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Jacobi-Type Algorithms for LDU and Cholesky Factorization
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It is demonstrated how conventional algorithms for computing
the LDU decomposition of a square matrix, or Cholesky fac-
torization for symmetric positive definite matrices, can be reor-
dered into Jacobi-type algorithms. For efficient parallel imple-
mentation on a systolic array, the resulting schemes compare
favorably with earlier implementations. « 1991 Academic Press. Inc.

INTRODUCTION

In this note it is demonstrated how conventional algo-
rithms for LU and LDU factorization can be reorganized
into Jacobi-type algorithms. First the Jacobi-type algorithm
for LU decomposition, which largely corresponds to the QRD
procedure of {4], is derived. This procedure is then trans-
formed into an algorithm for computing the LDU decom-
position which “preserves symmetry.”” The latter procedure
is therefore suited for computing the Cholesky decomposition
as well. The derivation is fairly straightforward, but it has
not appeared in the literature before, as far as we know. Up
until now, the LU and LDU factorizations were apparently
the only matrix factorizations for which there was no Jacobi-
type algorithm available. The advantage of having this type
of algorithm available for any matrix decomposition is that
then only one type of architecture is needed, which can be
used for any operation, where each time only the cell func-
tionality is slightly adapted. In this respect, our approach
provides a useful alternative to earlier approaches for systolic
LU (LDU) decomposition: see [ 2] and the references therein
and [1. 3, 5].
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LU DECOMPOSITION

The LU decomposition 1s detined as

where an # X n matrix is decomposed as a product of a unit
lower and an upper triangular matrix ( L resp. U). We refer
to [2] for standard algorithms to compute this decomposi-
tion. Our aim here is to derive a Jacobi-type algorithm for
this decomposition. Such an algorithm is based on locally
computed plane transformations and is particularly suited
for parallel implementation. ¢.g.. on a systolic array.

Our main source of inspiration 1s a similar algorithm for
computing the QR decomposition {4]. This QRD procedure
is straightforwardly turned into an algorithm for computing
the LU decomposition. if we use only appropriate row trans-
formations, i.e.., embeddings of unit lower triangular 2 X 2
matrices instead of plane rotations. Briefly, the original ma-
trix 4,., 1s reduced to an upper tniangular matrix U by ap-
plying a sequence of exactlv #(# 1) such transformations
L' to the left, together with column permutations II;. Ac-
cumulating the left-hand transtormations delivers the . ma-
trix, while on the other hand. the accumulated permutations
equal the identity. This can be cast as (see [4] for details)

A=T-A-IT=1T-Li---L,,
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Here L; and I differ from the identity only in

f 1 —
IL/( :"Lnl -

{II/\ }I.I+l -

where | M}, .., 1sa 2 X 2 submatrix of M on the intersec-
tion of rows j and / + | and columns jand / + I, and / is
chosen such that the (/ + 1, /) entry in Lj - L]
x 4«11+« - H,_ 11, 1s zeroed. The pivot / follows the odd-
even ordering of [6], which means that, e.g.. for odd values
of n. i cycles through

exactly n times. As both the odd-numbered transformations
and the even-numbered transformations can be carried out
in parallel, this algorithm requires roughly 2x time steps on
a parallel architecture {4].

An algorithmic description is thus as follows. The matrix
L nitially equals the identitv and remains unit lower tri-
angular throughout (the product of lower triangular matrices
is lower triangular). The " matrix initially equals A4 and is
gradually reduced to upper triangular form. The zeros in the
lower triangular part are introduced in the same fashion as
in the R matrix in the QRD algorithm; see Fig. 2 in [4].

