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Abstract. In this paper we revisit the problem of finding an orthogonal similarity transformation
that puts an n × n matrix A in a block upper-triangular form that reveals its Jordan structure at
a particular eigenvalue λ0. The obtained form in fact reveals the dimensions of the null spaces of
(A− λ0I)i at that eigenvalue via the sizes of the leading diagonal blocks, and from this the Jordan
structure at λ0 is then easily recovered. The method starts from a Hessenberg form that already
reveals several properties of the Jordan structure of A. It then updates the Hessenberg form in an
efficient way to transform it to a block-triangular form in O(mn2) floating point operations, where
m is the total multiplicity of the eigenvalue. The method only uses orthogonal transformations and
is backward stable. We illustrate the method with a number of numerical examples.

Key words. Jordan structure, staircase form, Hessenberg form

March 4, 2019

1. Introduction. Finding the eigenvalues and their corresponding Jordan struc-
ture of a matrix A is one of the most studied problems in numerical linear algebra.
This structure plays an important role in the solution of explicit differential equations,
which can be modeled as

λx(t) = Ax(t), x(0) = x0, A ∈ Rn×n (1.1)

where λ stands for the differential operator. The structure of the solutions of (1.1)
depend heavily on the Jordan structure of A at each of its eigenvalues. A particular
point is the origin, since if A has an eigenvalue at λ0 = 0, then its Jordan structure
also plays an important role in the construction of the Drazin inverse. We refer to [?,
Chap. 4] and [5] for further details. When considering systems of implicit differential
equations, modeled as

λBx(t) = Ax(t), x(0) = x0, A,B ∈ Rn×n (1.2)

one can reduce the problem to the explicit system of equations λx(t) = B−1Ax(t) if
det(B) 6= 0 and then the Jordan structure of the eigenvalues of B−1A play a similar
role. But one often imposes the weaker assumption that the system is regular, i.e.
det(λB − A) 6= 0 for at least one value of λ. In this case one defines the generalized
eigenvalues as the roots of the polynomial det(λB − A) and the Jordan form is then
replaced by the so-called Weierstrass form, which also allows to define the structure
of the eigenvalue λ0 = ∞. The structure of the eigenvalue at λ0 = ∞ corresponds
to the so-called impulsive solutions of (1.2) and the so-called index is the size of the
corresponding largest Jordan block. We refer to [7, Chap. 7], [14, Chap. 2] for further
details.
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Both these problems are of course intimately related, hence this work will focus
on the Jordan structure of a single matrix A and will indicate how to extend this to
the more general cases.

Let us suppose that the matrix A has λ0 = 0 as an eigenvalue and define the
spaces Ni as the null spaces of the powers Ai. Clearly these null spaces are nested
and one defines the index k of this eigenvalue, as the smallest integer i for which the
dimensions nk := dim(Nk) of these spaces do not change anymore :

N1 ⊂ N2 ⊂ · · · ⊂ Nk = Nk+1 (1.3)

n1 < n2 < · · · < nk = nk+1. (1.4)

The dimensions ni of these spaces can be shown to define uniquely the Jordan struc-
ture at the eigenvalue λ0 = 0. A proof of this follows implicitly from the block trian-
gular forms constructed by Kublanovskaya [12], Ruhe [15] and Golub&Wilkinson [9]
and which were generalized to so-called staircase forms in [17]. Their basic result is
the construction of a unitary matrix V partitioned as

V =
[
V1 V2 · · · Vk Vk+1

]
(1.5)

where

Ni = Im(
[
V1 V2 · · · Vi

]
), i = 1, . . . , k

i.e. Vi completes the orthogonal basis of Ni−1 to an orthogonal basis for the larger
space Ni. If we define the integers ri as the increments of the dimensions ni :

r1 = n1, ri = ni − ni−1, i = 2, . . . , k, (1.6)

then this unitary matrix V transforms A to the following staircase form

Ã = V TAV =



0r1 Ã1,2 · · · Ã1,k−1 Ã1,k Ã1,k+1

0 0r2 Ã2,3 · · · Ã2,k Ã2,k+1

...
...

. . .
. . .

...
...

...
... 0rk−1

Ãk−1,k Ãk−1,k+1

0 0 . . . · · · 0rk Ãk,k+1

0 0 0 · · · 0 Ãk+1,k+1


(1.7)

where
• the diagonal blocks 0ri of Ã are square and of dimension ri, for i = 1, . . . , k,
• the blocks Ãi−1,i are of full column rank ri, for i = 2, . . . , k,

• the block Ãk+1,k+1 is nonsingular (provided it is not empty).
It follows also from these properties that the index set {r1, . . . , rk} (also known as the
Weyr characteristic of A at λ0 = 0 [16], [19, Chap. 2]) is non-increasing :

r1 ≥ r2 ≥ . . . ≥ rk.

These indices then define the Jordan structure of the corresponding eigenvalue via
the following rules :

there are exactly ri − ri+1 Jordan blocks of size i for i = 1, . . . , k
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where we have assumed rk+1 = 0.

