence

M(i)
3 = Q 3 Q 2 P2 Q 1M(i)

1 Q T
1 P T

2 Q T
2 Q T

3 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 Ŷ T

0 0 0 0 ãT
4

0 0 X̂ w̃2 Z̃ T

0 0 w̃T
2 γ̃ ãT

3

Ŷ ã4 Z̃ ã3 Ŵ

⎤
⎥⎥⎥⎥⎥⎦ ,

where

Q 3 =
⎡
⎣ Ii1+1

Q̂ 3
Ii1

⎤
⎦ and

⎡
⎣ ãT

4

Z̃ T

ãT
3

⎤
⎦ = Q̂ 3 Q̂ 2 P̂2

⎡
⎣ âT

1

Ẑ T

âT
3

⎤
⎦ .

Let Q̂ 4 ∈R
i1×i1 be the orthogonal matrix such that

Q̂ 4

[
Ŷ T

ãT
4

]
=

[
0

Ỹ T

] }1
}i1 − 1

and let

Q 4 =
[

Q̂ 4
Ii1+i2

]
.

Then

M(i)
4 = Q 4M(i)

3 Q T
4 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 Ỹ T

0 0 X̂ w̃2 Z̃ T

0 0 w̃T
2 γ̃ ãT

3

0 Ỹ Z̃ ã3 Ŵ

⎤
⎥⎥⎥⎥⎦

}1
}i1 − 1
}i2
}1
}i1 − 1

.

The last step is to check whether the submatrix[
X̂ w̃2

w̃T
2 γ̃

]

is either definite or indefinite and to transform it, by the multiplication of an orthogonal matrix Q̂ 5 ∈ R
(i2+1)×(i2+1) , respec-

tively, to

either θ L̃ L̃T or

⎡
⎣ β

X̃ w̃2

β w̃T
2 γ̃

⎤
⎦ }1

}i2 − 1
}1

.

The details on the last step can be found in [10].
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Then

M(i)
5 = Q 5M(i)

4 Q T
5

is in a BAT form with the corrected numerical inertia, where

Q 5 =
⎡
⎣ Ii1

Q̂ 5
Ii1−1

⎤
⎦ .

Remark 2.1. In many numerical experiments we observed that the bound of (5) should also depend on the size i of the 
already computed antitriangular submatrix M(i)

1 at the i-th iteration. Therefore, to check whether M(i)
1 is τ -numerically 

singular we replace (5) by∣∣∣∣ α̂γ̃
∣∣∣∣ <

i
√

ε

2
.

3. The new algorithm

In this section we describe a different way to compute the anti-triangular factorization of a symmetric indefinite matrix 
A ∈R

n×n .
We describe the first and the generic i-th iteration, i = 1, . . . , n − 1. Let A1 = A.
At the first step, a Householder matrix H1 ∈ R

n×n is applied to A such that A1 = H T
1 Â1 H1, with

Â1 =
⎡
⎣ T1

0
vT

2
0 v2 Ã2

⎤
⎦ ,

with T1 ∈ R
2×2, v2 ∈ R

n−2, and Ã2 ∈ R
(n−2)×(n−2) . Let Ĝ1 ∈ R

2×2 be the Givens rotation such that M2 = Ĝ1T1Ĝ T
1 is sym-

metric antitriangular (see [10] for details) and let

G1 =
[

Ĝ1
In−2

]
, A2 =

[
M2 u2vT

2
v2uT

2 Ã2

]
,

where u2 ∈ R
2 is the last column of G1. Then

A1 = Q T
1 A2 Q 1,

with Q 1 = G1 H1. Hence, after the first step, the submatrix A2(1 : 2, 1 : 2) is in antitriangular form.
At the i-th iteration we proceed in a similar way. Suppose Ai is divided as follows,

Ai =
[

Mi uivT
i

viuT
i Ãi

]
,

with Mi ∈R
i×i symmetric antitriangular, ui ∈R

i , vi ∈R
(n−i) and Ãi ∈R

(n−i)×(n−i) symmetric.
Let Ĥi ∈ R

(n−i)×(n−i) be the Householder matrix such that Ĥivi = αie
(i)
i and let

Hi =
[

Ii

Ĥ i

]
.

