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Abstrael--ln this paper, we develop an algorithm for 
computing the zeros of a generalized state-space model 
described by the matrix 5-tuple (E,A, B, C, D), where E 
may be a singular matrix but det (A - hE) ¢- 0. The 
characterization of these zeros is based on the system matrix 
of the corresponding 5-tuple, Both the characterization and 
the computational algorithm are extensions of equivalent 
results for state-space models described by the 4-tuples 
(A,B, C,D). We also extend these results to the 
computation of infinite zeros, and left and right minimal 
indices of the system matrix. Several non-trivial numerical 
examples are included to illustrate the proposed results. 

1. INTRODUCTION 

A LINEAR MULTIVARIABLE system can always be 
represented by the following polynomial  set of 
equations: 

T(A)x(t)  = U(A)u(t), 
(1) 

y(t)  = V(A)x( t )  + W(A)u(t) ,  

where x(t)  • F", u(t) • ~:m and y(t)  • ~:P; ~: 
denotes the appropriate  field (of real or complex 
numbers  in the present  case) and T(A), U(A), 
V(A) and W(A) are polynomial  matrices in A and 
have dimensions (n x n), (n x m),  (p x n) and 
(p x m),  respectively. T(A) is assumed ' regular '  
(i.e. d e t ( T ( A ) ) ¢ 0 )  (Rosenbrock,  1970). The 
opera tor  A could represent  the differential 
opera tor  d/dt (continuous-time) as well as the 
advance opera tor  @ (discrete-time). 
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From this representat ion one can define the 
'system matrix '  of (1) as: 

= ] (2) 
t v(x)  w(A) J 

The transfer function matrix of the system in (1) 
is given by R(A) = V(X)T(a)-1U(X) + w(x) .  
Note,  that if T(A) = (AI - A), U(A) = B, V(A) = 
C and W ( A ) = D ,  we get the standard state- 
space model  

Ax(t) = Ax( t )  + Bu(t),  
(3) 

y(t)  = Cx(t) + Ou(t),  

for which numerous analysis and design methods 
exist. In recent years, there has been con- 
siderable interest in the study of modified 
state-space systems where now T(A) = (AE - A), 
and E is a general matrix that may be singular 
(see e.g. Dervi~o~lu and Desoer  (1975), Luen- 
berger (1977), Verghese et al. (1979), Campbel l  
(1980), Verghese et al. (1981), Van Dooren  
(1981), Cobb (1984), Lewis (1985a, 1985b, 1986), 
Bender  and Laub (1987), Misra and Patel 
(1989a, 1989b), Miminis (1993) and the ref- 
erences therein). The equations corresponding to 
this case are given by 

AEx(t) = Ax( t )  + Bu(t),  
(4) 

y(t)  = Cx(t) + Du(t),  

where, as ment ioned earlier, det (AE - A) ¢ 0. 
The systems described by (4) are frequently 
referred to as generalized state-space (GSS) 
systems or descriptor systems. For the sake of 
conciseness, in the sequel we will denote  the 
system (4) by its parameters  in the 5-tuple 
(E, A, B, C, D). Their  importance arises f rom 
their applications in representing and resolving 
problems concerning differential equations with 
per turbed coefficients, singular perturbations 
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(Saxena et al., 1984), noncausal systems (Bern- 
hard, 1982), identification (Adams et al., 1984), 
economic systems (Luenberger, 1977), intercon- 
nected systems (Rosenbrock and Pugh, 1974) 
and modeling of electronic circuits (Chua and 
P.-M. Lin, 1975). 

A system described by (4) is said to be 
'non-singular' if E has full rank and 'singular' 
otherwise. The zeros of a non-singular GSS 
system are identical to those of the correspond- 
ing standard state-space system described by 

Ax(t) = E lAx( t )  + E 1Bu(t), 
(5) 

y( t )  = Cx(t)  + Du(t) .  

Definition and properties of the zeros of a 
standard state-space system are well understood 
(Davison and Wang, 1974a, 1974b; Desoer and 
Schulman, 1974) and a numerically stable 
algorithm for their computation was proposed by 
Emami-Naeini and Van Dooren (1982). How- 
ever, if E is a singular matrix, then the 
characterization and computation of the zeros is 
not so straightforward. The primary difficulty 
stems from the fact that such systems cannot be 
transformed to the equivalent standard state- 
space system (5). It was shown by Rosenbrock 
(1970) that it is always possible to reduce the 
system in (4) to an equivalent system given by 

Ax(t) = A x ( t )  + Bu( t ) ,  
(6) 

y( t )  = Cx( t )  + / ) ( A ) u ( t ) ,  

where /)(A) is a polynomial matrix and A 
represents the differential operator d/dt. Since 
the derivation of Rosenbrock (1970) is purely 
algebraic the same essentially holds for discrete 
time systems where A is now the advance 
operator @. A computational scheme for 
obtaining (6) from (4) was developed by Misra 
and Patel (1989a, 1989b), but this representation 
does not simplify the problem of determining the 
zeros, since now the system matrix 5e(A) in (6) is 
not necessarily a first order polynomial matrix 
(or 'pencil'). 

In this paper, we present a computational 
technique for finding the zeros of generalized 
state-space systems, where E may be singular or 
may be poorly conditioned (with respect to 
inversion). Note, that in the latter case, it is 
theoretically possible to obtain the standard 
state-space model (5). However, due to numeri- 
cal ill-conditioning (Golub and Van Loan, 1989) 
of E, the computed zeros may be far from 
accurate. Characterization of the zeros of 
generalized state-space systems proposed in this 
paper is parallel to that of standard state-space 
systems. Based on the proposed characterization, 
we develop a numerically reliable algorithm for 

their computation, which is also a generalization 
of the corresponding algorithm for the standard 
state-space systems (Emami-Naeini and Van 
Dooren, 1982). The proposed characterization 
and computational schemes are based upon the 
earlier results reported by the authors in Misra et 
aL (1990) and Varga (1991). In addition to 
finding the finite transmission and decoupling 
zeros, the proposed algorithm also computes the 
order of zeros at infinity, and row and column 
minimal indices of the system matrix. The layout 
of this paper is as follows. In Section 2, we 
review some useful results regarding the 
definition and the properties of zeros of rational 
and polynomial matrices and some essential 
techniques from numerical linear algebra. The 
state-space characterization of transmission zeros 
of singular systems is developed in Section 3, 
where it is shown that they can be interpreted as 
the transmission zeros of a lower-order non- 
singular generalized state-space system. Based 
on this characterization, an  (~(n 3) computational 
scheme is developed in Section 4. Finally, in 
Section 5, several examples are presented to 
illustrate various features of the proposed 
algorithm• 

2. BACKGROUND MATERIAL 

2.1. Zeros o f  rational and po lynomia l  matrices 
It is well known that any (p × m )  rational 

matrix R(A) can be reduced by means of 
unimodular transformations to its Smith- 
McMillan form given by 

M ( A ) R ( A ) N ( A )  = G(A), (7) 

where M(A) and N(A) are (p × p )  and (m ×m)  
polynomial matrices, respectively, with constant 
non-zero determinants (i.e. unimodular mat- 

G(A) has the following rices). The matrix 
structure: 

g,,,(,~) 

0 

c ( , ~ )  = : 

0 

' ' • 0 

• • " 0 

" . .  ." 