The original papers [12, 15] for computing the above form for a given eigenvalue

(say, λ0 = 0), had a worst-case complexity of O(rn3) flops for r =
∑k

i=1 ri recovered
eigenvalues, where unitary transformations were used throughout the calculations,
which implied that the computed form corresponded exactly to a slightly perturbed
matrix A. Software implementing this decomposition was also provided in [11]. This
procedure was extended in [17] and later in [6] to cover also the Jordan structure of a
regular pencil λB − A, but there also the complexity was of the same order for r re-
covered generalized eigenvalues. This was because all these methods used full matrix
decompositions for each rank determination, and there could possibly be O(r) such
rank tests during the process of constructing the staircase form (1.7). The first algo-
rithm that had at most cubic complexity was proposed by Golub&Wilkinson [9] but
it used non-orthogonal bases for the representation of some intermediate calculations,
therefore precluding the same kind of backward stability result. The same issue also
applies to the method of Anstreicher&Rothblum [1], which uses Gauss-Jordan elimi-
nation, which is potentially unstable. The first backward stable methods with cubic
complexity were proposed in [2], [3], for the general type of staircase form as well as
for the special case of Jordan canonical form described above. These algorithms used
either updating of echelon forms or updating of QR decompositions to maintain cubic
complexity. More recently, Guglielmi et al. [10] revisited this problem and produced
a new algorithm of cubic complexity. They also did extensive testing to illustrate the
performance of their algorithm and discussed the sensitivity of the decomposition.

In this paper we propose yet another algorithm of overall cubic complexity, which
has several advantages. The staring point is a special Hessenberg form, obtained in
10n3/3 flops, which turns out to have a number of additional properties, when the
matrix has several Jordan blocks at the same eigenvalue (the so-called derogatory
case). These properties are then exploited to yield a method of O(rn2) complexity to
retrieve the staircase form at a given eigenvalue. The resulting form can be exploited
to compute the Jordan structure at any other given eigenvalue, again with O(r̂n̂2)
complexity, where now n̂ = (n− r) and r̂ is the multiplicity of this second eigenvalue.
Continuing like this for all eigenvalues of A, yields eventually a staircase form in O(n3)
flops.

For the sake of simplicity, we consider only real matrices. The extension to
complex matrices is straightforward. We will use the following notations. Matrices
and submatrices are denoted by capital letters, i.e., A,B,H. The entry (i, j) of the
matrix A is denoted by the lower case letter ai,j . Vectors are denoted by bold letters,
i.e., a,b, . . .. The identity matrix of order n is denoted by In and its i–th column

by e
(n)
i , or, if there is no ambiguity, simply by I and ei, respectively. Generic entries

different from zero in matrices or vectors are denoted by “×”. The machine precision
is denoted by ε. We denote a Givens rotation by

Gi =


Ii−1

c −s
s c

In−i−1

 , [
c −s
s c

] [
c −s
s c

]T
= I2.

The entries to be annihilated by the product of a matrix or a vector by a Givens
rotations will be deduced from the context and graphically denoted by the symbol
“⊗” in the pictures.
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The paper is organized as follows. The new algorithm is described and analyzed
in Section 2. A number of numerical experiments illustrating the accuracy of our
method are reported in Section 3. We then end the paper with a number of concluding
remarks.

2. A new algorithm. In this section we develop the new algorithm for finding
the Weyr characteristic at a particular eigenvalue λ0. Without loss of generality, we
will assume that λ0 = 0, because it simplifies the description of the algorithm.

The first step of the algorithm consists in a reduction to Hessenberg form. Since
the matrix we are interested in has a non-trivial Weyr characteristic, it must have sev-
eral eigenvalues at the origin. In this case, we will see that this preliminary reduction
almost always yields a Hessenberg form with several smaller unreduced blocks and
we will show theoretically that the sizes of these unreduced blocks can be deduced in
terms of the Jordan structure of the matrix. This preliminary reduction is computa-
tionally important since it significantly reduces the computational complexity of the
algorithm.

At the second step, we check if each irreducible Hessenberg block is singular with a
technique inspired by Guglielmi et al. [10]. Then, in each singular block the eigenvalue
λ0 = 0 is moved to the top of each Hessenberg block by a backward variant of the
QR–step with perfect shift λ0 = 0, called in the sequel “backward QR–step”, requiring
first the computation of the corresponding eigenvector in order to guarantee backward
stability. For the full analysis of this backward QR–step with perfect shift, we refer
to another paper [13].

The third step consists of moving all deflated zero eigenvalues to the top of the
matrix by a special echelon reduction. That part is strongly related to the results
described in [2], [3]. An important difference here is that we show how to exploit
the Hessenberg form of the different blocks in order to keep the complexity as low as
possible. At the end of the third step, the computed matrix H has a block Hessenberg
form with the first r1 columns zeroed, where r1 is the first element of the Weyr
characteristic. The whole procedure is then recursively applied to H(r1+1 : n, r1+1 :
n) until the considered submatrix is either nonsingular or empty.

