
Article

The Generalized Schur Algorithm and
Some Applications

Teresa Laudadio 1,* , Nicola Mastronardi 1 and Paul Van Dooren 2

1 Istituto per le Applicazioni del Calcolo “M. Picone”, CNR, Sede di Bari, via G. Amendola 122/D, 70126 Bari,
Italy; n.mastronardi@ba.iac.cnr.it

2 Catholic University of Louvain, Department of Mathematical Engineering, Avenue Georges Lemaitre 4,
B-1348 Louvain-la-Neuve, Belgium; paul.vandooren@uclouvain.be

* Correspondence: t.laudadio@ba.iac.cnr.it; Tel.: +39-080-5929752

Received: 2 October 2018; Accepted: 7 November 2018; Published: 9 November 2018
����������
�������

Abstract: The generalized Schur algorithm is a powerful tool allowing to compute classical
decompositions of matrices, such as the QR and LU factorizations. When applied to matrices with
particular structures, the generalized Schur algorithm computes these factorizations with a complexity
of one order of magnitude less than that of classical algorithms based on Householder or elementary
transformations. In this manuscript, we describe the main features of the generalized Schur algorithm.
We show that it helps to prove some theoretical properties of the R factor of the QR factorization of
some structured matrices, such as symmetric positive definite Toeplitz and Sylvester matrices, that
can hardly be proven using classical linear algebra tools. Moreover, we propose a fast implementation
of the generalized Schur algorithm for computing the rank of Sylvester matrices, arising in a number
of applications. Finally, we propose a generalized Schur based algorithm for computing the null-space
of polynomial matrices.

Keywords: generalized Schur algorithm; null-space; displacement rank; structured matrices

1. Introduction

The generalized Schur algorithm (GSA) allows computing well-known matrix decompositions,
such as QR and LU factorizations [1]. In particular, if the involved matrix is structured,
i.e., Toeplitz, block-Toeplitz or Sylvester, the GSA computes the R factor of the QR factorization with
complexity of one order of magnitude less than that of the classical QR algorithm [2], since it relies only on
the knowledge of the so-called generators [2] associated to the given matrix, rather than on the knowledge
of the matrix itself. The stability properties of the GSA are described in [3–5], where it is proven that the
algorithm is weakly stable provided the involved hyperbolic rotations are performed in a stable way.

In this manuscript, we first show that, besides the efficiency properties, the GSA provides new
theoretical insights on the bounds of the entries of the R factor of the QR factorization of some
structured matrices. In particular, if the involved matrix is a symmetric positive definite (SPD) Toeplitz
or a Sylvester matrix, we prove that all or some of the diagonal entries of R monotonically decrease in
absolute value.

We then propose a faster implementation of the algorithm described in [6] for computing the
rank of a Sylvester matrix S ∈ R(m+n)×(m+n), whose entries are the coefficients of two polynomials of
degree m and n, respectively. This new algorithm is based on the GSA for computing the R factor of
the QR factorization of S. The proposed modification of the GSA-based method has a computational
cost of O(rl) floating point operations, where l = min{n, m} and r is the computed numerical rank.

It is well known that the upper triangular factor R factor of the QR factorization of a matrix
A ∈ Rn×n is equal to the upper triangular Cholesky factor Rc ∈ Rn×n of AT A, up to a diagonal sign

Axioms 2018, 7, 81; doi:10.3390/axioms7040081 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
https://orcid.org/0000-0002-2046-0456
https://orcid.org/0000-0002-0045-2862
https://orcid.org/0000-0002-0115-9932
http://www.mdpi.com/2075-1680/7/4/81?type=check_update&version=1
http://dx.doi.org/10.3390/axioms7040081
http://www.mdpi.com/journal/axioms

Axioms 2018, 7, 81 2 of 18

matrix D, i.e., R = DRc, D = diag(±1, · · · ,±1) ∈ Rn×n. In this manuscript, we assume, without loss
of generality, that the diagonal entries of R and Rc are positive and since the matrices are then equal,
we denote both matrices by R.

Finally, we propose a GSA-based approach for computing a null-space basis of a polynomial
matrix, which is an important problem in several systems and control applications [7,8]. For instance,
the computation of the null-space of a polynomial matrix arises when solving the column reduction
problem of a polynomial matrix [9,10].

The manuscript is structured as follows. The main features of the GSA are provided in Section 2.
In Section 3, a GSA implementation for computing the Cholesky factor R of a SPD Toeplitz matrix is
described, which allows proving that the diagonal entries of R monotonically decrease. In Section 4,
a GSA-based algorithm for computing the rank of a Sylvester matrix S is introduced, based on the
computation of the Cholesky factor R of STS. In addition, in this case, it is proven that the first diagonal
entries of R monotonically decrease. The GSA-based method to compute the null-space of polynomial
matrices is proposed in Section 5. The numerical examples are reported in Section 6 followed by
the conclusions in Section 7.

2. The Generalized Schur Algorithm

Many of the classical factorizations of a symmetric matrix, e.g., QR and LDLT , can be obtained by
the GSA. If the matrix is Toeplitz-like, the GSA computes these factorizations in a fast way. For the
sake of completeness, the basic concepts of the GSA for computing the R factor of the QR factorization
of structured matrices, such as Toeplitz and block-Toeplitz matrices, are introduced in this Section.
A comprehensive treatment of the topic can be found in [1,2].

Let A ∈ Rn×n be a symmetric positive definite (SPD) matrix. The semidefinite case is considered
in Sections 4 and 5. The displacement of A with respect to a matrix Z of order n, is defined as

∇Z A = A− ZAZT , (1)

while the displacement rank k of A with respect to Z is defined as the rank of ∇Z A. If rank(∇Z A) = k,
Equation (1) can be written as the sum of k rank-one matrices,

∇Z A =
k1

∑
i=1

g(p)
i g(p)

i

T
−

k2

∑
i=1

g(n)
i g(n)

i

T
,

where (k1, n− k1 − k2, k2) is the inertia of ∇Z A, k = k1 + k2, and the vectors g(p)
i ∈ Rn, i = 1, . . . , k1,

g(n)
i ∈ Rn, i = 1, . . . , k2, are called the positive and the negative generators of A with respect to Z,

respectively, conversely, if there is no ambiguity, simply the positive and negative generators of A.
The matrix G ≡ [g(p)

1 , g(p)
2 , . . . , g(p)

k1
, g(n)

1 , g(n)
2 , . . . , g(n)

k2
]T is called the generator matrix.

The matrix Z is a nilpotent matrix. In particular, for Toeplitz and block-Toeplitz matrices,
the matrix Z can be chosen as the shift and the block shift matrix

Z1 =

0 0 · · · 0

1
.

...
...

.
...

0 · · · 1 0

 , Z2 =

0 0 · · · 0

Z1
.

...
...

.
...

0 · · · Z1 0

 ,

respectively.
The implementation of the GSA relies only on the knowledge of the generators of A rather than

on the knowledge of the matrix itself [1].
Let

J = diag(1, 1, . . . , 1︸ ︷︷ ︸
k1

,−1,−1, . . . ,−1︸ ︷︷ ︸
k2

).