Then

Ai = H T
i Âi Hi,

with

Âi =
⎡
⎣ Mi ûi 0

ûT
i γi vT

i+1
0 vi+1 Ãi+1

⎤
⎦ ,

and ûi = αiui ,[
γi vT

i+1

vi+1 Ãi+1

]
= Ĥ T

i Ãi Ĥ i,
with γi ∈ R, vi+1 ∈ R
(n−i−1) , Ãi+1 ∈R

(n−i−1)×(n−i−1) .
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Let Ĝ i ∈R
(i+1)×(i+1) be the orthogonal matrix [10] such that

Mi+1 = Ĝ1

[
Mi ûi

ûT
i γi

]
Ĝ T

1

is symmetric antitriangular and let

Gi =
[

Ĝ i
In−i−1

]
.

Then

Ai+1 = Gi Âi G
T
i =

[
Mi+1 ui+1vT

i+1
vi+1uT

i+1 Ãi+1

]
,

where ui+1 ∈R
i+1 is the last column of Ĝ i . Hence

Ai+1 = Q i Ai Q T
i ,

with Q i = Gi Hi .
After the (n − 1)-st iteration, the matrix An is in antitriangular form and the matrix Hn−1 is the identity matrix.

Remark 3.1. We observe that the antitriangular matrix An computed by the proposed algorithm can be obtained computing 
first the Householder reduction of A to tridiagonal form,

Tn = Q n−2 Q n−1 · · · Q 1 A1 Q T
n−2 Q T

n−1 · · · Q T
1 , (8)

and then applying the sequential algorithm described in [10],

An = Gn−1Gn−2 · · · G1TnG T
n−1G T

n−2 · · · G T
1 .

Therefore, by (8), the proposed algorithm inherits the properties of the Lanczos algorithm, since the Householder reduction 
of a symmetric matrix to a tridiagonal one is equivalent to the Lanczos algorithm with starting vector e(n)

1 . In particular, 
if the matrix A has k eigenvalues equal to zero, 0 ≤ k ≤ n, and all the eigenvalues different from zero have multiplicity 
equal to 1, then the last k − 1 rows and columns of Tn are zero. Hence, in such a case, applying the described algorithm, 
all the singularities but 1 of the matrix are handled at the last k − 1 iterations of the algorithm. Moreover, if the degree 
of the minimal polynomial of A is m < n, the anti-triangular matrix Mm computed after m iterations of the algorithm 
is not anymore modified by the completion of the algorithm, but only permuted and shifted downward along the main 
diagonal.

4. Numerical results

In this section we consider three examples. In the first one we emphasize the dependency on α̂ and γ̃ of (5) in detecting 
the correct numerical inertia.

In the last two examples we compare the algorithm S-BAT [10] with the algorithm H-BAT described in Section 3, with the 
LDLT factorization with partial pivoting [4] denoted by A = P̃ T L̃ D̃ L̃T P̃ and with the LDLT factorization with rook pivoting 
[1] denoted A = P̂ T L̂ D̂ L̂T P̂ . The last two factorizations are computed by the matlab function ldlt_symm available at [8]. 
The BAT factorizations computed by S-BAT and H-BAT are denoted by Q S M S Q T

S and Q H MH Q T
H , respectively. While S-BAT 

and H-BAT algorithms depend on the tolerance τ fixed a priori, both LDLT factorizations do not. Having computed the 
eigenvalues of the block diagonal D of the LDLT factorization, then Inertia(D, τ ) is given by the triple made by the number 
of eigenvalues of D less than −τ , less or equal to τ in absolute value and greater than τ .

All the experiments were carried out in matlab with machine precision ε ≈ 2.22 × 10−16.

Example 1. We consider a matrix A = Q D Q T of order n = 50, with Q ∈R
n×n a random orthogonal matrix generated by the

matlab function gallery(′qmult′, n), and D = diag(d), with d = randi([−1, 1], n, 1), i.e., d is a random vector whose 
elements are −1, 0, and 1. For this particular example, the number of “−1”, “0” and “1” in d are respectively 15, 19 and 16, 
so, Inertia(A) = (15, 19, 16). It turns out that

‖Q H MH Q T
H − A‖2

‖A‖2
= 1.94 × 10−15.