2.1. Hessenberg reduction. The Hessenberg reduction of a square matrix is
the first step of the algorithm. In this section we analyze the Hessenberg form of a
matrix A ∈ Rn×n with given Jordan structure at the origin.

Theorem 2.1. Let m(λ) =
∏`

i=1(λ− λi)ki be the monic minimal polynomial of

a matrix A, and let d :=
∑`

i=1 ki be its degree. Then the Krylov subspace Kk(A, b) =
Im
[
b, Ab, . . . , Ak−1b

]
has dimension bounded by min(k, d). Moreover

(i) this upper bound is reached for almost any vector b, i.e. it is generic,
(ii) such a Krylov subspace of maximal dimension d is an invariant subspace of A
corresponding to a largest Jordan block of each eigenvalue, and the vector b is its
cyclic generator1.

Proof. It is well known that since m(λ) has degree d, then Ad =
∑d−1

i=0 ciA
i.

Therefore Ad+jb (for all j ≥ 0) is a linear combination of the previous vectors in
the Krylov subspace, and, by induction, also of Kd(A, b). We use this to prove the
genericity results (i) and (ii) for a matrix A which is nilpotent (no eigenvalues except
λ = 0). For this special case we can give a simple algebraic characterization of the
genericity condition. We can assume without loss of generality that the matrix A is in

1A vector b is a cyclic genarator if Kk(A, b) is of full dimension [20, Chap. 0].
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its staircase form Ã (provided we transform the vector b as well), since the dimension
of the Krylov subspace is invariant to similarity transformations.

Ã =



0r1 Ã1,2 · · · Ã1,k−1 Ã1,k

0 0r2 Ã2,3 · · · Ã2,k

...
...

. . .
. . .

...
...

... 0rk−1
Ãk−1,k

0 0 . . . · · · 0rk

 , b̃ =



b̃1
b̃2
...
...

b̃k

 .

In that coordinate system, any vector b̃ = V T b that has a nonzero subvector b̃k in
its last rk components, will yield a Krylov subspace that grows by one at each step
to reach full dimension k. This condition can also be written as Ãk−1b̃ 6= 0 or,
equivalently, Ak−1b 6= 0, where k is the degree of the minimal polynomial. Notice
that meanwhile we also proved (ii) for a nilpotent matrix, since the Jordan form of
A, restricted to K(A, b), is a single Jordan block of length k. That follows from the
fact that the dimension of the Krylov subspace is k.

If we now consider a matrix with several different eigenvalues λi, the argument
could be repeated for each eigenvalue, but we give here a shorter geometric proof. We
want to show that in the generic case, dimKj(A, b) = min(j, d). If this is not the case,
then there must exist an index j < d such that dimKj(A, b) = dimKj+1(A, b). Then
Kj(A, b) is an invariant subspace of A and b belongs to it. Let V be an n× j matrix

spanning Kj(A, b), then there exist a matrix Ã ∈ Rj×j and a vector b̃ ∈ Rj such that

AV = V Ã, b = V b̃.

Let m̃(λ) be the monic minimal polynomial of Ã. Then it follows that

m̃(Ã) = 0 =⇒ m̃(A)V = V m̃(Ã) = 0 =⇒ m̃(A)V b̃ = m̃(A)b = 0.

So b must belong to the kernel of m̃(A) for all monic polynomials m̃(λ) of degree
j that divide m(λ). There is a finite number of such polynomials and the matrices
m̃(A) are non-zero since otherwise m(λ) would not be the minimal polynomial of A.
Therefore, a random vector b in Kj(A, b) almost always satisfies m̃(A)b 6= 0 for all
m̃(λ). The generic result is thus that the minimal polynomial m(λ) of A is also the
minimal polynomial of A restricted to Kd(A, b). Since dimKj(A, b) = j for j ≤ d the
vector b is a cyclic generator of Kd(A, b) and the corresponding restriction can have
only one Jordan block for each eigenvalue λi.

We illustrate this Theorem with a simple example.
Example 2.1. Let the Jordan structure of A be described by its list of Jordan

blocks Ji(λj) of size i at eigenvalue λj and the corresponding Weyr characteristic at
eigenvalue λi :

Eigenvalue Jordan blocks Weyr characteristic
λ1 = 0 J4(0), J2(0), J1(0) 3, 2, 1, 1
λ2 = 1 J3(1) 1, 1, 1
λ3 = 2 J2(2), J1(2) 2, 1

For this structure the generic Krylov subspace will have dimension d = 4 + 3 + 2 = 9
and the Jordan structure of A restricted to that eigenspace will be J4(0), J3(1), J2(2).
If we now apply the Hessenberg reduction with a starting vector b that is random,
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we will deflate an invariant subspace with that corresponding eigenstructure. The
remaining part of the matrix A will therefore have a Jordan structure corresponding
to the leftover blocks, i.e. J2(0), J1(0), J1(2). �

Corollary 2.2. Let A be an arbitrary matrix with minimal polynomial m(λ) =∏`
i=1(λ − λi)

ki of degree d :=
∑`

i=1 ki. Then for almost any “seed vector” b, the
Hessenberg reduction of A yields an irreducible deflated matrix whose Jordan blocks
are Jki(λi) :

Â = V TAV =

[
rdH ×

0 B

]
, where H :=



× · · · · · · ×

×
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . . ×

0 · · · 0 × ×


is unreduced and has characteristic and minimal polynomial m(λ).