Axioms 2018, 7, 81 3 of 18

Since
A− ZAZT = GT JG,
ZAZT − Z2 AZ2T

= ZGT JGZT ,
...

...
Zn−2 AZn−2T − Zn−1 AZn−1T

= Zn−2GT JGZn−2T ,

Zn−1 AZn−1T
= Zn−1GT JGZn−1T ,

(2)

then, adding all members of the left and right-hand sides of Equation (2) yields

A =
n−1

∑
j=0

ZjGT JGZjT
, (3)

which expresses the matrix A in terms of its generators.
Exploiting Equation (2), we show how the GSA computes R by describing its first iteration.

Observe that the matrix products involved in the right-hand side of Equation (2) have their first row
equal to zero, with the exception of the first product, GT JG.

A key role in GSA is played by J-orthogonal matrices [11,12], i.e., matrices Φ satisfying ΦT JΦ = J.
Any such matrix Φ can be constructed in different ways [11–14]. For instance, it can be considered

as the product of Givens and hyperbolic rotations. In particular, a Givens rotation acting on rows i and
j of the generator matrix is chosen if J(i, i)J(j, j) > 0, i, j ∈ {1, . . . , n}, i 6= j. Otherwise, a hyperbolic
rotation is considered. Indeed, suitable choices of Φ allow efficient implementations of GSA, as shown
in Section 4.

Let G0 ≡ G and Φ1 be a J-orthogonal matrix such that

G̃1 = Φ1G0, G̃1e1 = [α1, 0, . . . , 0]T , with α1 > 0, (4)

and ei, i = 1, . . . , n, be the ith column of the identity matrix. Furthermore, let g̃T
1 and Γ̃1 be the first

and last k− 1 rows of G̃1, respectively, i.e., G̃1 =

[
g̃T

1
Γ̃1

]
.

From Equation (4), it turns out that the first column of Γ̃1 is zero. Let J̃ be the matrix obtained by
deleting the first row and column from J. Then, Equation (2) can be written as follows,

A =
n−1

∑
j=0

ZjGT
0 JG0ZjT

=
n−1

∑
j=0

ZjGT
0 ΦT

1 JΦ1G0ZjT

=
n−1

∑
j=0

Zj

[
g̃T

1
Γ̃1

]T

J

[
g̃T

1
Γ̃1

]
ZjT

= g̃1 g̃T
1 +

n−1

∑
j=1

Zj g̃1 g̃T
1 ZjT

+
n−2

∑
j=0

ZjΓ̃T
1 J̃Γ̃1ZjT

+ Zn−1Γ̃T
1 J̃Γ̃1Zn−1T︸ ︷︷ ︸
=0

= g̃1g̃T
1 +

n−2

∑
j=0

Zj

[
g̃T

1 ZT

Γ̃1

]T

J

[
g̃T

1 ZT

Γ̃1

]
ZjT

= g̃1g̃T
1 +

n−2

∑
j=0

ZjGT
1 JG1ZjT

,

= g̃1g̃T
1 + A1,

Axioms 2018, 7, 81 4 of 18

where G1 ≡ [Zg̃1, Γ̃T
1]

T , that is, G1 is obtained from G̃1 by multiplying g̃1 with Z,

and A1 ≡ ∑n−2
j=0 ZjGT

1 JG1ZjT . If A is a Toeplitz matrix, this multiplication with Z corresponds to
displacing the entries of g̃1 one position downward, while it corresponds to a block-displacement
downward in the first generator if A is a block-Toeplitz matrix.

Thus, the first column of G1 is zero and, hence, g̃T
1 is the first row of the R factor of the QR

factorization of A. The above procedure is recursively applied to A1 to compute the other rows of R.
The jth iteration of GSA, j = 1, . . . , n, involves the products ΦjGj−1 and Zg̃1. The former

multiplication can be computed in O (k(n− j)) operations [11,12], and the latter is done for free if Z is
either a shift or a block–shift matrix. Therefore, if the displacement rank k of A is small compared to
n, the GSA computes the R factor in O(kn2) rather than in O(n3) operations, as required by standard
algorithms [15].

For the sake of completeness, the described GSA implementation is reported in the following
matlab style function. (The function givens is the matlab function having as input two scalars, x1 and

x2, and as output an orthogonal 2× 2 matrix Θ such that Θ

[
x1

x2

]
=

[√
x2

1 + x2
2

0

]
. The function

Hrotate computes the coefficients of the 2× 2 hyperbolic rotation Φ such that, given two scalars

x1 and x2, |x1| > |x2|, Φ

[
x1

x2

]
=

[√
x2

1 − x2
2

0

]
. The function Happly applies Φ to two rows of the

generator matrix. Both functions are defined in [12]).

function[R] =GSA(G, n);
for i = 1 : n,

for j = 2 : k1,
Θ =givens(G(1, i), G(j, i));
G([1, j], i : n) = Θ ∗ G([1, j], i : n);

end % for
for j = k1 + 2 : k1 + k2,

Θ = givens(G(k1 + 1, i), G(j, i));
G([k1 + 1, j], i : n) = Θ ∗ G[k1 + 1, j], i : n);

end % for
[c1, s1] = Hrotate(G(1, i), G(k1 + 1, i));
G([1, k1 + 1], i : n) = Happly(c1, s1, G([1, k1 + 1], i : n), n− i + 1);
R(i, i : n) = G(1, i : n);
G(1, i + 1 : n) = G(1, i : n− 1); G(1, i) = 0;

end % for

The GSA has been proven to be weakly stable [3,4], provided the hyperbolic transformations
involved in the construction of the matrices Φj are performed in a stable way [3,11,12].

3. GSA for SPD Toeplitz Matrices

In this section, we describe the GSA for computing the R factor of the Cholesky factorization of
a SPD Toeplitz matrix A, with R upper triangular, i.e., A = RT R. Moreover, we show that the diagonal
entries of R decrease monotonically.

Let A ∈ Rn×n and Z ∈ Rn×n be a SPD Toeplitz matrix and a shift matrix, respectively, i.e.,

A =

t1 t2

. . . tn

t2
.

. t2

tn
. . . t2 t1

 , Zn =

0 0 · · · 0

1
.

...
...

.
...

0 · · · 1 0

 ,

Axioms 2018, 7, 81 5 of 18

and let t = A(:, 1). Then,

∇Z A =

t1 t2 · · · tn

t2 0 · · · 0
...

...
...

...
tn 0 · · · 0

 ,

i.e., ∇Z A is a symmetric rank-2 matrix. Moreover, the generator matrix G is given by

G =

[
gT

1
gT

2

]
, with g1 =

t√
t1

, g2 = [0, g1(2 : n)T]T .