4',.,(,~) 
, . . 

6,.,(,x) 

O 

O 

O 

(8) 

where, d', I 4~i+~,~+~, 0~+~.~+1 ]q',, i =  1 , . . . ,  (1 -  
1). The normal rank of R(A) is l, which clearly is 
the rank of R(A), for almost all values of A. The 
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'finite zeros' of R(A) are defined as the zeros of 
the numerator polynomials of R(A), i.e. the 
values of h for which R(A) has rank lower than l 
(Rosenbrock, 1970). For a polynomial matrix 
P(A), essentially, the same decomposition 
applies except that G(A) will then also be a 
polynomial matrix and, hence, all ~0ii = 1. The 
above form then is called the Smith form of the 
polynomial matrix P(A). 

While the definition of finite zeros from the 
Smith-McMillan form of a rational matrix R(A) 
is straightforward, this form is not recommended 
for their computation. It was shown in 
Rosenbrock (1970) that the polynomial matrix 
description (1) reduces this problem to one 
involving only the polynomial matrix SO(A), 
provided that the quadruple {T(A), U(A), 
V(A), W(A)} has the property that the polyno- 
mial matrices 

[-r()t) 1 
[-v(x)  lu()t)l, L v()t) J' (9) 

have no finite zeros. This is equivalent to 
requiring that both matrices in (9) have full rank 
n where n is the dimension of the square 
invertible matrix T(A). These conditions are also 
called minimality conditions of the correspond- 
ing polynomial matrix description. Notice, that 
for a standard state-space model these conditions 
correspond to the system being controllable and 
observable. This connection was used in 
Emami-Naeini and Van Dooren (1982) to 
compute the zeros of a proper R()t) from a 
minimal standard state-space realization of R()t) 
at the points where the rank of S°()t) drops 
below its normal rank n+l .  When SO()t) 
corresponds to a minimal order system, the 
points ()t c F) for which 

rank(So(A)) r a n k [  A - ) t I n  B ]  = < n + l, (10) C 
are indeed the McMillan zeros of the transfer 
function matrix R()t). Based on this definition of 
zeros, Emami-Naeini and Van Dooren (1982) 
developed a numerically backward stable algo- 
rithm for their computation. 

In order to define 'infinite zeros' of rational 
and polynomial matrices one merely needs to 
perform the change of variables )t = 1//x, which 
maps the point )t = ~ to /z  = 0, and then use the 
new Smith-McMillan decomposition of the 
transformed rational matrix R(1//z) to extract its 
zeros a t / z  = 0. Notice, that the new unimodular 
matrices M(A) and N()t) in (7) and polynomials 
~b and qJ in (8) will be different. The relation with 
the standard state-space system matrix now fails 
to hold, even if R()t) is proper, and one needs to 

use, instead, the concept of generalized state- 
space systems and generalized eigenvalues. 

2.2. Generalized eigenvalue problems 
In this section we review some basic facts 

about first order polynomial matrices or 'matrix 
pencils'. 

2.2.1. Singular pencils and the Kronecker 
canonical form. Given an arbitrary pencil 
( F -  AG), there exist invertible transformations 
S and T yielding a block diagonal decomposition 

S(F - A G ) T  = diag {AI -J•, I 
- A J ~ , L  . . . . . . .  L,~,LXn, . . . . .  Lx,,}, (11) 

where JI and J~ are in Jordan form (with J~ 
nilpotent) and describe the finite and infinite 
eigenvalues, respectively. The matrix Lk is the 
bidiagonal matrix of dimension (k × (k + 1)): 

I 
- h  1 ] 

-A 1 
Lk = . .  . .  . (12) 

-A 1 

The index sets {E/,i= 1 , . . . , s }  and {17j, j = 
1 . . . .  , t} are the left and right minimal indices of 
( F -  AG) (Wilkinson, 1978). The relationship of 
this canonical form to the Smith form of the 
first-order polynomial matrix ( F - A G )  is as 
follows (see e.g. Verghese et aL (1979) for 
details)• 

• To each Jordan block of size k at the 
eigenvalue a there corresponds an elementary 
divisor ( A - a )  k of a polynomial ~b in the 
Smith form of (F - AG). 

• To each Jordan block of size k at the 
eigenvalue ~ there corresponds an elementary 
divisor (/z) k-~ of a polynomial ~b in the 
Smith-McMillan form of (F - 1/IzG). (Notice 
the difference of one for the structure at ~). 

• To each minimal index k = E, respectively 
k = 77, there is a polynomial vector of 
appropriate length whose only non-zero 
elements are [1, h, h 2 . . . . .  h k ]  T in the right, 
respectively left null space of (F - AG). 

The above connections indicate that the problem 
of finding the eigenstructure of a first-order 
polynomial matrix reduces to the computation of 
the Kronecker structure of this pencil. 

2.2.2. Generalized Schur decomposition. For 
an arbitrary pencil (F - AG), there exist unitary 
transformations Q and Z yielding the block 
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triangular decomposition 

Q*(F - A G ) Z  

= o -, cs 

0 0 

* , (13) 

F,. - hGc 

where F~ - AG• has full row rank for all finite A, 
F, - AGe has full column rank for all finite A, and 
G r is invertible. This decomposition is proven in 
Van Dooren (1979), where an algorithm is also 
given to find such a decomposition. Moreover, it 
is easy to check that the eigenvalues of Gf1FI are 
the only finite points where the rank of (F - AG) 
drops below its normal value, and hence are the 
finite zeros of (F - AG). 

2.2.3. QZ algorithm and finite zeros• Given a 
square matrix pencil (F r - h G y ) ,  with det (F I - 
AGI)~0 ,  then there exist updating unitary 
matrices Q/* and Z I of appropriate dimension, 
such that QflFrZ r and QflGIZ r are both upper 
triangular matrices (Wilkinson, 1978). Let f ,  and 
g, represent the ith elements along the diagonals 
of the upper triangular matrices QpFrZy and 
QflGIZI, respectively. Then the ratios f , / g ,  
represent the finite eigenvalues (or finite zeros) 
of (F r - A G I )  and also of ( F -  AG). Note, that 
the Q Z  algorithm which performs this trian- 
gularization, also works for rank deficient G r. 
However, this was not required here because of 
the preliminary reduction (13). 