Proof. The proof follows essentially from the point (ii) of the previous Theorem.

If we now repeat the above procedure and choose a new seed for the remaining
submatrix B then we find the following generic Hessenberg reduction,

Â = V TAV =


H1 × · · · ×

0 H2
. . .

...
...

. . .
. . . ×

0 · · · 0 Hk

 (2.1)

where each diagonal block Hj is an unreduced Hessenberg matrix and its Jordan
blocks are the j-th Jordan block of each eigenvalue λi of A. Therefore, these matrices
are of decreasing size. We revisit the above example, in order to clarify this.

Example 2.2. For the matrix A given in Example 2.1 there would be three
Hessenberg matrices Hj of dimension dj and their respective Jordan structures would
be

j Jordan blocks of Hj dj
1 J4(0), J3(1), J2(2) 9
2 J2(0), J1(2) 3
3 J1(0) 1

�
Remark 2.1. We believe that the above result is new, although a similar Hessen-

berg reduction was obtained in [4], but based on the Euclidean algorithm and with no
reference to genericity. The fact that a non-derogatory matrix almost always leads to
a complete Krylov subspace, can be found in [20, Chap. 1], where it is also pointed out
that the vector b is then a cyclic generator. But the recursive Hessenberg reduction
and the link to the minimal polynomial are not in [20, Chap. 1].

Remark 2.2. We observe that, from a numerical point of view, the Hessenberg
reduction often is not able to reveal the structure of the matrix described in this para-
graph, due to the ill-conditioning of the eigenvalues of the matrix. Nevertheless, the
computed Hessenberg form will be the starting step of the proposed algorithm and the
form (1.7) will be computed in the other steps.
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The first step of our algorithm uses these results to compute a “backward” up-
per Hessenberg form H = QHAQ

T
H , with QH ∈ Rn×n orthogonal, and H in upper

Hessenberg form. This Hessenberg reduction differs from the usual one [8, p. 368] be-
cause it starts from the bottom–right corner of the matrix A and proceeds backward
to the upper–left one. We choose such a reduction to Hessenberg form because it is
more suitable to compute the form (1.7). This reduction is accomplished in n − 2
steps. In the first step, the entries 1, 2, . . . , n − 3, n − 2 of row n are annihilated by
the right-multiplication with a “reverse” Householder matrix Q1; we then apply the
similarity transformation Q1AQ

T
1 . At the second step, we then construct the updated

transformation Q2Q1AQ
T
1Q

T
2 with Q2 a “reverse” Householder matrix chosen to an-

nihilate the entries 1, 2, . . . , n−3, of the row n−1. Proceeding in this way, at the step
n− 2, the entry in position (3, 1) is annihilated and we have the final transformation
H := Qn−2 · · ·Q2Q1AQ

T
1Q

T
2 · · ·QT

n−2.
We observe that the matrix H has the structure described in (2.1), with the sizes

of the Hessenberg diagonal blocks in reversed order.

Computational complexity. The number of flops required to compute the
backward Hessenberg reduction is 10n3/3, the same number of flops required by the
“forward” Hessenberg reduction.

2.2. Deflating the 0 eigenvalues. As described above, the computed Hessen-
berg matrix H has the structure described in (2.1). The natural choice to check
whether 0 is an eigenvalue of each Hj , j = 1, . . . , k, is to apply one step of the back-
ward QR method with zero shift to each submatrix Hj . In exact arithmetic, if 0 is
an eigenvalue of the irreducible submatrix Hj ∈ Rnj×nj , then one backward QR–step

with zero shift, yields a new Hessenberg submatrix Ĥj = WjHjW
T
j , with its first

column zeroed [19, Chap. 4]. Notice that Wj ∈ Rnj×nj is a product of nj − 1 Givens
rotations Gnj−i, i = 1, . . . , nj − 1, and is also in Hessenberg form.

Unfortunately, in finite precision this may not be the case anymore because of the
effect known as “blurred shift” [18] and the ill–conditioning of the zero eigenvalue (see
Example 2.3). The first column of the computed Ĥj might therefore be far from the
zero column and its norm will depend on the condition number of the zero eigenvalue.

Therefore, we need to consider an alternative approach. We compute the eigen-
vector corresponding to the smallest eigenvalue of Hj by inverse iteration. If 0 is an
eigenvalue up to a fixed tolerance τ , one step of inverse iteration is enough to compute
the corresponding eigenvector. Moreover, even though the submatrices Hj could be
very ill–conditioned, it is well known that the errors of the computed eigenvector by
inverse iteration are in the same direction as the true eigenvector [8, Chap. 7].