In this case, the GSA can be implemented in matlab-like style as follows.

function[R] = GSA_chol(G0)

for i = 1 : n,
[c1, s1] =Hrotate(Gi−1(1, i), G(i)(2, i)); Gi−1(:, i : n) = Happly(c1, s1, Gi−1(:, i : n), n− i + 1);
R(i, i : n) = Gi−1(1, i : n);
Gi(1, i + 1 : n) = Gi−1(1, i : n− 1); Gi(2, i + 1 : n) = Gi−1(2, i + 1 : n− 1);

end % for

The following lemma holds.

Lemma 1. Let A be a SPD Toeplitz matrix and let R be its Cholesky factor, with R upper triangular. Then,

R(i− 1, i− 1) ≥ R(i, i), i = 2, . . . , n.

Proof. At each step i of GSA_chol, i = 1, . . . , n, first a hyperbolic rotation is applied to Gi−1 in order
to annihilate the element Gi(2, i). Hence, the first row of Gi−1 becomes the row i of R. Finally, Gi(1, :)
is obtained displacing the entries of the first row of Gi−1 one position right, while Gi(2, :) is equal to
Gi−1(2, :). Taking into account that Gi−1(2, 1) = 0, the diagonal entries of R are

R(1, 1) = G0(1, 1)

R(2, 2) =
√

G2
1(1, 2)− G2

1(2, 2) =
√

R2(1, 1)− G2
1(2, 2) ≤ R(1, 1);

...

R(i, i) =
√

G2
i−1(1, i)− G2

i−1(2, i) =
√

R2(i− 1, i− 1)− G2
i−1(2, i) ≤ R(i− 1, i− 1);

...

R(n, n) =
√

G2
n−1(1, n)− G2

n−1(2, n) =
√

R2(n− 1, n− 1)− G2
n−1(2, n) ≤ R(n− 1, n− 1).

4. Computing the Rank of Sylvester Matrices

In this section, we focus on the computation of the rank of Sylvester matrices. The numerical rank
of a Sylvester matrix is a useful information for determining the degree of the greatest common divisor
of the involved polynomials [6,16,17].

A GSA-based algorithm for computing the rank of S has been recently proposed in [6]. It is based
on the computation of the Cholesky factor R of STS, with R upper triangular, i.e., RT R = STS.

Here, we propose a more efficient variant of this algorithm that allows proving that the first
entries of R monotonically decrease.

Axioms 2018, 7, 81 6 of 18

Let wi ∈ R, i = 0, 1, . . . , n, and let yi ∈ R, i = 0, 1, . . . , m. Denote by w(x) and y(x) two univariate
polynomials,

w(x) = wnxn + wn−1xn−1 + · · ·+ w1x + w0, wn 6= 0,
y(x) = ymxm + ym−1xm−1 + · · ·+ y1x + y0, ym 6= 0.

(5)

Let S ∈ R(m+n)×(m+n) be the Sylvester matrix defined as follows,

S =
[

W Y
]

, W =

wn

wn−1 wn
... wn−1

. . .

w1
...

. . . wn

w0 w1
. . . wn−1

w0
. . .

...
. . . w1

w0

, Y =

ym

ym−1 ym
... ym−1

. . .

y1
...

. . . ym

y0 y1
. . . ym−1

y0
. . .

...
. . . y1

y0

, (6)

with W ∈ R(m+n)×m and Y ∈ R(m+n)×n band Toeplitz matrices.
We now describe how the GSA-based algorithm proposed in [6] for computing the rank of S can

be implemented in a faster way. This variant is based on the computation of the Cholesky factor
R ∈ R(m+n)×(m+n) of STS, with R upper triangular, i.e., RT R = STS.

Defining

Z =

[
Zm

Zn

]
, with Zk =

0 0 · · · 0

1
.

...
...

.
...

0 · · · 1 0

k×k

, k ∈ N, (7)

the generator matrix G of STS with respect to Z is then given by [6]

G =
[

g1 g2 g3 g4

]T

where
g1 = x1/‖S(:, 1)‖2,
g2([2 : n + m]) = x2([2 : n + m])/‖S(:, m + 1)‖2, g2(1) = 0,
g3(2 : n + m) = g1(2 : n + m), g3(1) = 0,
g4([1 : m, m + 2 : n + m]) = g2([1 : m, m + 2 : n + m]), g4(m + 1) = 0,

(8)

with x1 = STSe1, x2 = STSem+1, ej the jth vector of the canonical basis ofRm+n, and J = diag(1, 1,−1,−1).
The algorithm proposed in [6] is based on the following GSA implementation for computing the

R factor of the QR factorization of S.

function[R] = GSA_chol2(G)

for i = 1 : n,
Θ1 =givens(G(1, i), G(2, i)); Θ2 =givens(G(3, i), G(4, i));
G(1 : 2, i : n) = Θ1G(1 : 2, i : n); G(3 : 4, i : n) = Θ2G(3 : 4, i : n);
[c1, s1] =Hrotate(G(1, i), G(3, i));
G([1, 3], i : n) = Happly(c1, s1, G([1, 3], i : n), n− i + 1);
R(i, i : n) = Gi(1, i : n);
G(1, i + 1 : n) = G(1, i : n− 1)ZT ; G(2, i + 1 : n) = G(2 : 4, i + 1 : n− 1);

end % for

Axioms 2018, 7, 81 7 of 18

At the ith iteration of the algorithm, i = 1, . . . , n, the Givens rotations Θ1 and Θ2 are computed
and applied, respectively, to the first and second generators, and to the third and fourth generators,

to annihilate G(2, i) and G(4, i). Hence, the hyperbolic rotation

[
c1 −s1

−s1 c1

]
is applied to the first

and the third row of G to annihilate G(3, i). Finally, the first row of G becomes the ith row of R and the
first row of G is multiplied by ZT .

Summarizing, at the first step of the ith iteration of GSA, all entries of the ith column but the first
one of G, are annihilated. If the number of rows of G is greater than 2, this can be accomplished in
different ways (see [5,14]) .

Analyzing the pattern of the generators in Equation (8), we are able to derive a different
implementation of GSA that costs O(rl), with l = min{n, m}. Moreover, this implementation allows
proving that the first l diagonal entries of R are monotonically decreasing.

We observe that the matrix WTW in Equation (6) is the SPD Toeplitz matrix

WTW =

t1 t2 · · · tn tn+1

t2 t1 t2
. . . tn

. . .
... t2

. tn+1

tn
...

.
... tn

tn+1 tn
. t2

...
.

... t2 t1 t2

tn+1 tn · · · t2 t1

m×m

, (9)

with

ti =
n+1

∑
j=i

wj−1wj−i, i = 1, 2, . . . , n + 1.

Since

STS =

[
WTW WTY
YTW YTY

]
,

if n� m, from Equation (9), it turns out that G([1, 3], n + 2 : m) = 0. Moreover, the rows G(2, :) and
G(4, :) have their first entry equal to zero and differ only in their entry in column m + 1. This particular
pattern of G is close to the ones described in [13,14,18], allowing to design an alternative GSA
implementation with respect to that considered in [6], and thereby reducing the complexity from
O(r(n + m)) to O(rl), where r is the computed rank of S and l = min{n, m}.