In Fig. 3 the sparsity structure of the computed antitriangular matrix is displayed (left). This structure was expected [10], 
since A has only eigenvalues {−1, 0, 1}. We observe that with the new adapted criterion, the ratios |α j/γ j | (*) are below the √

threshold (+) 2 j ε and above the smallest eigenvalue (o) of K at the j-th iteration of the S-BAT algorithm (Fig. 3 (right)).
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Fig. 3. Left: Computed antitriangular matrix with eigenvalues {−1, 0, 1}. Right: “o”, smallest eigenvalue of K at step j; “*”, ratio of the coefficients α j

and γ j ; “+”, bounds for the ratios γ j/α j .

Fig. 4. Entries of the matrices L̃ (top, left), L̂ (top, right), MS (bottom, left), and MH (bottom, right) in Example 2.

Example 2. Using the vector d = [randn(60, 1); zeros(40, 1)], and a random orthogonal Q ∈ R
100×100, the symmetric 

indefinite matrix A ∈ R
100×100 considered in this example is given by A = Q × diag(d) × Q T , where Q is computed by 

the matlab function gallery(′qmult′, n), with n = 100.
The exact Inertia is (29, 40, 31). In Fig. 4 the entries of the L̃ factor of the LDLT factorization with partial pivoting 

(first row, left), the entries of the L̂ factor of the LDLT factorization with rook pivoting (first row, right), the entries of 
the antitriangular matrices M S and MH computed respectively by the S-BAT (second row, left) and by the H-BAT algorithm 

(second row, right) are depicted. We can notice that the L̃ , L̂ and M S are full structured matrices, while MH is sparse.
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Table 1
Relative residuals of the factorizations computed by the LDLT factorization with partial pivoting, by the LDLT

factorization with rook pivoting, by the S-BAT and H-BAT algorithms, respectively, for different values of τ .

τ ‖ P̃ T L̃ D̃ L̃T P̃−A‖2‖A‖2

‖ P̂ T L̂ D̂ L̂T P̂−A‖2‖A‖2

‖Q S A S AT
S −A‖2

‖A‖2

‖Q H AH AT
H −A‖2

‖A‖2

1.0 × 10−13 4.99 × 10−16 3.61 × 10−16 3.10 × 10−15 2.39 × 10−15

1.0 × 10−14 4.99 × 10−16 3.61 × 10−16 3.10 × 10−15 2.33 × 10−15

1.0 × 10−15 4.99 × 10−16 3.61 × 10−16 3.14 × 10−15 2.30 × 10−15

1.0 × 10−16 4.99 × 10−16 3.61 × 10−16 3.69 × 10−15 2.56 × 10−15

Table 2
Inertias of the matrices D̃, D̂, MS and MH computed by the LDLT factorization with partial pivoting, by the LDLT

factorization with rook pivoting, by the S-BAT and H-BAT algorithms, respectively, for different values of τ .

τ Inertia(D̃, τ ) Inertia(D̂, τ ) Inertia(MS , τ ) Inertia(MH , τ )

1.0 × 10−13 (29,40,31) (29,40,31) (29,40,31) (29,40,31)

1.0 × 10−14 (29,40,31) (29,40,31) (29,40,31) (29,40,31)

1.0 × 10−15 (34,31,35) (34,31,35) (31,35,34) (30,39,31)

1.0 × 10−16 (52,1,47) (52,1,47) (52,2,46) (49,10,41)

Fig. 5. Sparsity of the matrix of Example 3 (left) and distribution of its eigenvalues (right).

The relative residuals of all considered methods, for different values of τ , are reported in Table 1 (the relative residuals 
of the LDLT factorizations are all equal because independent of τ ).

The τ -inertias, for all the considered methods and different values of τ , are reported in Table 2. We can observe that 
all methods fail to compute the exact inertia when the tolerance τ becomes tiny. However, for all values of τ , the inertia 
computed by H-BAT seems to be the closest to the exact one.

Example 3. In this example we consider the matrix USAir97 belonging to the group Pajek of [5], here denoted by 
A ∈ R

332×332. In Fig. 5 the sparsity structure (left) and the singular value distribution (right) of A are displayed. Moreover, 
Inertia(A) = [146, 51, 135]. In Fig. 6 the sparsity structures of L̃, ̂L, M S and MH are depicted. Observe that MH is sparser 
than L̃, ̂L and M S .

The relative residuals of all considered methods, for different values of τ , are reported in Table 3 (the relative residuals 
of the LDLT factorizations are all equal because independent of τ ).