Let (λ,x,y) be the triple consisting of an eigenvalue and the corresponding right
and left eigenvector of a irreducible Hessenberg matrix H ∈ Rn×n. In Theorem A.1, it
is shown that one backward (forward) QR–step with perfect shift, i.e., with shift equal
to λ, can be constructed considering the sequence of Givens rotations Q reducing the
corresponding right (left) eigenvector x ( y) to e1 (en), i.e., Qx = ±e1 (Qy = ±en) .
Then, in exact arithmetic, QHQT is still in upper Hessenberg form with the first
column (last row) zeroed. We call this procedure modified backward (forward) QR–
step. A modified backward QR–step is graphically depicted in Picture 2.2. We observe
that, in floating point arithmetic, the resulting matrix after such a step may not be
in Hessenberg form anymore and a O(n3) algorithm is proposed in [?] to recover the
Hessenberg structure.

However, in Appendix A, we also show that, under very reasonable assumptions,
this version of the so-called backward QR–step with (perfect) zero shift, produces the
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Fig. 2.1. Modification of the matrix and the eigenvector associated to the zero eigenvalue

desired result. The possible loss and recovery of the accuracy in computing the new
Hessenberg matrix with the first column zeroed described in this section is shown in
the following example.

Example 2.3. Let A ∈ R18×18 be the second of the two matrices considered in
[10, Appendix B] arising in surface subdivision. The two smallest singular values,
computed by matlab are σ17 = 9.16×10−11 and σ18 = 2.57×10−16 while the smallest
eigenvalue λ18 computed by eig of matlab has modulus equal to 3.34 × 10−5 with
eigenvalue condition number κ(λ18) = 1.8088× 1011.

Let H̃ be the Hessenberg matrix computed by the backward Hessenberg reduction
and H̃1 the one obtained from H̃ by applying one (standard) step of the backward QR
algorithm with zero shift. In exact arithmetic, the first column of H1 is 0. However,
the norm of the first column of the computed H̃1 is 6.25 × 10−2. The matrix H̃2

is then obtained applying one forward step of the QR method with zero shift to H̃.
The norm of the last row of the upper Hessenberg matrix H̃2 is 3.32× 10−15. Hence,
by considering Theorem A.1 in a forward fashion, the left eigenvector, associated to
the zero eigenvalue, is the vector e18, the 18-th vector of the canonical basis of R18.

Therefore, 1/x
(2)
n gives an estimate of the condition number of λ = 0 [8, Ch. 7].

For this, we compute x(2), the eigenvector associated to the smallest eigenvalue
in modulus of H̃2, via inverse iteration. Its last two components are respectively,

x
(2)
n−1 = −7.77 × 10−2 and x

(2)
n = −3.68 × 10−12. This high sensitivity also explains

the blurring of the shift in the usual QR step. On the other hand, it is shown in the

Appendix A that if the subvector [x
(2)
n−1, x

(2)
n ] is not too small (e.g. bounded below by

a number µ of the order of 1), then, forcing the part of the matrix below the first
subdiagonal to be zero after a modified backward QR–step using the vector x(2), will
introduce a perturbation in the entries of the rest of the Hessenberg matrix of size ε/µ.

If the bound

‖[x(2)n−1, x
(2)
n ]‖2 > µ (2.2)
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on the subvector of x(2) is not met, we propose to perform a forward QR-step with
zero shift in order to obtain a transformed eigenvector x(2) for which the bound is
met. We summarize this procedure in the following scheme.

Apply one step of inverse iteration to the matrices Hj , j = 1, . . . , k.
if 0 is an eigenvalue and x(j) the corresponding eigenvector of Hj , j ∈ {1, . . . , k},

if ‖[x(j)nj−1, x
(j)
nj ]‖2 > µ,

apply the modified backward zero shift QR–step to Hj and x(j)

else

apply one step of the QR method with zero shift to Ĥj = WT
j HjWj

compute x̂(j) = WT
j x(j);

apply the modified backward zero shift QR–step to Ĥj and x̂(j);
end if

end if

If 0 is an eigenvalue of Hj ∈ Rnj×nj , then at this stage, the computed Ĥj is still
in Hessenberg form with the first column zeroed.

If (2.2) is not satisfied, one can check whether

‖[y(2)n−1, y
(2)
n ]‖2 > µ. (2.3)

If the latter bound is satisfied one modified forward QR–step is applied in the same
fashion. In this case, the new computed Hessenberg matrix has its last row negligible.
Then with a technique similar to the one described in Section 2.3 we can compute a
similar Hessemberg matrix with the first column negligible. When both (2.2) and (2.3)

are not satisfied, a sufficiently large entry of x(2) closer to x
(2)
n is sought and moved

to the last position of the vector, permuting the Hessenberg matrix accordingly. The
modified backward QR–step on the latter vector will need to chase a larger bulge in
the Hessenberg matrix in this case.