Since the description of the above GSA implementation is quite cumbersome and similar to the
algorithms reported in [13,14,18], we omit it here. The corresponding matlab pseudo–code can be
obtained from the authors upon request.

If the matrix S has rank r < (n + m), at the k = (n + m − r + 1)st iteration, it turns out that
G2(1, k) − G2(3, k) = 0 in exact arithmetic [6]. Therefore, at each iteration of the algorithm we
check whether

G2(1, k)− G2(3, k) > tol, (10)

where tol is a fixed tolerance. If Equation (10) is not satisfied, we stop the computation considering k
as the computed numerical rank of S.

The R factor of the QR factorization of S is unique if the diagonal entries of R are positive.
The considered GSA implementation, yielding the rank of S and based on computing the R factor of
the QR factorization of S, allows us to prove that the first l entries of the diagonal of R are ordered in
a decreasing order, with l = min{m, n}. In fact, the following theorem holds.

Axioms 2018, 7, 81 8 of 18

Theorem 1. Let RT R = STS be the Cholesky factorization of STS with S the Sylvester matrix defined in
Equation (6) with rank r ≥ l = min{m, n}. Then,

R(i− 1, i− 1) ≥ R(i, i) ≥ 0, i = 2, . . . , l. (11)

Proof. Each entry i of the diagonal of R is determined by the ith entry of the first row of G at the end
of iteration i, for i = 1, . . . , m + n. Let us define Ĝ ≡ G(:, 1 : l) and consider the following alternative
implementation of the GSA for computing the first l columns of the Cholesky factor of STS.

for i = 1 : l,
Θ =givens(Ĝ(1, i), Ĝ(2, i));
Ĝ(1 : 2, i : l) = Θ ∗ Ĝ(1 : 2, i : l);
[c1, s1] =Hrotate(Ĝ(1, i), Ĝ(4, i)); Ĝ([1, 4], :) = Happly(c1, s1, Ĝ([1, 4], :), l);
[c2, s2] =Hrotate(Ĝ(1, i), Ĝ(3, i)); Ĝ([1, 3], :) = Happly(c2, s2, Ĝ([1, 3], :), l);
R(i, i : l) = Ĝ(1, i : l);
Ĝ(1, i + 1 : l) = Ĝ(1, i : l − 1);
Ĝ(1, i) = 0;

end % for

We observe that, for i = 1, Ĝ(1, 1) is the only entry in the first column of Ĝ different from 0.
Hence, R(1, i) = Ĝ(1, 1 : l) and the first iteration amounts only to shifting Ĝ(1, 1 : l) one position
rightward, i.e., Ĝ(1, 2 : l) = Ĝ(1, 1 : l − 1), Ĝ(1, 1) = 0.

At the beginning of iteration i = 2, the second and the fourth row of Ĝ are equal Equation (8).
Hence, when applying a Givens rotation to the first and the second row in order to annihilate the entry
Ĝ(2, i) and when subsequently applying a hyperbolic rotation to the first and fourth row of Ĝ in order
to annihilate Ĝ(4, i), it turns out that Ĝ(2, i : l) and Ĝ(4, i : l) are then modified but still equal to each
other, while Ĝ(1, i : l) remains unchanged. The equality between Ĝ(2, :) and Ĝ(4, :) is maintained
throughout the iterations 1, 2, . . . , l.

Therefore, the second and the fourth row of Ĝ do not play any role in computing R(1 : l, 1 : l) and
can be neglected. Hence, the GSA for computing R(1 : l, 1 : l) reduces only to applying a hyperbolic
rotation to the first and the third generators, as described in the following algorithm.

for i = 1 : l,
[c2, s2] =Hrotate(Ĝ(1, i), Ĝ(3, i)); Ĝ([1, 3], :) = Happly(c2, s2, Ĝ([1, 3], :), l);
R(i, i : l) = Ĝ(1, i : l);
Ĝ(1, i + 1 : l) = Ĝ(1, i : l − 1);
Ĝ(1, i) = 0;

end % for

Since at the beginning of iteration i, i = 2, . . . , i, Ĝ(1, i : l) = R(i − 1, i − 1 : l − 1), then the

involved hyperbolic rotation Φ =

[
c2 −s2

−s2 c2

]
is such that

Φ

[
Ĝ(1, i)
Ĝ(3, i)

]
= Φ

[
R(i− 1, i− 1)

Ĝ(3, i)

]
=

[
Ĝ(1, i)

0

]
=

[
R(i, i)

0

]
,

where the updated Ĝ(1, i) is equal to
√

Ĝ(1, i)2 − Ĝ(3, i)2 ≥ 0. Therefore,

R(i, i) =
√

R(i− 1, i− 1)2 − Ĝ(3, i)2 ≥ 0, and thus R(i, i) ≤ R(i− 1, i− 1).

Axioms 2018, 7, 81 9 of 18

Remark 1. The above GSA implementation allows to prove the inequality Equation (11). This property is
difficult to obtain if the QR factorization is performed via Householder transformations or if the classical Cholesky
factorization of STS is used.

5. GSA for Computing the Null-Space of Polynomial Matrices

In this section, we consider the problem of computing a polynomial basis X(s) ∈ Rn×(n−ρ) of the
null-space of an m× n polynomial matrix of degree δ and rank ρ ≤ min(m, n),

M(s) =
δ

∑
i=0

Misi, Mi ∈ Rm×n, i = 0, . . . , δ. (12)

As described in [8,19,20], the above problem is equivalent to that of computing the null-space of
a related block-Toeplitz matrix. Algorithms to solve this problem are proposed in [8,19] but they do
not explicitly exploit the structure of the involved matrix. Algorithms to solve related problems have
also been described in the literature, e.g., in [8,19,21,22].

In this paper, we propose an algorithm for computing the null-space of polynomial matrices
based on a variant of the GSA for computing the null-space of a related band block-Toeplitz matrix [8].

5.1. Null-Space of Polynomial Matrices

A polynomial vector v(s) = ∑γ
i=0 visi, vi ∈ Rn, i = 0, . . . , γ, γ ∈ N, is said to belong to the

null-space of (12) if

M(s)v(s) = 0⇔
δ

∑
j=0

Mjsj
γ

∑
i=0

visi = 0.

The polynomial vector v(s) belongs to the null-space of M(s) iff v = [vT
0 , vT

1 , . . . , vT
γ]

T ,
vi ∈ Rn, i = 0, . . . , γ, is a vector belonging to the null-space of the band block-Toeplitz matrix

T =

M0

M1 M0
... M1

. . .

Mδ

...
. . . M0

Mδ
. . . M1 M0
. . .

... M1

Mδ

...
Mδ

m̂×n̂

, (13)

where m̂ = m(δ + nb), n̂ = nnb, with nb = γ + 1 the number of block columns of T, that can be
determined, e.g., by the algorithm described in [8]. Hence, the problem of computing the null-space of
the polynomial matrix in Equation (12) is equivalent to the problem of computing the null-space of the
matrix in Equation (13). To normalize the entries in this matrix, it is appropriate to first perform a QR
factorization of each block column of T :

M0

M1
...