2.2.4. Minimal indices and finite zeros. In the 
matrix decomposition (13), one may choose Q* 
and Z, such that the subpencils ( E - A G ~ )  and 
(F, - AG~) have the special forms: 

F,, - hGc = 

c c ~ c F/4 Fj,/ 1 -  AG;,j 

0 F) I.j 1 

0 0 

0 0 " "  

F~ ~ 1,2--/~kG~" 1,2 F~: , . , -  AG~_ 1,, 

• " , ( 1 5 )  

F~,2 F~.I - AG~,I 

O F~,I 

where the matrices F~) have full column rank/z~, 
and the principal super diagonal matrices G~+L~ 
have full row rank z~+1. It is clear that these rank 
conditions guarantee the full rank properties of 
( F r -  AGr) and ( E -  hGc) for all finite A, but in 
addition to this, it was shown in Van Dooren 
(1979) that the minimal indices and infinite zero 
structure of ( G -  AF) can be derived from this 
as well. We show later how they relate to the 
index sets {/2~}, {L}, {/zi} and {r~}. 

2.2.5. Singular value decomposition and 
row~column compression. Given an arbitrary 
(n x m) complex matrix A, there always exists 
unitary (n × n) and (m x m) matrices U and V 
such that 

where Zr = diag { ~ , . . . ,  O'r}, r is the rank of the 
matrix A and o-~ are its singular values in 
descending order of their magnitude. An 
arbitrary (n × m )  matrix A can also be 
transformed by means of unitary transformations 
to 

" r r • F1,1 F1,2-  AG1,2 " " " 

O F~,z " ' • 

O O 

O O " ' "  

Frl,k_ l -- A Grl,k_ l Frl,k -- A Grl,k 

F~,k- 1 -- AG~,k-1 F~,k -- AG~,k 

r r r 

Fk- l , k  1 F k - l , k - -  A G k - l , k  

0 Frk,k 

, ( 1 4 )  

where the diagonal matrices F~,i have full row 
rank fzi, and the principal super diagonal 
matrices Gi~,i+~ have full column rank t'i+l, and 

- [Arl IAc O, 

where A• has r independent rows and A,. has r 
independent columns. Clearly, r is the rank of 
the matrix A. We will refer to [Ar T O] x as a row 
compressed matrix and to [Ac O] as a column 
compressed matrix. It is easily seen that the 
required unitary matrices T~ and T2 can be 
obtained from the singular value decomposition 
of the matrix A. 

Note, that it is also possible to find unitary 
transformations, such that the row compression 
yields [O x AT] T and the column compression 
yields [O Ac]. Moreover, such decompositions 
can also be obtained via rank revealing QR 
factorizations (Chan, 1987). Of course, the 
non-zero matrices Ar and Ac are far from unique 
in the row and column compressed representa- 
tions. It is also clear that in order to obtain 
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decompositions of the type (14) and (15), these 
row and column compressions will have to be 
used extensively. 

3. CHARACTERIZATION OF SYSTEM ZEROS 
In this section, we define different types of 

zeros of a singular system described by 
(E, A, B, C ,D) where the n × n pencil (A - AE) 
is non-singular (i.e. d e t ( A - ) t E ) ~ 0 ) .  In the 
sequel, we will always refer to both finite and 
infinite zeros as defined in Section 2 via the 
Smith-McMillan and Kronecker canonical 
forms. 

Definition 3.1. The zeros of the pencil [ A -  
)rE B] are called the 'input decoupling zeros' of 
the system (E, A, B, C, D). 

Definition 3.2. The zeros of the pencil 

[A?q 
are called the 'output decoupling zeros' of the 
system ( E, .4, B, C, D ). 

Definition 3.3. If the system ( E, A, B, C, D) has 
no input and no output decoupling zeros, then 
the zeros of the system matrix 

~( A ) = [ A cA E DB ] 

are called the 'transmission zeros' of the system 
(E,A,B,C,D). 

We will be making extensive use of transfor- 
mations of the kind 

[ O ~ w ] [ A c A E I B ] [ o ~ z  O] 

= [U(Awcv-AE)V WDzj'UBZ] (18) 

Proof. The proof is trivial since zeros are 
determined in terms of the Kronecker form of 
the pencils and these are unchanged under 
invertible left and right transformations. [] 

One special case of such transformations 
results from choosing U and V such that the 
matrix UEV is both row and column 
compressed: 

where Etl is thus invertible. This can be 
achieved with the singular value decomposition 
or some other alternative suggested at the end of 
the previous section. Transforming and par- 
titioning the matrices A, B and C conformably 
yields a new generalized state-space system with 
special properties. 

Definition 3.4. Let the system (E, A, B, C, D) 
have a singular E matrix and let U and V yield a 
row and column compression of E. Then from 

U 0 A-cAE 

[Aal-AEH AI2[B1] 
= : /  . . . .  x ; ;  . . . . .  (20) 

L C1 C2 | D _] 

we define a 'compressed generalized state-space 
system' with E~ of full rank, given by 

AEH2(t) = A~12(t) + [A~2 B1]a(t), 

[A22 (21) y(t)=[Acl],~(t)+[C2 B2]/~ (t). 

This now leads to the following theorem. 

Theorem 3.2. If the system (E, A, B, C, D) has 
no input or output decoupling zeros then neither 
does the compressed system (21). Moreover, 
their transmission zeros are then equal. 

which we will refer to as 'generalized state-space 
transformations'. The matrices U, V, W and Z 
are invertible, and their dimensions are deter- 
mined by the number of states (for U and V), 
the outputs and inputs, respectively, of the given 
system. It is obvious that the transfer function 
matrix R ( A ) = C ( X E - A ) - I B + D  of such a 
generalized state-space system changes as 
WR( )t )Z = WC(AE - A )-1BZ + WDZ, since the 
other transformation matrices cancel out. 

Theorem 3.1. The different zeros of the general- 
ized state-space system (4) are invariant under 
generalized state-space transformations. 

A 

and 

Proof. By transforming the system to a com- 
pressed form as in (20), we only performed a 
generalized state-space transformation. Clearly 

[ All - AEIl I: A12 ] B1] 

o I . . . .  a ; ;  . . . . .  / C ' L C1 ! C2 i O J 

[All   11A2 il ] A21 A22 2 (22) 

C1 C2 

have the same Kronecker canonical form and, 
hence, the same zeros. The latter are then the 
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transmission zeros of (21) if the compressed 
system has no input or output decoupling zeros 
under the condition that the original system has 
none. This is shown as follows. Since E~I is 
invertible, the pencils 

and 
[All - )tEll AI2 BI] 

A l t -  )tEll ] (23) 
A21 

C1 

can only have finite zeros. But, if there are finite 
points in which these pencils drop rank then this 
must also be the case for 

- ) t E  B] and [ A - ) t E l ,  [A (24) 
L C J 

and this contradicts the assumption that the 
original system had no input or output 
decoupling zeros. [] 

Notice that we can derive a compressed 
system as well for the triples (E,A, B) and 
(E, A, C), which will in both cases yield 5-tuples 
if E is singular: 

and 

A t l - ) t E l l  AI2 B1] (25) 
A21 A22 B2 

All --)tEll A12] 

A21 A22 | .  (26) 
| 

CI C2 A 

Since the zeros of these pencils are not affected 
by the compression, we have the following 
obvious, but useful, result. 

Corollary 3.1. The zeros of the pencils 

(i.e. the input and output decoupling zeros of the 
system (E ,A,B,  C,D))  are those of the 
compressed system matrices (25) and (29), 
respectively. 