Computational complexity. For each matrix Hj ∈ Rnj×nj , j = 1, . . . , k,∑k
j−1 nj = n, the computation of the eigenvector corresponding to the zero eigenvalue

requires 4n2j floating point operations. One (forward or backward) QR–step and

the procedure described in the Appendix A requires 6n2j floating point operations.
Moreover, the cost of updating the whole Hessenberg matrix by the product of nj − 1
Givens rotations is 6nj(n− nj) floating point operations.

2.3. Echelon reduction and the Weyr characteristic. Let H be the block
Hessenberg matrix computed after the previous two steps

H =


Hk × · · · ×

Hk−1
. . .

...
. . . ×

H1

 ,

where Hi ∈ Rni×ni , i = 1, . . . , k, and
∑k

i=1 ni = n.
In this step the matrix H is column reduced to echelon form by an orthogonal

similarity transformation. A detailed description of the reduction of a general matrix
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to echelon form via orthogonal transformations can be found in [2]. Here we develop
this for the special case of Hessenberg matrices.

Let us suppose H1 is singular otherwise we can restrict ourselves to the reduction
to echelon form of the submatrix

Hk × · · · ×

Hk−1
. . .

...
. . . ×

H2

 .
The aim is to first compress to the right the Hessenberg matrix H by right mul-

tiplication with a matrix QT
c made by the product of a sequence of Givens rotations,

Ĥ = HQT
c . (2.4)

If the first Weyr characteristic is r1, then the first r1 column of Ĥ will be zero.
This step is graphically displayed in Figure 2.3 for the matrix considered in the

Example 3.2 after the first two steps, i.e., after the reduction to Hessenberg form
and the deflation of the zero eigenvalue in each Hessenberg block along the diagonal.
These Hessenberg blocks are displayed in Figure 2.3 (a) with blue boxes.

We now denote by G
(i)T

j the Givens rotation acting on the columns j and j+1 of H

annihilating the entry in position (j, i) in the product HG
(i)T

j . The red entries denote
rank–one submatrices present or created during the computation. In particular, the
submatrix of indexes (1 : 2, 2 : 3) is already of rank-one from the beginning of this
step, while the submatrix of indexes (3 : 4, 4 : 5) is of rank–one after the multiplication

by G
(5)T

5 ((g)→ (h)). Moreover, the submatrix (1 : 2, 2 : 4) becomes of rank–one after

the multiplication with G
(4)T

4 ((h) → (i)). When an entry of a rank–one submatrix
is annihilated, the other entries in the same column of the submatrix are annihilated
too ((h)→ (i), (i)→ (j) and (j)→ (k)). After this transformation the first r1 columns
are zeroed, where r1 is the first Weyr characteristic.

Let QT
c be the product of all the Givens matrices applied to the right of H. Then

the Hessenberg structure is restored multiplying (2.4) to the left by Qc obtaining

Ĥ(2) = QcHQ
T
c , (2.5)

such that

Ĥ(2)[e1, . . . , er1 ] = 0.

This step is graphically displayed in Figure 2.3 for the matrix considered in the
Example 3.2.

After computing Ĥ(2) in (2.5), the whole procedure is recursively applied to

H(2) = Ĥ(2)(r1 + 1 : n, r1 + 1 : n)

(the part below and to the right of the red cross in Figure 2.3 (h)), until H(k), for a
k ≥ 1 is either empty or nonsingular.

The blue boxes displayed in Figure 2.3 (h) denote the block Hessenberg subma-
trices of H(2), whose sizes are obtained by subtracting one from those of the diagonal
blocks of H in Figure 2.2 (a).
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Fig. 2.2. Reduction of the Hessenberg matrix of Example 3.2 to column echelon form by a
sequence of Givens rotations applied to the right.

Computational complexity. Suppose all the Hessenberg blockHi, i = 1, . . . , k,
are singular. Then the number of Givens rotations in order to compute Ĥ in (2.4)

is less than 2
∑k

i=1 ni. Hence, about 6n2 floating point operations are required to

compute Ĥ and about the same number of floating point operations are required to
compute Ĥ(2) in (2.5).

3. Numerical experiments. In this section we consider some numerical exam-
ples. The described algorithm, denoted in the sequel by MVD, was implemented in
matlab and compared to the one described in [10], denoted in the sequel by GOS, and
available at epubs.siam.org/doi/suppl/10.1137/140956737.

Let A = Q1B1Q
T
1 and A = Q2B2Q

T
2 be the decomposition computed by GOS and

MVD, respectively. The tolerance considered in all the examples is τ = 10−13.

Example 3.1. In this example we construct a matrix with the same Weyr char-
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Fig. 2.3. Restoring the Hessenberg matrix from the column reduced echelon form.

acteristic of the matrix of Example 2.2. Therefore, the considered matrix

A0 =



0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 1
0 0 0 0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 0 0 0 2



,

A is given by A = QA0Q
T , where Q ∈ Rn×n is an orthogonal random matrix gener-

ated by the matlab function gallery(’qmult’, n) with n = 13.
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GOS MVD
‖A−QBQT ‖2
‖A‖2 9.34× 10−16 1.66× 10−15

Table 3.1
Relative residual of the factorizations computed by GOS (left) and MVD (right).