Mδ

 =

Q0

Q1
...

Qδ

U, where ∑
i

QT
i Qi = In,

Axioms 2018, 7, 81 10 of 18

and to absorb the upper triangular factor U in the vector u(s) := Uv(s). The convolution equation
M(s)v(s) = 0 then becomes an equation of the type Q(s)u(s) = 0, but where the coefficient matrices
Qi of Q(s) form together an orthonormalized matrix.

Remark 2. Above, we have assumed that there are no constant vectors v in the kernel of M(s). If there are,
then, the block column of Mi matrices has rank less than n and the above factorization will discover it in the sense
that the matrix U is nonsquare and the matrices Qi have less columns than Mi, i = 0, 1, . . . , δ. This trivial
null-space can be eliminated and we therefore assume that the rank was full. For simplicity, from now on, we also
assume that the coefficient matrices of the polynomial matrix M(s) were already normalized in this way and
the norm of the block columns of T are thus orthonormalized. This normalization proves to be very useful in
the sequel.

Denote by

Znb =

0n

In 0n
.

In 0n

n̂×n̂

and Z =

[
Znb

Znb

]
2n̂×2n̂

,

where 0n is the null–matrix of order n ∈ N.
If vi 6= 0, 0 < i < γ, and vj = 0, j = i + 1, . . . , γ, i.e.,

v = [vT
0 , vT

1 , . . . , vT
i , 0, . . . , 0︸ ︷︷ ︸

γ−i

]T ,

and v ∈ ker(T), then also Zk
nb

v ∈ ker(T), k = 0, 1, . . . , γ− i. In this case, the vector v is said to be
a generator vector of a chain of length γ− i + 1 of the null-space of T.

The proposed algorithm for the computation of the null-space of polynomial matrices is based on
the GSA for computing the R factor of the QR-factorization of the matrix T in Equation (13) and, if R is
full column rank, its inverse R−1.

Let us first assume that the matrix T is full rank, i.e., rank(T) = ρ = min{m̂, n̂}. Without loss
of generality, we suppose m̂ ≥ n̂. If m̂ < n̂, the algorithm still computes the R factor in trapezoidal
form [23]. Moreover, in this case, we compute the first m̂ rows of the inverse of the matrix obtained
appending the last n̂− m̂ rows of the identity matrix of order n̂ to R.

Let us consider the SPD block-Toeplitz matrix

T̂ = TTT =

T̂0 T̂1 · · · T̂δ

T̂1 T̂0 T̂1
.

... T̂1
. T̂δ

T̂δ
.

...
. T̂0 T̂1

T̂δ · · · T̂1 T̂0

∈ Rn̂×n̂, (14)

whose blocks are

T̂i−j =

 ∑
δ−|i−j|
k=0 MT

k+|i−j|Mk, if i ≤ j

∑
δ−|i−j|
k=0 MT

k Mk+|i−j|, if i > j.
(15)

Axioms 2018, 7, 81 11 of 18

Notice that, because of the normalization introduced before, we have that T̂0 = In and ‖T̂i‖2 ≤ 1.
This is used below. The matrix

W =

[
T̂ In̂

In̂ 0n̂

]
(16)

can be factorized in the following way,

W = R̂T Ĵ R̂ ≡
[

RT

R−1 R−1

] [
In̂
−In̂

] [
R R−T

R−T

]
, (17)

where R ∈ Rn̂×n̂ is the factor R of the QR-factorization of T, i.e., the Cholesky factor of T̂. Hence, R and
its inverse R−1 can be retrieved from the first n̂ columns of the matrix R̂T .

The displacement matrix and the displacement rank of W with respect to Z, are given by

∇Z(W) = W − ZWZT =

In T̂1 · · · T̂δ 0n · · · 0n In 0n · · · 0n

T̂1
...

T̂δ

0n
...

0n

In

0n
...

0n

(18)

and ρ(W, Z) = rank(∇Z(W)), respectively, with ∇Z(W) ∈ R2n̂×2n̂.
Then, taking the order n of the matrices T̂i, i = 0, 1, . . . , δ, into account, it turns out that ρ(W, Z) ≤ 2n.
Hence, Equation (18) can be written as the difference of two matrices of rank at most n, i.e.,

∇Z(W) = G(+)T
G(+) − G(−)T

G(−) = GT JG, where G :=

[
G(+)

G(−)

]
and J = diag(In,−In).

Since T̂0 = In, the construction of G does not require any computation: it is easy to check that G is
given by

G :=

[
G(+)

G(−)

]
=

[
In T̂1 · · · T̂δ 0n · · · 0n In 0n · · · 0n

0n T̂1 · · · T̂δ 0n · · · 0n 0n 0n · · · 0n

]
. (19)

Remark 3. Observe that increasing nb, with nb ≥ δ + 1, the structures of W and ∇Z(W) do not change due
to the block band structure of the matrix W. Consequently, the length of the corresponding generators changes
but their structure remains the same since only T0, T1, . . . , Tδ and In are different from zero in the first block row.

The computation by the GSA of the R factor of T and of its inverse R−1 is made by only using the
matrix G rather than the matrix T. Its implementation is a straightforward block matrix extension of
the GSA described in Section 2.

Axioms 2018, 7, 81 12 of 18

Remark 4. By construction, the initial generator matrix G0 has the first δ + 1 block rows and the block row
nb + 1 different from zero. Therefore, the multiplication of G0 by the J-orthogonal matrix H1 does not modify
the structure of the generator matrix.

Let G0 = G. At each iteration i (for i = 1, . . . , nb,), we start from the generator matrix Gi−1 having
the blocks (of length n) i, i + 1, . . . , i + δ and nb + 1, . . . , nb + i different form zero. We then look for
a J-orthogonal matrix Hi such that the product HiGi−1 has in position (1 : n, (i− 1)n + 1 : in) and
(n + 1 : 2n, (i− 1)n + 1 : in) a nonsingular upper triangular and zero matrix, respectively.

Then, Gi is obtained from

[
G̃(+)

i

G̃(−)
i

]
≡ HiGi−1 by multiplying the first n columns with Z, i.e.,

Gi =

[
G̃(+)

i ZT

G̃(−)
i

]
.

The computation of the J-orthogonal matrix Hi at the ith iteration of the GSA can be constructed
as a product of n Householder matrices Ĥi,j and n hyperbolic rotations Ŷi,j, j = 1, . . . , n.

The multiplication by the Householder matrices Ĥi,j modifies the last n columns of the generator
matrix, annihilating the last n entries but the (n + 1)st in the row (i− 1)n + j, j = 1, . . . , n, while the
multiplication by the hyperbolic rotations Ŷi,j acts on the columns i and n + 1, annihilating the entry in
position ((i− 1)n + j, n + 1).

Given υ1, υ2 ∈ R, |υ1| > |υ2|, a hyperbolic matrix Y ∈ R2×2 can be computed

Y =

[
c −s
−s c

]
, with c =

υ1√
υ2

1 − υ2
2

, s =
υ2√

υ2
1 − υ2

2

,

such that [υ1, υ2]Y = [
√

υ2
1 − υ2

2, 0].
The modification of the sparsity pattern of the generator matrix after the first and ith iteration of

the GSA are displayed in Figures 1 and 2, respectively.
The reliability of the GSA strongly depends on the way the hyperbolic rotation is computed.