The τ -inertias, for all the considered methods and different values of τ , are reported in Table 4. The inertia computed 
by H-BAT seems to be the closest to the exact one for all values of τ , also in this example.

5. Conclusions

In this paper a novel criterion to check whether a symmetric antitriangular matrix is singular was introduced. Moreover 
a different backward stable antitriangular factorization, called as H-BAT algorithm, inheriting the properties of the Lanczos 
algorithm, is presented. The considered criterion was embedded into the algorithm S-BAT [10] and into H-BAT and their 
performances in accuracy were compared with those of the LDL factorizations with partial pivoting [4] and with rook 

pivoting [1]. The numerical examples show that comparable results are obtained in terms of relative residuals. Concerning 
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Fig. 6. Sparsity structure of the matrices L̃, L̂, MS and MH in Example 3.

Table 3
Relative residuals of the factorizations computed by the LDLT factorization with partial pivoting, by the LDLT

factorization with rook pivoting, by the S-BAT and H-BAT algorithms, respectively, for different values of τ .

τ ‖ P̃ T L̃ D̃ L̃T P̃−A‖2‖A‖2

‖ P̂ T L̂ D̂ L̂T P̂−A‖2‖A‖2

‖Q S A S AT
S −A‖2

‖A‖2

‖Q H AH AT
H −A‖2

‖A‖2

1.0 × 10−13 2.05 × 10−16 1.60 × 10−16 8.47 × 10−15 1.21 × 10−15

1.0 × 10−14 2.05 × 10−16 1.60 × 10−16 3.98 × 10−15 1.21 × 10−15

1.0 × 10−15 2.05 × 10−16 1.60 × 10−16 1.77 × 10−15 1.21 × 10−15

1.0 × 10−16 2.05 × 10−16 1.60 × 10−16 1.94 × 10−15 1.21 × 10−15

Table 4
Inertias of the matrices D̃, D̂, MS and MH computed by the LDLT factorization with partial pivoting, by the LDLT

factorization with rook pivoting, by the S-BAT and H-BAT algorithms, respectively, for different values of τ .

τ Inertia(D̃, τ ) Inertia(D̂, τ ) Inertia(MS , τ ) Inertia(MH , τ )

1.0 × 10−13 (147,50,135) (147,50,135) (146,51,135) (146,51,135)

1.0 × 10−14 (147,50,135) (147,50,135) (146,51,135) (146,51,135)

1.0 × 10−15 (149,47,136) (149,47,136) (146,51,135) (146,51,135)

1.0 × 10−16 (150,46,136) (150,46,136) (146,51,135) (146,51,135)

the estimation of the numerical inertia, the considered tests show that H-BAT performs best. Moreover, the computed 
antitriangular matrix is sparser than the ones provided by the other considered algorithms.
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[3] Z. Bujanović, D. Kressner, A block algorithm for computing antitriangular factorizations of symmetric matrices, Numer. Algorithms 71 (1) (2016) 41–57.
[4] J.R. Bunch, L. Kaufman, Some stable methods for calculating inertia and solving symmetric linear systems, Math. Comput. 31 (137) (1977) 163–179.
[5] T.A. Davis, Y. Hu, The university of Florida sparse matrix collection, ACM Trans. Math. Softw. 38 (1) (2011) 1:1–1:25.
[6] P.E. Gill, G.H. Golub, W. Murray, M.A. Saunders, Methods for modifying matrix factorizations, Math. Comput. 28 (126) (1974) 505–535.
[7] G.H. Golub, C.F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University Press, Baltimore, 2013.
[8] N.J. Higham, The matrix computation toolbox, http://www.ma.man.ac.uk/~higham/mctoolbox.
[9] N. Mastronardi, P. Van Dooren, Recursive approximation of the dominant eigenspace of an indefinite matrix, J. Comput. Appl. Math. 236 (2012) 

4090–4104.
[10] N. Mastronardi, P. Van Dooren, The antitriangular factorization of symmetric matrices, SIAM J. Matrix Anal. Appl. 34 (2013) 173–196.
[11] J. Nocedal, S.J. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering, Springer, Berlin, 2006.

[12] J. Pestana, A. Wathen, The antitriangular factorization of saddle point matrices, SIAM J. Matrix Anal. Appl. 35 (2) (2014) 339–353.