Notice, that if E is non-singular the compres- 
sion has no effect and some submatrices are 
void, but even then the above corollary still 
holds. Further, these results can be applied to 
any non-degenerate pencil (A - )tE), whence the 
compressed form will yield a 5-tuple similar to 
(21) as shown below: 

U(A -) tE)V=: JAil --)tEll A12] (27) 
A21 A22J" L 

Again, since the zeros of matrix pencils are 
unaffected by the compressions, we can state the 
following. 

Corollary 3.2. The zeros of the pencil (A - )tE) 
(i.e. the finite poles and the poles at infinity of 
the system (E,A,B,  C,D)) are those of the 
compressed system matrix given in (27). 

4. COMPUTATION OF TRANSMISSION ZEROS 
AND STRUCTURE AT INFINITY 

In this section, we develop a deflation 
technique for the computation of transmission 
zeros, orders of infinite zeros and left and right 
minimal indices of singular systems. The 
procedure uses unitary transformation matrices 
to obtain matrix pencils (A r -AEr )  and ( A s -  
AE~), where the generalized eigenvalues of the 
former are the transmission zeros of the given 
singular system and the latter contains informa- 
tion about the orders of zeros at infinity and left 
and right minimal indices. Note, that for finite 
transmission zeros, the pencil is given by 

~r¢.()t)=[ Arc )tErc Brc], (28) 
Cr, DrcJ 

where Erc and Dr, are square invertible matrices. 
Once the reduced order system matrix (28) is 
obtained, the transmission zeros of the system 
can be computed as the generalized eigenvalues 
of the pencil (At,. - BrcD.?Crc - )tErc) using the 
QZ algorithm (Stewart. 1973; Golub and Van 
Loan, 1989). It will be shown later that the 
generalized eigenvalues can be obtained without 
explicitly forming the inverse of Dr,. 

In principle, the reduction procedure corres- 
ponds to transforming the variables x(t), u(t) 
and y(t) to £(t)= V*x(t), a(t)= Z*u(t), 5(t)= 
Wy(t), premultiplication of the state equation 
with the matrix U and deflation. The four 
matrices U, V, W and Z are chosen to be unitary 
and are constructed recursively, as described in 
the rest of this section. 

Before starting the reduction procedure, we 
first transform the system to its compressed 
coordinates. To achieve this, we compute unitary 
matrices U and V as in (20) and (21). This 
transformation performs a rank revealing fac- 
torization on the descriptor matrix E such that 
E~ now has full rank r and is upper triangular. 
This can be achieved in (~(n 3) operations using 
the singular value decomposition or via a rank 
revealing QR factorization. Next, we partition 
the matrices UAV, UB and CV conformably to 
UEV in (19) and redefine the system matrix as 

/~ ], (29) 
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where 
[A2,] 

[~ := E, , ,  A := AI, ,  B := [A,2 B,] C : = L C ,  J 

and b [A22 
:=LC  

Clearly, /~ is now an invertible upper triangular 
matrix. As mentioned in Section 1, premultip- 
lication of the state equation with /~- '  leads to 
an rth order standard state-space system, the 
transmission zeros of which can be easily 
determined. However, conversion to a standard 
state-space system to determine transmission 
zeros should be avoided for reasons of numerical 
instability. Instead, the recursive deflation 
technique described in the rest of this section 
may be used. 

In the recursive scheme, we will use the 
concepts of row and column compression as 
defined in Section 2. For notational convenience, 
it is assumed that the descriptor matrix is already 
a full rank upper triangular matrix i.e. 
( E , A , B , C , D ) : = ( ~ , f t , B , ~ , f ) ) ,  where the 
latter is defined as in (29). Further, let 
m : = n  - r  +m,  p : = n - r  +p  and n:=r.  

4.1. Structure at infinity and row minimal indices 
The ith iteration performs the following 

operations on the system matrix: the rows of D 
are compressed by computing a unitary matrix 
W (°, such that W(°D is row compressed i.e. 

W(OD=[D'], DI  (E IF (p-r')xm, O ~E ~ t,xm. (30) 

Next, the matrix W(i)C is partitioned into C1 and 
C2, where the number of rows in C, is the same 
as that in D, 

w(i)c = [ Cl ] CI iE ~ (p-'ri)xn, C2 ~ ~ :~'x~ (31) 
C2 ' 

and a unitary V (') is determined such that C2V (° 
is column compressed: 

C2 V(i) : [O C22], 0 E ~ S"rix(n-lxi), 622 E ~ Sri×lzi. 

(32) 

Note, that the operation in (32) will destroy the 
diagonal or upper triangular structure of E. It is, 
therefore, necessary to perform a column 
compression and at the same time maintain the 
triangular structure of E. This is clone by 
simultaneously determining U u), such that 
U(i)EV (i) is upper triangular. Details for 
achieving this are given later in this section. 

Next, partition the descriptor E matrix as: 

U(i)EV (i)_- [ Ell El2], 
I_ O E221 

where 

E,, E F (~ .,)x(,,-.,) and E22 e F "'×"', (33) 

and perform the strict system equivalence 
transformation on the system and partition it as 
shown below: 

[ UU) 

r All  - AEll i A12 - AEI2 [ B1 7 
_ - /  . . . . .  . . . . .  

| . . . .  C11 [ C,2 [ D,.F (34) 
L - -o  . . . . . .  i . . . . .  . . . . .  / - 6 3  

where the submatrices have appropriate dimen- 
sions and the submatrix C22 has full column 
rank. 

The basic deflation procedure described is 
very similar, in principle, to the steps in the 
REDUCE algorithm for computing the trans- 
mission zeros of standard state-space systems, as 
described by Emami-Naeini and Van Dooren 
(1982). Following their ideas, it is now easily 
seen that the recursion can be performed on the 
reduced order subsystem (E, A, B, C, D) defined 
as: 

[A-cAE B]:=[ AI'-AE'~A2,C,, IglJ I '1' ~' 

where A, E ~ U =(n-u')x(n-~'), B ~ ~ (n-l~i)xm, C ft. 
U =¢p-~'+~')x(n-~') and D e ~ (p-r~+l~i)xm. Further, 
for notational convenience, we define At. t,t : :  C22. 
Since, /xi -< ri, then p - (ri - /~i)  -<p and n - 
/z~ -< n, i.e. the dimensions of the state as well as 
the output vectors in (35) are less than or equal 
to the corresponding dimensions in the system 
from the previous recursion. 

Note, that the new descriptor matrix E is a full 
rank upper triangular matrix. The reduction can 
therefore be repeated until a full row rank D 
matrix (i.e. r~ -- 0) or a zero rank C2 matrix (i.e. 
/x~ = 0) is encountered. The state dimension n is 
decreased to n := n -  g~ at each step and the 
number of outputs to p := p - (r~ -/z~). 