In [4,5,24], it is proven that the GSA is weakly stable if the hyperbolic rotations are implemented in
an appropriate manner [3,11,12,24].

Let

Hi,j =

[
In

Ĥi,j

]
Yi,j =

Ij−1

cj −sj
In−j

−sj cj
In−1

 .

Then,
Hi = Hi,1Yi,1 · · ·Hi,n−1Yi,n−1Hi,nYi,n.

As previously mentioned, GSA relies only on the knowledge of the generators of W rather than
on the matrix T̂ itself. Its computation involves the product T̂T T̂, which can be accomplished with
δ2n3 flops. The ith iteration of the GSA involves the multiplication of n Householder matrices of
size n times a matrix of size ((i + δ + 1)n × n). Therefore, since the cost of the multiplication by
the hyperbolic rotation is negligible with respect to that of the multiplication by the Householder
matrices, the computational cost at iteration i is 4n3(δ + i). Hence, the computational cost of GSA is
2n3nb(2δ + n2

b/2).

Axioms 2018, 7, 81 13 of 18

1
↓

(δ+1)n
↓

n̂+1
↘

n̂+n
↙

n+1
↓

(δ+2)n
↓

n̂+1
↓

n̂+2n
↓

G0 =

G1 =

 G(+)
0 ZT

G(−)
0

 =

Figure 1. Modification of the sparsity pattern of the generator matrix G after the first iteration.

(i−1)n+1
↓

(δ+i)n
↓

n̂+1
↓

n̂+(i−1)n
↓

(i−1)n+1
↓

(δ+i)n
↓

n̂+1
↓

n̂+(i−1)n
↓

Gi−1 =

G̃i =

Gi =

 G̃(+)
i ZT

G̃(−)
i

 =

in+1
↓

(δ+i+1)n
↘

n̂+1
↙

n̂+in
↓

Figure 2. Modification of the sparsity pattern of the generator matrix G after the ith iteration.

5.2. GSA for Computing the Right Null-Space of Semidefinite Block Toeplitz Matrices

As already mentioned in Section 5.1, the number of desired blocks nb of the matrix T in
Equation (13) can be computed as described in [8]. For the sake of simplicity, in the considered
examples, we choose nb large enough to compute the null-space of T.

The structure and the computation via the GSA of the R factor of the QR factorization of the
singular block Toeplitz matrix T with rank ρ < n ≤ m, is considered in [23].

A modification of the GSA for computing the null-space of Toeplitz matrices is described in [25].
In this paper, we extend the latter results to compute the null-space of T by modifying GSA.

Without loss of generality, let us assume that the first n̂− 1 columns of T are linear independent
and suppose that the n̂th column linearly depends on the previous ones. Therefore, the first
n̂− 1 principal minors of T̂ are positive while the n̂th one is zero. Let T̂ = QΛQT be the spectral
decomposition of T̂, with Q = [q1, . . . , qn̂] orthogonal and Λ = diag(λ1, . . . , λn̂−1, λn̂), with

λ1 ≥ λ2 ≥ · · · ≥ λn̂−1 > λn̂ = 0,

and let T̂ε = QΛεQT , with Λε = diag(λ1, . . . , λn̂−1, ε2), with ε ∈ R∗+. Hence,

T̂−1
ε =

1
ε2

(
n̂−1

∑
i=1

ε2

λi
qiq

T
i + qn̂qT

n̂

)
.

Axioms 2018, 7, 81 14 of 18

Let Rε be the Cholesky factor of T̂ε, with Rε upper triangular, i.e., T̂ε = RT
ε Rε. Then,

ε2T̂−1
ε e(2n̂)

n̂ =

(
n̂−1

∑
i=1

ε2qT
i e(2n̂)

n̂
λi

qi + (qT
n̂ e(2n̂)

n̂)qn̂

)
.

On the other hand,

ε2T̂−1
ε e(2n̂)

n̂ = ε2R−1
ε R−T

ε e(2n̂)
n̂ = ε2r−1

n̂,n̂R−1
ε e(2n̂)

n̂ ,

where rn̂,n̂ = e(2n̂)
n̂

T
Rεe

(2n̂)
n̂ . Hence, as ε → 0+, the last column of R−1

ε becomes closer and closer to
a multiple of qn̂, the eigenvector corresponding to the 0 eigenvalue of T̂.

Therefore, given

Wε =

[
T̂ε In̂

In̂ 0n̂

]
,

we have that
∇Z(Wε) = G(+)T

G(+) − G(−)T
G(−) + ε2e(2n̂)

n̂ e(2n̂)
n̂

T
.

Let

G0,ε =

 G(+)

G(−)

εe(2n̂)
n̂

T

 .

Define
Jε = diag(1, 1, . . . , 1︸ ︷︷ ︸

n̂

,−1,−1, . . . ,−1︸ ︷︷ ︸
n̂

, 1).

Hence,
∇Z(Wε) = GT

0,ε JεG0,ε.

We observe that column n̂+ 1 of the generator matrix is not involved in the GSA until the very last
iteration, since only its n̂th entry is different from 0. At the very last iteration, the hyperbolic rotation

Y =

[
c −s
−s c

]
,

with

c =

√
G(+)2

(n, n̂) + ε2√
G(+)2

(n, n̂) + ε2 − G(−)2
(1, n̂)

, s =
G(−)(1, n̂)√

G(+)2
(n, n̂) + ε2 − G(−)2

(1, n̂)

is applied to the n̂th and (n̂ + 1)st rows of G, i.e., to the nth row of G(+) and the first one of G(−).
Since T̂ is singular, it turns out that |G(+)(n, n̂)| = |G(−)(1, n̂)| (see [23,25]). Thus,

Y =
1√

G(+)2
(n, n̂) + ε2 − G(−)2

(1, n̂)

√

G(+)2
(n, n̂) + ε2 −G(−)(1, n̂)

−G(−)(1, n̂)
√

G(+)2
(n, n̂) + ε2

=
|G(+)(n, n̂)|

ε

√

1 +
(

ε
G(+)(n,n̂)

)2
−θ

−θ

√
1 +

(
ε

G(+)(n,n̂)

)2

 ,

Axioms 2018, 7, 81 15 of 18

where

θ =
G(−)(1, n̂)
|G(+)(n, n̂)|

= sign(G(−)(1, n̂)).

We observe that, as ε→ 0+,

|G(+)(n, n̂)|
ε

→ ∞,

√
1 +

(
ε

G(+)(n, n̂)

)2
→ 1.

Since a vector of the right null-space of T is determined except for the multiplication by a constant,
neglecting the term |G(+)(n, n̂)|/ε, such a vector can be computed at the last iteration as the first
column of the product [

1 −θ

−θ 1

] [
G(+)(n, n̂ + 1 : 2n̂)
G(−)(1, n̂ + 1 : 2n̂)

]
.