The relative residuals of the two considered factorizations are displayed in Ta-
ble 3.1. Both algorithms yield the same Weyr characteristic,i.e., [3, 2, 1, 1].
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Fig. 3.1. Nonzero structure of the computed matrices in Example 3.1 by GOS (a) and by MVD (b).

The nonzero structure of the matrices computed by GOS and MVD is depicted in
Figure 3.1 ((a) and (b), respectively). The red boxes in the pictures denote the Weyr
structure, while the blue boxes denote the remaining diagonal block structure, which is
Hessenberg for MVD.

Example 3.2. Let A ∈ R10×10 be the first of the two matrices considered in
[10, Appendix B.1]. Such a matrix arises in the design of surfaces using subdivision
algorithms [10]. This matrix is singular and the zero eigenvalue has multiplicity 4,
with one Jordan block of order 2 and two of order 1. Moreover, the Weyr characteristic
at the zero eigenvalue is [3, 1] .

GOS MVD
‖A−QBQT ‖2
‖A‖2 5.75× 10−16 9.14× 10−16

Table 3.2
Relative residual of the factorizations computed by GOS (left) and MVD (right).

Example 3.3. The matrix A ∈ R18×18 of this example was considered in [10,
Appendix B.1]. The relative residuals and nonzero structure of the matrices computed
by GOS and MVD and they are depicted in Figure 3.3 and Table 3.3, respectively. The
red box in the pictures denote the Weyr structure, while the blue box denotes the other
diagonal block, which is Hessenberg for MVD. Both methods compute the same Weyr
characteristic equal to [1].

Remark 3.1. A phenomenon called the “κ2 effect” affects the algorithm GOS
presented in [10]. In particular, given A = XJX−1 + E ≡ Atrue + E, where J is
the original Jordan structure, X a nonsingular matrix with condition number κ, and
E is the error matrix such that ‖E‖ = ρ‖Atrue‖. Since ‖J‖ = 1, then ‖Atrue‖ ≤
‖X‖‖X−1‖ = κ. If now one sets X−1AX = J + F, it follows that F = X−1EX.
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Fig. 3.2. Nonzero structure of the computed matrices in Example 3.2 by GOS (a) and by MVD (b).

GOS MVD
‖A−QBQT ‖2
‖A‖2 5.80× 10−16 9.93× 10−16

Table 3.3
Relative residual of the factorizations computed by GOS (left) and MVD (right).

Therefore

‖F‖ ≤ κ‖E‖ ≤ κ2ρ.

The same analysis applies to the algorithm presented in this paper and a similar
behavior as the GOS algorithm was noticed in the performed numerical experiments.
We therefore omit the details here.

4. Conclusions. In this paper we discussed the problem of finding an orthogonal
similarity transformation that puts an n×n matrix A in a block upper-triangular form
revealing its Jordan structure at the eigenvalue λ = 0. But clearly, the method can
be applied to any partucular eigenvalue of the original matrix A, by just a shift
to A − λ0I. The proposed numerical method yields a transformed matrix whose
nonzero structure reveals the dimensions of the null spaces of (A − λ0I)i at that
eigenvalue via the sizes of the leading diagonal blocks. The size of these blocks is
the Weyr characteristic of the matrix A, which also reveals the Jordan structure of
A at λ0. The method only uses orthogonal transformations and is backward stable
with O(n3) as worst case computational cost. The method compares favourably with
earlier methods because it reduces first the matrix to Hessenberg form, which is then
exploited in the subsequent steps to minimize the computaional cost.

Even though the method was applied here to the standard eigenvalue problem
λI −A only, it can easily be extended to the generalized eigenvalue problem λB −A,
provided the pencil (λB−A) is regular, i.e. it has a determinant that is not identically
zero. In this case one performs orthogonal transformationsQ and Z that transform the
pencil to (λB̂− Â) = QT (λB−A)Z where B̂ is triangular and Â is in a staircase form
that reveals the Weyr characteristic of the matrix B̂−1Â = ZT (B−1A)Z, provided
B is non-singular. But even when B is singular, this procedure can be applied to a
regular pencil λB −A in the same vein as the QZ algorithm of Moler & Stewart [?].
The form obtained then is described in [2] and can also be applied to find the Weyr
characteristic of the infinite eigenvalue for the pencil.

An important side result of this paper is the derivation of what could be called
a “generic” Hessenberg form of matrices with nontrivial minimal polynomials. We
showed that the largest unreduced Hessenberg submatrix contains exactly the largest
Jordan block of each eigenvalue and that all other unreduced Hessenberg submatrices
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Fig. 3.3. Nonzero structure of the computed matrix in Example 3.3 by GOS (a) and by MVD (b).

then contain, in turn, the next largest one, and so on. This form can be useful to
better understand the properties of generic Krylov sequences of an (A, b) pair. Last
but not least, we believe to have found a way to perform perfect shifts in the QR
algorithm, without suffering from the well-known blurring effect. A more detailed
analysis of this will be the subject of a forthcoming report.
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Appendix A. Implicit Q theorem revisited. In this appendix we briefly
revisit the implicit Q theorem and analyze the possible effect of rounding of imple-
menting a so-called perfect zero shift. We show that under reasonable assumptions,
the modified backward QR–step using the intermediate computation of the right
eigenvector, produces the desired result.