Once a full row rank matrix D := Dr is found, 
at step (j + 1), the transformed system (up to a 
column permutation) has the following structure: 

C JL [ VJ 

AUTO 30:12-H 
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where 

Pr(x) = 

-B,, iAr - AEr 
D, ! G 

0 

AjCj Aj~4-1 - -  AEj~4-, 

0 A~ ,j_, 

0 0 

0 0 

X 

:[Zl X ] 
O A 2 - A E  2 

c 
" ' "  A;12 - 1E~2 Aj,, - AE~,, 

• "" A}'-, .2- AE}'_,.2 A}L,., - AE;_I, 1 
" . .  : 

• " . A ~ , 2  A ~ , I  - A E ~ , 1  

• " " 0 A ] , l  

(37) 

Dr has full row rank (Tj+, = 0), EC+l,i has full row 
rank Ti+ 1 and A~,~ has full column rank/x~. 

The pencil (A, - AE,) contains the finite zeros 
(transmission zeros) of the system 
(E, A,  B, C, D) and the information on the right 
nullspace of the corresponding system matrix. 
The pencil ( A 2 -  AE2) contains the information 
on the orders of infinite zeros and left nullspace 
of the system matrix. This result is essentially the 
same as proven by Svaricek (1985) for standard 
state-space systems. The only difference resides 
in the matrix E which is invertible, because of 
the use of a compressed state-space system. 
Therefore, the same reasoning as in Svaricek's 
paper applies here as well and we quote the next 
result without proof• 

Lemma 4.1. (Van Dooren, 1979). From the 
structure of the pencil ( A 2 -  AE2), we can state 
that: 

(i) there are di = / x i -  ~i+1 infinite elementary 
divisors of degree i, (i = 1 . . . . .  j); and 

(ii) there are r i= r~- /z i  Kronecker row 
indices of size (i - 1), (i = 1 , . . . ,  j). 

One then links this lemma to the following 
theorem. 

Theorem 4.1. The orders of the infinite elemen- 

tary divisors of (A2-AE2) are equal to the 
orders of infinite zeros of the system 
(E, A, B, C, D). 

Proof. The proof is a straightforward generali- 
zation of the result by Svaricek (1985) for 
standard state-space systems. [] 

It should be pointed out that similar results for 
standard state-space system were also reported 
by Kouvaritakis and MacFarlane (1976a, 1976b). 

4.2. Finite zeros and column minimal indices 
After a full row rank Dr matrix is found, the 

deflation procedure defined by (30)-(35) is 
repeated on the pertransposed (i.e. transposed 
over the anti-diagonal) system 

[ Cre Ar e -AEre ]  
D R B e l 

until an invertible input-output  matrix Drc is 
found. The resulting transformed pencil has the 
following structure: 

v_+_l[ c; Ae, - , ~ E ; 1 [ ~ 2 _ 1  
I W J / D  e B p JL I v J  

where 

= 

B,~ I A,~ - AE,c 
. . . . .  • 1 . . . . . . . . . . . . .  

D,~ : C~ 

0 

X 

A~.k A],k- , -AE~,k-1 

0 A ~ - l , k - I  

0 0 

0 0 

A1 - AE1 X 1 
=: O A2 - AE2 ' 

• "" A],z-AE~,2 A ~ , I - A E ] ,  

" ' "  A ~ _ I ,  2 - AE~ 1,2 A ~ - , , , -  A E ~ - I , 1  

• . : : 

"" A~,2 A ~ , , -  A E ~ , I  

• " 0 A~., 

= 

( 3 8 )  

(39) 
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where, Drc is a square invertible matrix, E[+~,~ 
has full row rank (= ~'i+l) and Ai~i has full column 
rank (#i). 

Lemma 4.2. From the structure of the pencil 
(A 2 -AEz) and with L, /2~ as defined above, 
c~=~g-/2g, i - -1  . . . . .  k are the Kronecker 
column indices of size (i - 1) for the system. 

In the pencil (A1- AEt), both Er~ and Dr~ are 
square invertible matrices. Hence, as described in 
(13), it contains only the finite zeros. Further, 
since the matrix pencils (A2-AE2) had full 
column rank in both (37) and (39), clearly the 
zeros of the non-singular pencil (A~-AE~) 
correspond to the finite transmission zeros of the 
original singular system. In addition, the 
following result provides the numerical means to 
compute the finite transmission zeros of the 
system. 

Theorem 4.2. The finite transmission zeros of 
the system are the generalized eigenvalues of 
the finite structure pencil (A i -AEi ) ,  where A: 
and E I are defined as 

0 IDrJ:=LCr~lDrcJ ' 
(40) [ Ef~.~_ ] Erc I O1 F 

o ,  3 - 2 5 J  , 

and W is unitary. 

Proof. This is completely analogous to the last 
step in Emami-Naeini and Van Dooren (1982). 
Since W is an orthogonal matrix 

r ank ( [Ar~-hErc  Br¢]~ 
Crc D~c A: 

= rank ([  A: - hEI O ; : ] )  

= rank (Dr) + rank (A I - AEI). (41) 

By the reduction procedure, D i has full rank. 
Therefore, (A~-  he1) in (39) is rank deficient 
only at the generalized eigenvalues of (A I - 
he:).  Notice also, that E I is invertible as shown 
by Emami-Naeini and Van Dooren (1982). [] 

We point out here that when pertransposing 
the decompositions in (39) and (40) again and 
embedding them in (37) we obtain exactly the 
required result (13)-(15). 

4.3. Implementation and computational 
complexity 

From the implementation point of view, the 
procedure is very similar to Emami-Naeini and 
Van Dooren (1982), except that an additional 

step is needed to keep E upper triangular at each 
stage of the recursion. Maintaining an upper 
triangular structure of E is crucial for reducing 
the dimension of the system in each iteration as 
described by (36) and (38). This will be discussed 
in more detail later in the section. 

Based on the results presented in previous 
sections, we next outline a formal algorithm for 
the computation of finite zeros, row and column 
minimal indices and the orders of zeros at 
infinity. For simplicity of presentation, we 
assume that the system (E, A, B, C, D) is already 
a compressed generalized state-space system as 
defined by (21). The main operations are 
performed by 'Algorithm S(ingular)-REDUCE' 
given below: 

Algorithm S-REDUCE. 
input (E, A, B, C, D, n, m, p), 
output (Er, At, Br, Cr, Dr, nr, mr, Pr, r, d). 
step i. 

comment, compress rows of D with the unitary 
output transformation matrix W (° and 
transform C: 

C2 

D~ ~ ~:(p-~,)x,, C2 ~ g:~'×" 

if ~i = 0, go to exit 1, end; 
comment, using TRIANGULARIZE,  com- 

press columns of C2 with V (° and maintain 
E upper triangular with U(°; transform the 
system and partition as: 

[ f(i) W(i)][ A-AEC DJLR][V-~--][ lJ 

= / A2, :: A22- xe22 1"2 / 

L o i c22 / o_1 

C .  D1 

if/xi = 0, then begin p :=p - % go to exit 2, 
end; 

comment, update 

n := n -/xi,  p := p - ( r i  - ~I,/H) , 

i := i + 1 go to step i; 

exit 1. 
(E ,  Ar, B ,  Cr, Or):=(E,A,  B, C,D); 

n~:=n; mr :=m;  Pr :=P and 

rk := ~k -- tZk, dk := /Xk -- "r1,+1, 

k = l  . . . . .  ( i - 1 )  
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exit 2. 