When detecting a vector of the null-space as a linear combination of row n of G(+) and row one of
G(−), the new generator matrix G for the GSA is obtained removing the latter columns from G [23,25].

The implementation of the modified GSA for computing the null-space of band block-Toeplitz
matrices in Equation (13) is rather technical and can be obtained from the authors upon request.

The stability properties of the GSA have been studied in [4,5,24]. The proposed algorithm inherits
the stability properties of the GSA, which means that it is weakly stable.

6. Numerical Examples

All the numerical experiments were carried out in matlab with machine precision ε ≈ 2.22× 10−16.
Example 1 concerns the computation of the rank of a Sylvester matrix, while Examples 2 and 3 concern
the computation of the null-space of polynomial matrices.

Example 1. Let xi, i = 1, . . . , 12, yi, i = 1, . . . , 15, and zi, i = 1, . . . , 3, be random numbers generated by
the matlab function randn. Let w(x)and y(x) be the two polynomials of degree 15 and 18, constructed by
the matlab function poly, whose roots are, respectively, xi and zj, i = 1, . . . , 12, j = 1, . . . , 3, and yi and
zj, i = 1, . . . , 15, j = 1, . . . , 3.

The greatest common divisor of w and y has degree 3 and, therefore, the Sylvester matrix S ∈ R33×33

constructed from w(x) anf y(x) has rank 30. The diagonal entries of the R factor computed by the GSA
implementation described in Section 4 are displayed in Figure 3. Observe that the rank of the matrix can be
retrieved by the number of entries of R above a certain tolerance. Moreover, it can be noticed that the first m = 15
diagonal entries monotonically decrease.

0 5 10 15 20 25 30 35
10-15

10-10

10-5

100

105

R(i,i), i=1, ,33

Figure 3. Diagonal entries of R.

Axioms 2018, 7, 81 16 of 18

Example 2. As second example, we consider the computation of the coprime factorization of a transfer function
matrix, described in [9,26]. The results obtained by the proposed GSA-based algorithm were compared with those
obtained computing the null-space of the considered matrix by the function svd of matlab.

Let H(s) = Nr(s)D−1
r (s) be the transfer function with

Dr(s) =

1− s 0 0 0

0 1− s 0 0
0 −s 1− s 0
0 0 0 1− s

 , Nr(s) =

s2 0 0 0
0 0 0 0
0 0 0 0
0 0 s 0
0 0 0 s

 .

Let

M(s) =
[

NT
r (s) −DT

r (s)
]
=

s2 0 0 0 0 s− 1 0 0 0
0 0 0 0 0 0 s− 1 s 0
0 0 0 s 0 0 0 s− 1 0
0 0 0 0 s 0 0 0 s− 1

 .

As reported in [9,26], a minimal polynomial basis for the right null-space of M(s) is

N(s) =

1− s 0 0
0 0 0
0 0 0
0 (1− s)2 0
0 0 1− s
s2 0 0
0 s2 0
0 s− s2 0
0 0 s

.

Let us consider nb = 3. Then, T ∈ R20×21 is the block-Toeplitz matrix constructed from M(s) as
described in Section 5.1. Let rank(M) = 17 and UΣVT be the rank and the singular value decomposition of
T computed by matlab, respectively, and let us define V1 = V(:, 1 : 17) and V2 = V(:, 18 : 21) the matrices
of the right singular vectors corresponding to the nonzero and zero singular values of T, respectively. The
modified GSA applied to T yields four vectors v1, Znb v1, v2, v3 ∈ R21 belonging to the right null-space of
M(s), with Znb = diag(ones(14, 1),−7). Let X = [v1 Znb v1 v2 v3]. In Table 1, the relative norm of TV2, the
relative norm of TX, the norm of VT

1 V2 and the norm of VT
1 X, are reported in Columns 1–4, respectively.

Table 1. Relative norm of TV2, relative norm of TX, norm of VT
1 V2 and norm of VT

1 X, for Example 2.

‖TV2‖2
‖T‖2

‖TX‖2
‖T‖2

‖V T
1 V2‖2 ‖V T

1 X‖2

4.23× 10−16 2.89× 10−16 9.66× 10−16 2.59× 10−15

Such values show that the results provided by svd of matlab and by the algorithm based on a modification
of GSA are comparable in terms of accuracy.

Example 3. This example can be found in [9,26]. Let H(s) = D−1
l (s)Nr(s) be the transfer function with

Dl(s) = (s + 2)2(s + 3)

[
1 0
0 1

]
, Nl(s) =

[
3s + 8 2s2 + 6s + 2

s2 + 6s + 2 3s2 + 7s + 8

]
.

Axioms 2018, 7, 81 17 of 18

Let M(s) = [Dl(s),−NL(s)]. A right coprime pair for M(s) is given by

Nr =

[
3 2

s + 2 3

]
, Dr =

[
s2 + 3s + 4 2

2 s + 4

]
,

Let us choose nb = 4. Then, T ∈ R14×16 is the block-Toeplitz matrix constructed from M(s) as
described in Section 5.1. Let rank(M) = 11 and UΣVT be the rank and the singular value decomposition
of T computed by matlab, respectively, and let define V1 = V(:, 1 : 11) and V2 = V(:, 12 : 16) the
matrices of the right singular vectors corresponding to the nonzero and zero singular values of T, respectively.
The modified GSA applied to T yields the vectors v1, Znb v1, Z2

nb
v1, v2, Znb v2, v3 ∈ R16 of the right null-space,

with Znb = diag(ones(12, 1),−4). Let X = [v1, Znb v1, Z2
nb

v1, v2, Znb v2, v3]. In Table 2 , the relative
norm of TV2, the relative norm of TX, the norm of VT

1 V2 and the norm of VT
1 X, are reported in Columns

1–4, respectively.

Table 2. Relative norm of TV2, relative norm of TX, norm of VT
1 V2 and norm of VT

1 X, for Example 3.

‖TV2‖2
‖T‖2

‖TX‖2
‖T‖2

‖V T
1 V2‖2 ‖V T

1 X‖2

1.33× 10−16 2.04× 10−16 5.56× 10−16 4.91× 10−15

As in Example 2, the results yielded by the considered algorithms are comparable in accuracy.

7. Conclusions

The Generalized Schur Algorithm is a powerful tool allowing to compute classical decompositions
of matrices, such as the QR and LU factorizations. If the involved matrices have a particular structure,
such as Toeplitz or Sylvester, the GSA computes the latter factorizations with a complexity of one
order of magnitude less than that of classical algorithms based on Householder or elementary
transformations.

After having emphasized the main features of the GSA, we have shown in this manuscript that
the GSA helps to prove some theoretical properties of the R factor of the QR factorization of some
structured matrices. Moreover, a fast implementation of the GSA for computing the rank of Sylvester
matrices and the null-space of polynomial matrices is proposed, which relies on a modification of
the GSA for computing the R factor and its inverse of the QR factorization of band block-Toeplitz
matrices with full column rank. The numerical examples show that the proposed approach yields
reliable results comparable to those ones provided by the function svd of matlab.