Theorem A.1. (Implicit Q theorem revisited). Let H ∈ Rn×n be an irreducible
Hessenberg matrix with eigenvalue λ0. Then

1. H has an “essentially unique” normalized eigenvector x corresponding to λ0:

Hx = λ0x, ‖x‖2 = 1

and its last component xn 6= 0;
2. there is an “essentially unique” sequence of Givens rotations Gn−1,n, . . . , G1,2

whose product

Q := G1,2G2,3 · · ·Gn−1,n

transforms the pair (H,x) to a similar one

(H̃, x̃) := (QHQT , Qx)

where

x̃ = ±e1, H̃e1 = λ0e1, H̃ in Hessenberg form.

Proof.
1. The fact that x is unique (up to a scaling factor ±1) follows from the equation

(H − λ0I)x = 0, ‖x‖2 = 1,

where (H − λ0I) has rank n − 1 since it is irreducible Hessenberg. For the
same reason xn 6= 0.

2. The reduction of x to x̃ = Qx = ±e1 requires a sequence of Givens rotations

Gi−1,i ∈ Rn×n, i = n, n− 1, . . . , 2,

in order to eliminate the entries xi, i = n, n − 1, . . . , 2 of the vector x. The
only degree of freedom lies in a left and right diagonal scaling with elements
of modulus 1. These are the same rotations that reduce

(H − λ0I)QT = = R

to upper triangular form, and

Q(H − λ0I)QT = = H̃ − λ0I

to Hessenberg form again. Moreover, since x = ±QTe1, we also have

Re1 = 0, (H̃ − λ0I)e1 = 0

from which it follows that H̃e1 = λ0e1.
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Remark A.1. The implicit Q theorem is closely related to this lemma. It explains
that the transformation Q can also be determined from the first rotation Gn−1,n that
computes [

hn,n−1, hn,n − λ0
]
GT

n−1,n =
[

0 ×
]

and from the fact that QHQT is still Hessenberg. This is known as “chasing the
bulge” [19].

Let us now perturb H (and therefore also x) and see what we can still prove. We
assume from now on that λ0 = 0.

Hence we look for

Hx = 0, ‖x‖2 = 1.

But since H is not exactly singular we use the singular value decomposition of H to
find approximation v of x :

Hv = σu, ‖u‖2 = ‖v‖2 = 1, σ = σmin(H),

where u and v are respectively the left and right singular vector corresponding to σ.
This then yields the minimum norm solution ∆H such that

(H + ∆H)v = 0, ∆H = −σuvT .

But this does not satisfy the implicit Q theorem and hence is not appropriate. What
we need is the minimum norm solution

∆H =


δh1,1 δh2,1 · · · δh1,n
δh2,1 δh2,2 · · · δh2,n

. . . · · ·
...

δhn,n−1 δhn,n


of Hessenberg structure such that

(H + ∆H)v = 0

and also

∆Hv = −σu.

Since this is a linear set of equations, it has a minimum norm solution which we can
solve row by row.

Let row i of this equation be

[0, . . . , 0, δhT
i︸︷︷︸

min(n,n−i+2)

]v = −σui,

with

δhT
i = [δhi,i−1, δhi,i, · · · , δhi,n].
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Then

δhT
i = −σ uiv

T
i

‖vi‖22
, ‖δhi‖2 = σ

|ui|
‖vi‖2

,

where

vT
i = [vi−1, vi, . . . , vn−1, vn], i = n, n− 1, . . . , 3, 2.

It is easy to see that if ‖vn‖2 > µ ≈ 1, where vn =

[
vn−1
vn

]
, then all the subsequent

norms are larger and the Frobenius norm of ∆H is bounded by

‖∆H‖F ≤ σ/µ.

It is worth pointing out that this can also be solved recursively by only considering
problems on R2. In the first step we have that

δhT
n−1 = σ

unvT
n

‖vn‖2
.

But after this calculation we can apply the corresponding Givens transformation
Gn−1,n and consider the effect of the first ∆H :

(H+∆H)GT
n−1,n =


× × · · · · · · ×
× × · · · · · · ×

. . .
...

× × ×
×̂ ×̂

GT
n−1,n =


× × · · · · · · ×
× × · · · · · · ×

. . .
...

× × ×
0 r

 .

Since now

[
In−2

Gn−1,n

]
v =


×
...
×
0

 ,
we need only to consider the “deflated” problem of order n − 1 which is again in
Hessenberg form and the deflated null–vector v which correspond to it.

We also point out that we can do slightly better than this solution by allowing v
to be perturbed as well, as long as

(H + ∆H)(v + δv) = 0.

but we will not elaborate on this here.
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