(Er, Ar, Br, C~, D~): = (E,A,  B, C, D); 

n r : = n ;  m~:=m;  pr:=p and 

rk:=rk-- /zk,  dk:=/Zk--rk+l ,  

k = l  . . . . .  ( i -  1), r~ := r~. 

Using algorithms S-REDUCE, above, and 
TRIANGULARIZE,  given later in this section, 
we outline the algorithm S(ingular)-ZEROS for 
the computation of various structural invariants. 
Let p denote the rank defect of the original E. 
Then: 

Algorithm S-ZEROS. 
comment, reduce (E, A, B, C, D) to a system 

(Er, mr, Br, Cr, Dr) with the same structural 
invariants, with D~ of full row rank and 
calculate the orders of zeros at infinity and 
the row minimal indices; 

call S-REDUCE (E, A, B, C, D, n, m, p), 
result (Er, At, Br, Cr, Dr, nr, mr, Pr, r, d) 
rank := pr - p; if n ~ + p ~ = 0 ,  then begin 
nf = 0, go to exit, end; 

comment, reduce ( Er, Ar, Br, Cr, Dr) tO 

(E,., Arc, B~c, C~, D~) with the same struc- 
tural invariants and with D~ invertible, 

call S-REDUCE(E P, A P, C P, B e, e D~, n~, p~, 
mr), result (E,., At,., B~,., C~, Dr,., nr~, mrs, 
P~c, c); 
if nr,. = 0, then begin ny = 0, go to exit, end; 

comment, compress columns of [C~ D~c] to 
[O DI] and transform the system 

[ lw 
O I DfJ := LDr, t Dr, J ; 

[ r w • 
O I O J : - - [ O  I OJ ' 

comment, compute finite transmission zeros 
using the QZ algorithm 

{A, . . . . .  A,f} := QZ(A r, El); 

Exit. stop. 

Next, we discuss the computational complexity 
of the algorithm. The operations for obtaining 
row compressed D are applied to the input and 
output matrices only. Hence, they will have an 
overall complexity ~7((m +n)(p +n)n) for the 
whole procedure. Although this compression has 
to be performed more than once, the total 
amount of computation needed is still propor- 
tional t o  lu, n 2, where tz is small compared to the 
state dimension. If we succeed in keeping the 
matrix E upper triangular using some method 
with complexity tzn 2 as well, then the overall 
algorithm will remain cubic in complexity. At 
first sight, keeping E upper triangular does not 

seem simple because EV u) is a full matrix, and 
triangularization of EV u) may require C(n 3) 
operations. This would make the overall 
complexity of the algorithm G(n4). 

However, if V u) is constructed using Givens 
rotations between the adjacent columns only, 
then the triangular form of E can be restored by 
applying one Givens rotation on the rows of E 
for each rotation of the columns of E. This is 
demonstrated by means of an illustrative 
example below, with n = 6 and r = 1. Let 

- X  

®1 

X X X X X- 

X X X X X 

~)2 X X X X 

@3 x x x 

®4 x x 

®5 x 

L XI X2 X3 X4 X5 X6 

, ( 4 2 )  

where the elements ®~, i = 1 , . . . ,  5 are zero to 
start with. 

For the convenience of notation, denote V u) 
by V and U u) by U. The elements x~ . . . . .  x5 
have to be transformed to zero by postmulti- 
plication with V, while UEV has to be 
maintained upper triangular. To achieve this, we 
select V as a product of Givens rotations g,,~+l 
over appropriate angles 0~ and between columns 
i and (i + 1) 

V = %2(01)f~,~3(02)  " ' "  (~,~6(05) 

and U as a 'reversed' product of Givens rotations 
%,~+1 over some angles 4~i: 

U = ~6(65)~4S(64)""" ~2((bl). 

Clearly 01 can be chosen to annihilate x l in (42), 
but it will introduce a non-zero element in 
position ®1 of the equation. This newly 
introduced non-zero element is eliminated by the 
rotation ~ga2(~l) of U, such that in C~z(01), 
x l = O  and in ~2(~bl)E~2(01), @1=0 as well. 
By induction, each %,i+1(0i) annihilates an 
element xi in CV and each ~u+l(~b~) preserves 
®~ = 0 in UEV. It is easy to see that using this 
approach, the triangularization step U(EV) has a 
complexity ~(/zn2). Therefore, the complexity of 
the overall algorithm is tT(n3). 

The following segment shows how the above 
update can be accomplished efficiently on the 
entire system (E, A, B, C, D). Double subscript 
notation a.,k(ak,.) is used to denote the kth 
column (row) of A. For the ith iteration, 
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Algorithm T R I A N G U L A R I Z E .  
step i. 

/z i := O, 
f o r k = p , - 1 ,  p - r i - 1 ,  

for j = 1, n - 1 - /zi ,  
comment, compute (2 × 2) unitary 
%.s+l(0s) such that [Ck.s, Ck,j+l] is column 
compressed 

ckj+,]%s+,(0s) =: [0, ck,j+l], 
if 0 s = O, exit, else; 

comment, perform strict system equiv- 
alence transformation 

set [e.j, e,j+I] := [e.,s, e.,j+l]C~j.j+x(Oj), 

[a,j, a , j÷l]  := [a,. s, a,.s+i]%,s+i(0s), 

[C,.j, C, , j+ l ]  *= [C,.j, C,,j+l]%,j+l(Oj)'~' 
c o m m e n t ,  compute (2 X 2) ' unitary 
~dj.s+i(4bs) such that [es.s, es+ld] T is row 
compressed 

es,s 1--: 
L~.j+I,j~ 

comment, perform strict system equiv- 
alence transformation 

se t [  es'* ] [ es'* ] 
Lej+i,.J := ~'J+l(~)J) ej+l,. ' 

[a i , ,  1- ~7,,+,(~b,)[ as'* 1, 
Laj+ I , ,  J " =  L a j + l , ,  J 

bs'* I ~ r bs, , ] 
bs+i,, j := 7,S+l(4)s)Lhs+i,,]; 

end; 
if O. l - t t l i  ~ 0,  /'~i : =  /£i + 1 

end; 

where ri and/~i are as defined by equations (30) 
and (32), respectively. 

We conclude this section by pointing out that 
this algorithm is in fact an efficient implementa- 
tion of the general algorithm described in Van 
Dooren (1979). The efficiency is obtained by a 
careful ordering of Givens rotations and hence, 
we are still using orthogonal transformations at 
all stages of the algorithm. As a consequence of 
this, the error analysis in Van Dooren (1979) still 
holds here and we can conclude that the 
computed zeros are in fact the exact zeros of a 
slightly perturbed system matrix bP(A). In other 
words, the present algorithm is backward stable. 
Notice, that the same result also applies to the 
algorithm described in Emami-Naeini and Van 
Dooren (1982). 