Author Contributions: All authors contributed equally to this work.

Funding: This research was partly funded by INdAM-GNCS and by CNR under the Short Term Mobility Program.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kailath, T.; Sayed, A.H. Fast Reliable Algorithms for Matrices with Structure; SIAM: Philadelphia, PA, USA, 1999.
2. Kailath, T.; Sayed, A. Displacement Structure: Theory and Applications. SIAM Rev. 1995, 32, 297–386.

[CrossRef]
3. Chandrasekaran, S.; Sayed, A. Stabilizing the Generalized Schur Algorithm. SIAM J. Matrix Anal. Appl.

1996, 17, 950–983. [CrossRef]
4. Stewart, M.; Van Dooren, P. Stability issues in the factorization of structured matrices. SIAM J. Matrix

Anal. Appl. 1997, 18, 104–118. [CrossRef]
5. Mastronardi, N.; Van Dooren, P.; Van Huffel, S. On the stability of the generalized Schur algorithm. Lect. Notes

Comput. Sci. 2001, 1988, 560–567.

http://dx.doi.org/10.1137/1037082
http://dx.doi.org/10.1137/S0895479895287419
http://dx.doi.org/10.1137/S089547989528692X

Axioms 2018, 7, 81 18 of 18

6. Li, B.; Liu, Z.; Zhi, L. A structured rank-revealing method for Sylvester matrix. J. Comput. Appl. Math.
2008, 213, 212–223. [CrossRef]

7. Forney, G. Minimal bases of rational vector spaces with applications to multivariable linear systems. SIAM J.
Control Optim. 1975, 13, 493–520. [CrossRef]

8. Zúñiga Anaya, J.; Henrion, D. An improved Toeplitz algorithm for polynomial matrix null-space
computation. Appl. Math. Comput. 2009, 207, 256–272. [CrossRef]

9. Beelen, T.; van der Hurk, G.; Praagman, C. A new method for computing a column reduced polynomial
matrix. Syst. Control Lett. 1988, 10, 217–224. [CrossRef]

10. Neven, W.; Praagman, C. Column reduction of polynomial matrices. Linear Algebra Its Appl. 1993, 188, 569–589.
[CrossRef]

11. Bojańczyk, A.; Brent, R.; Van Dooren, P.; de Hoog, F. A note on downdating the Cholesky factorization.
SIAM J. Sci. Stat. Comput. 1987, 8, 210–221. [CrossRef]

12. Higham, N.J. J-orthogonal matrices: properties and generation. SIAM Rev. 2003, 45, 504–519. [CrossRef]
13. Lemmerling, P.; Mastronardi, N.; Van Huffel, S. Fast algorithm for solving the Hankel/Toeplitz Structured

Total Least Squares Problem. Numer. Algorithm. 2000, 23, 371–392. [CrossRef]
14. Mastronardi, N.; Lemmerling, P.; Van Huffel, S. Fast structured total least squares algorithm for solving the

basic deconvolution problem. SIAM J. Matrix Anal. Appl. 2000, 22, 533–553.[CrossRef]
15. Golub, G.H.; Van Loan, C.F. Matrix Computations, 4th ed.; Johns Hopkins University Press: Baltimore,

MD, USA, 2013.
16. Boito, P. Structured Matrix Based Methods for Approximate Polynomial GCD; Edizioni Della Normale: Pisa, Italy, 2011.
17. Boito, P.; Bini, D.A. A Fast Algorithm for Approximate Polynomial GCD Based on Structured Matrix

Computations. In Numerical Methods for Structured Matrices and Applications; Bini, D., Mehrmann, V.,
Olshevsky, V., Tyrtyshnikov, E., Van Barel, M., Eds.; Birkhauser: Basel, Switzerland, 2010; Volume 199,
pp. 155–173.

18. Mastronardi, N.; Lernmerling, P.; Kalsi, A.; O’Leary, D.; Van Huffel, S. Implementation of the regularized
structured total least squares algorithms for blind image deblurring. Linear Algebra Its Appl. 2004, 391, 203–221.
[CrossRef]

19. Basilio, J.; Moreira, M. A robust solution of the generalized polynomial Bezout identity. Linear Algebra
Its Appl. 2004, 385, 287–303. [CrossRef]

20. Kailath, T. Linear Systems; Prentice Hall: Englewood Cliffs, NJ, USA, 1980.
21. Bueno, M.; De Terán, F.; Dopico, F. Recovery of Eigenvectors and Minimal Bases of Matrix Polynomials from

Generalized Fiedler Linearizations. SIAM J. Matrix Anal. Appl. 2011, 32, 463–483. [CrossRef]
22. De Terán, F.; Dopico, F.; Mackey, D. Fiedler companion linearizations and the recovery of minimal indices.

SIAM J. Matrix Anal. Appl. 2010, 31, 2181–2204. [CrossRef]
23. Gallivan, K.; Thirumalai, S.; Van Dooren, P.; Vermaut, V. High performance algorithms for Toeplitz and

block Toeplitz matrices. Linear Algebra Its Appl. 1996, 241–243, 343–388. [CrossRef]
24. Stewart, M. Cholesky Factorization of Semi-definite Toeplitz Matrices. Linear Algebra Its Appl. 1997, 254, 497–526.

[CrossRef]
25. Mastronardi, N.; Van Barel, M.; Vandebril, R. On the computation of the null space of Toeplitz-like matrices.

Electron. Trans. Numer. Anal. 2009, 33, 151–162.
26. Antoniou, E.; Vardulakis, A.; Vologiannidis, S. Numerical computation of minimal polynomial bases:

A generalized resultant approach. Linear Algebra Its Appl. 2005, 405, 264–278. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cam.2007.01.032
http://dx.doi.org/10.1137/0313029
http://dx.doi.org/10.1016/j.amc.2008.10.037
http://dx.doi.org/10.1016/0167-6911(88)90010-2
http://dx.doi.org/10.1016/0024-3795(93)90480-C
http://dx.doi.org/10.1137/0908031
http://dx.doi.org/10.1137/S0036144502414930
http://dx.doi.org/10.1023/A:1019116520737
http://dx.doi.org/10.1137/S0895479898345813
http://dx.doi.org/10.1016/j.laa.2004.07.006
http://dx.doi.org/10.1016/j.laa.2003.11.030
http://dx.doi.org/10.1137/100816808
http://dx.doi.org/10.1137/090772927
http://dx.doi.org/10.1016/0024-3795(95)00649-4
http://dx.doi.org/10.1016/S0024-3795(96)00517-4
http://dx.doi.org/10.1016/j.laa.2005.03.017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Generalized Schur Algorithm
	 GSA for SPD Toeplitz Matrices
	Computing the Rank of Sylvester Matrices
	GSA for Computing the Null-Space of Polynomial Matrices
	Null-Space of Polynomial Matrices
	GSA for Computing the Right Null-Space of Semidefinite Block Toeplitz Matrices

	Numerical Examples
	Conclusions
	References