5. NUMERICAL EXAMPLES AND DISCUSSION 

In this section, we present several examples to 
illustrate the proposed technique. The numerical 

computations reported in this section were 
performed in double precision, on an IMB PC 
compatible (386/387) machine using MATLAB. 

Example 5.1. The first example is a scalar 
system. We can easily compare the transmission 
zeros for the system computed using the 
proposed technique with the roots of the 
numerator polynomial of the transfer function 
computed using the technique described in Misra 
(1989). For this example, we selected a 5th 
order, one input, one output system with 
rank ( E ) =  4. Various parameters of the system 
for this example are given below. 

1 0 

1 0 

1 0 

0 1 

1 1 

-0 1 

1 1 

E =  0 1 

0 1 

1 0 

. 

1 

0 , 

0 

0 

1 

1 

A =  2 

1 

1 

1 

_1 

1 1 1 0 -  

2 1 0 1 

2 1 0 0 , 

1 1 1 1 

1 1 2 2 

b = 0 , 

2 

_0_ 

c = [ 1  2 2 1 2], and d = l .  

The transfer function of the above descriptor 
system is given by 

0 . 2 5 A 4  + 3 . 5 A 3  _ / ~ 2  + 2.75A + 1.5 
R(A) - A4 _ 1.75A3 + 1"5A 2 _ 1.5A - 2.5 

Table 1 compares the roots of the numerator 
polynomial with the transmission zeros of the 
non-singular lower-order generalized state-space 
subsystem. 

The above example is for the sake of 
illustration only and not to demonstrate any 
numerical properties of the proposed algorithm. 
In fact, for this system, the matrix E in the 
compressed representation was very well condi- 
tioned. The results will be accurate, even if the 
transmission zeros were obtained by transform- 
ing it to standard state-space form and 
computing zeros by applying the algorithm of 
Emami-Naeini and Van Dooren (1982). 

TABLE 1. FINITE TRANSMISSION ZEROS IN EXAMPLE 5.1 

R o o t s  o f  n u m e r a t o r  F in i te  ze ros  
p o l y n o m i a l  ( p r o p o s e d  m e t h o d )  

- 1 .433064593655173e  ÷m 
+ 3 .674820146082842e  ol 

+ j 9 . 4 8 9 3 9 4 4 5 1 1 3 2 2 2 7 e - m  
- 4 . 0 4 3 1 8 0 9 2 6 6 4 8 4 8 5 e  - m  

- 1 .433064593655172e  ÷°1 
+ 3 . 6 7 4 8 2 0 1 4 6 0 8 2 8 4 1 e - ° 1  

+ / 9 . 4 8 9 3 9 4 4 5 1 1 3 2 2 2 9 e - ° 1  
- 4 .043180926648483e  - or 
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The next few examples illustrate the computa- 
tion of various structural invariants. 

Example 5.2. This example is a polynomial 
matrix D(A) = D o + DIA + D2 A2 from Van 
Dooren and Dewilde (1983), where 

E 1 2 - 2 ]  [ 1  3 0 J  
D0= 0 - 1  - 2  , D 1 = 1 4 2 

0 0 0 0 -1  - 2  

and 

E J 
1 4 2 

D2 = 0 0 0 . 

1 4 2 

An irreducible 4th order state-space realization 
of D(A) is the system (E, A, B, C, D) with 

[1°°il [i ° li] 0 1 0 A =  0 0 
E =  0 0 0 0 0 

0 0 0 1 - 1  

l o00]0 0 o 1 
B =  1 4 2 ' C =  0 0 -1  0 

0 0 0 - 1  
0 - 1  - 2  

and 
1 2 - 2 ]  

D = 0 - 1  - 2  . 

0 0 0 

The compressed form (21) of the above system 
can be immediately seen to be the 2nd-order 
subsystem (/~, A, B, C, /5)  where 

and 

-1 0- 

0 1 

0 0  _-00 
0 0 

_0 0 

m 
0 

- 1  

/ 3 =  - 1  

- 1  

0 m 

0 1 4 2- 

0 0 - 1 - 2  

-1  1 2 - 2  

0 0 - 1 - 2  

-1  0 0 O_ 

By applying the algorithm S-ZEROS to this 
compressed system we obtained the following 
results. 

• The polynomial matrix D(A) has a finite zero 

at A~ = 1 (computed without rounding errors). 
• The normal rank of D(A) is 2. 
• D(A) has no zeros at infinity. 
• The computed row and column minimal 

indices are rl = 0, r2-  1, ct = 1. 

Example 5.3. This example illustrates the usage 
of algorithm S-ZEROS to compute the poles of 
a GSS system. In particular, we determined the 
structure at infinity of the pencil ( A -  AE), 
where A and E are the matrices from the 
previous example. The compressed system 
( /~ , . , t , / ) ,C , / ) )  for the pair (E,A) is (see 
(21) and (27)): 

/~=[10 

and 

By applying the algorithm S-ZEROS to this 
compressed system we obtained the following 
results. 

• The pencil (A - AE) has no finite zeros. 
• The pencil ( A -  AE) has no infinite elemen- 

tary divisors of degree 1 but has an infinite 
elementary divisor of degree 2. 

• The pencil (A - AE) does not have any row or 
column minimal indices. 

Example 5.4. This example illustrates the usage 
of algorithm S-ZEROS for the analysis of 
controllability of a GSS. We consider the 
following 9th order observable but uncontroll- 
able realization of the polynomial matrix from 
Example 5.2. 

and 

B = 

O O O I O 

I O , A =  O O , 

O O I O 

Foil o , c = [ o  - t  Ol 

D2 

O z D (  D 

where each submatrix has order three. In order 
to analyze the controllability of this system, we 
compute the zeros of the 6th order compressed 
system corresponding to the triple (E, A, B) (see 
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CI 

C 2 

:) 
E a 

c3 

R t Ls 

II 
64 L6 

< 
R2 I 6 = i 3 > i 

FIG. 1. Circuit for Example 5.5. 

(25)): 

% 'o] 
ol 

indices c, = 1, c 2 = 2  and no row minimal 
indices. 

The next example illustrates the numerical 
properties of the proposed algorithms. The 
example is an electrical circuit, hence the data 
describing its parameters are realistic. 

and 

b = [O D2]. 

By applying the algorithm S-ZEROS to this 
compressed system we obtained the following 
results. 

• The pencil [ A - A E B ]  has two infinite 
elementary divisors of degree 2 ( d l =  0, d2 = 
2), which correspond to the uncontrollable 
infinite eigenvalues. 

• The pencil [A - AE B] has the column minimal 

Example 5.5. The final example is an RLC 
electrical circuit (Fig. 1.) with an independent 
loop containing capacitors and voltage sources 
only and an independent cutset with inductors 
and current sources only. Ea and Jb represent the 
inputs, the voltages across C1, C3 and C4 are the 
outputs of the circuit and 13 is the current 
through C3. The matrices representing the state 
description of this circuit for C1 = C2 = 1000IxF, 
C 3 = C 4 = 5000/zF, L5 = L6 = 100 mH, L7 = L8 = 
200 mH, R1 = 1000 f~, RE = 500 f~ and R 3 = 250 
are 

E =  

A = 

- -  1.00 - 1.00 

0.00 0.00 

- 1 . 0 0 0 0 e - ° 3  0.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

- 0.00 0.00 0.00 

0.00 0.00 0.00 

0.00 0.00 0.00 

0.00 0.00 0.00 

1.00 -1 .00  0.00 

0.00 1.00 1.00 

0.00 0.00 0.00 

0.00 0.00 0.00 

5.0000e-°3 

-5.0000e -°3 

0.00 

0.00 

0.00 

-5 .00  

2.5000e -°1 

0.00 

0.00 0.00 

0.00 1.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

1.00 0.00 

0.00 0.00 

- 5 . 0 0 0 0 e - ° 3  0 . 0 0  

- 5 . 0 0 0 0 e  -°3 0.00 

-2.5000e -°1 0.00 

0.00 0.00 

0.00 0.00 

0.00 1.0000e -°1 

-2.5000e -°~ 0.00 

-7.5000e +°2 0.00 

0.00 0.00- 

0 . 0 0  0.00 

0.00 0.00 

-1 .00  1.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 

0.00 

5.0000e +°2 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 0.00 0.00 - 

0 . 0 0  0.00 0.00 

0.00 0.00 0.00 

0.00 0.00 0.00 

0.00 0.00 0.00 

0.00 0.00 0.00 

0.00 0.00 0.00 

1.0000e -°1 -2.0000e -o~ -2.0000e -m 
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B = 

C =  

D = 

D 
0.00 

0.00 

0.00 

0.00 

-1 .00  

1.00 

0.00 

0.00 

-1.00 

0.00 

0.00 

-0.00 

0.00 

0.00 

0 . 0 0 -  

0 . 0 0  

0.00 

1.00 

0.00 ' 

0.00 

0.00 

0.00 

0.00 0.00 

0.00 1.00 

0.00 0.00 

0 .00]  

0.00 . 

o.ooj 

0 . ~  0.00 0 . ~  

0.00 0.00 0.00 

1 . ~  0 . ~  0.00 

0 . ~  0 . ~ ]  

0 . ~  0 . ~ ,  

o.~ o . ~ j  

Applying the S - Z E R O S  algorithm, to the pencil 
(A - AE) it was found that: 

• the above system has five finite poles at 
- 4.997798310302830e + 03, - 4.001159494478821 e ÷ oo, 
-2.005301982357856e 01, -1.819955490315653e is 
and 1.426452528199640e -~7. Note, that the last 
two poles are at the origin; 

• there are two non-dynamic modes at infinity 
and an infinite elementary divisor of order 1, 
which corresponds to a true dynamical 
impulsive mode. 

Next, from the analysis of the system pencil it 
was determined that: 

• the system has two finite zeros at the origin; 
• the system has one infinite elementary divisor 

of order 1, i.e. dl = 1; 
• the row minimal indices are rl = r2 = 1 and the 

column minimal index is Cl = 1; 
• the normal rank of the transfer function 

matrix is 1. 

To show the numerical performance, its finite 
decoupling zeros were computed by (a) finding a 
full rank Ell ,  premultiplying the state equation 
by its inverse ( c o n d ( E l i ) = l . 8 9 4 4 e  +°8) and 
computing zeros of the resulting standard 
state-space system and (b) applying the proposed 
algorithm. It is easy to see that the system has 
two input decoupling zeros at the origin. The 
results obtained using the two approaches are 
listed in Table 2. Note, that there is significant 
improvement in the numerical values of the 
input decoupling zeros (known to be at the 
origin) when using the proposed method 
compared to using the inverse of (full rank) the 
descriptor matrix and the algorithm for standard 
systems. To further verify our results, we 
computed the singular value decomposition of 

the pencil 

[ A - A i E  B ] ,  

C D 

where Ai are the decoupling zeros in the second 
column of Table 2. For the two cases, the last 
three singular values were found to be at 

1.290987778971753e- 16, 3.382764823262971e- 17 

1.237027516183035e - 17 

and 

6.426132695085887e- 17, 1.140918261013493e-17, 

7.959844515347648e - 18. 

Clearly, the singular values verify the observa- 
tions deduced from the system pencil 
information. 

Summarizing the above observations, we can 
state that: 

(i) The poles at the origin are uncontrollable 
because rank ([A B ] ) =  6. Thus, the comp- 
uted zeros are in fact input-decoupling 
zeros. At least one of these poles is also 
unobservable because rank ([A T cT])  = 7. 

Clearly, one of the computed zeros is an 
input-output  decoupling zero. Note, that 
this information can also be obtained 
directly from the analysis of pencils 
[A - AE B] or [A T - AE T cT]. 

(ii) The zero at infinity coincides with the pole 

TABLE 2. FINITE  INPUT D E C O U P L I N G  Z E R O S  1N E X A M P L E  5 . 5  

Zeros using Efi t 
(compressed) 

1.031363086958463e 11 
-8.213043648840842e 14 

Zeros using proposed 
method 

-7.755365867415895e a8 
1.305271529760255e ~7 
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at infinity. This zero is an output-decoupling 
zero because rank ([E B]) = 8 and 
rank ([E T CV]) = 6. 

(iii) By taking into account the above facts, it 
follows that the circuit can be modeled by a 
state-space model of order 8 - (number  of 
finite input-decoupling zeros ) -  (number of 
infinite output-decoupling zeros) = 5. In 
fact, by extracting a non-zero direct 
feedthrough matrix D, the order can be 
further reduced to 4. 

6. CONCLUDING REMARKS 

In this paper, we presented a state-space 
characterization of the transmission zeros of 
singular linear multivariable systems that is 
analogous to that of standard systems. Based on 
the results reported in this paper, we developed 
an efficient technique for their computation. It 
was shown that from the given singular system, 
using unitary coordinate transformations, we can 
obtain a non-singular subsystem whose transmis- 
sion zeros are identical to the transmission zeros 
of the original singular system. The proposed 
characterization and the computational proce- 
dure based on it were illustrated by means of 
some examples. 

It should, perhaps, be emphasized that an 
algorithm such as proposed in this paper can be 
viewed as an (almost) universal analysis tool for 
linear time-invariant systems. Properties such as 
stability, controllability, observability, stabiliza- 
bility or detectability, as well as the row and 
column minimal indices of the corresponding 
system matrix, can be easily obtained by 
computing zeros of appropriate system matrices 
(for p = 0  and/or m =0).  It is also a valid 
alternative to computing the Kronecker structure 
of an arbitrary singular pencil (Beelen et al., 
1986; Beelen and Van Dooren, 1988). An 
implementation of the proposed computational 
method is available in the descriptor systems 
subroutines library DESCRIPT (Varga, 1992). 
For additional information regarding these 
subroutines, please contact Andras Varga. 
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