Let us now slightly modify this algorithm, such that it can
be extended for the DU case. For a 6 X 6 matrix, for in-
stance, the pivot index in the above algorithm takes up the
following values, where transformations on the same line
can be performed in parallel:

[ = 3 5
2 4

1 3 35
2 4

1 3 5
2 4

| 3 5
2 4

1 3 5
2 4

1 3 5
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Some of these transformations introduce zeros, which are
filled in in subsequent steps. Alternatively, one could also
perform only those transformations which create zeros that
are not filled in afterward. One can check that the algorithm
is then reduced to the following:

I = h)
1
3 S
2 4
l 3 5
2 4
3 5
1
hl

This is called a hackward sweep Figure | illustrates this pro-
cedure. The odd—evens are indicated ( frames ), but only the
transformations of the backward sweep (double frames) are
actually carried out. Note however that. as half of the column
permutations are left out as well. the resulting product /.- U
equals .4 up to a column permutation,

A=T-A-T=1-L,-+1. .
)

X Lo (K | FICIRIED § PRSI

II{’J 2vn 1y T 'II[W -1

I

where

In order to compute an /. decomposition for .1, one should
therefore start from A - I1. to end up with
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FIG. 1. LU decomposition.

As for the LU algorithm, we are now clearly complicating
things. However, in the LDU algorithm of the next section,
the redundant transformations need be left out, as otherwise
there will be fill-ins in the upper (lower) triangular part of
L{LlY.
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LDU AND CHOIL ESKY DECOMPOSITION

The LDU decomposition is detined as
| Y DR

where D i1s a diagonal matrix and /. and U are unit upper
and unit lower triangular matnces. For symmetric matrices
A = A" it follows that { = /' n the LDU decomposition.
Furthermore. for symmetric positive definite matrices. the
matrix D has positive diagonal entries and L - D'/? is referred
to as the Cholesky facror

The LDU decomposition of {—when it exists—can be
computed from the 1L decomposition, simply by scaling
the U to a unit upper triangular matrix. However. for the
special case where 4 1s ssmmetric. the LU algorithm destroys
symmetry after one step. Let us therefore try to derive a true
LDU algorithm, which furthermore preserves symmetry
throughout. Initially. I? could be set equal to .4, while L and
U equal the identity. The aim is then to reduce D to diagonal
form by applving row und coliwmn transformations. Accu-
mulating these transformations< should then deliver L

and U.
As for the reduction of ) to diagonal form, the row and

column transformations /., and { , to be applied should at
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FIG. 2. LDU decomposition.

first sight correspond to 2 X 2 LDUs on the main diagonal  with

as
[ D, 0
-«
[0 DHIJH
-1
boo [D
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However, additional permutations should be included, so
that all off-diagonal elements can be annihilated. Each it-

eration can then be cast as

DiJel }. : Di./ I [,) de
D1+1J+1 O 1 : l.vv/\ }'”“ D il B

T
| 0
‘l LA:f.w l)
‘ |
D,

—_—— 0
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In view of efficient implementaton. one should introduce
additional permutations tor the accumulation of row and
column transformations as well. 1.¢..

L<1,-7- 1.1

D< L' D-1I,- U} U0, -1, - -T1,.
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FIG. 2—Continued

Figure 2 shows that one backward sweep reduces the initial In order to compute an /.2 dJecomposition for 4. one
4 matrix to diagonal form, while L and U remain lower resp.  should therefore start from I+ 1-11. to end up with
upper triangular. Clearly, after the backward sweep one has

L-D-U=1I-4-1II L-D-U=1-(1l-t-1H-11 = 4.
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REMARKS

I. The algorithm preserves symmetry, in a sense that if
the 4 1s symmetric, D is symmetric at all stages and likewise
[. = U'throughout. For symmetric positive definite matrices.
the Cholesky factor is obtained in factorized form, L+ D'/?.

2. Atany stage. the matrices L. D, and U have nontrivial
entries ( #0. 1) in complementary patterns. Hence the mem-
ory requirement is only n? for nonsymmetric and }#° for
symmetric matrices.

3. Itisseen that once an off-diagonal element is generated
in /. or U, it is not changed by subsequent transformations.
Instead of, e.g.. right multiplying L with L, it therefore suf-
fices to copy the new entry. As a result, essentially only per-
mutations are applied to L and . From this it can also be
seen that the Jacobi-type algorithm is only a reorganized
version of the conventional algorithm for LDU [2]. Hence
flop counts and stability result straightforwardly carry over
to our case.

4. Instead of starting from I1- .4 - II and applying a back-
ward sweep, one could alternatively start from 4 and apply
a forward sweep. For a 6 X 6 matrix, a forward sweep consists
of the transformations

1=1

) .

1 3
2 4

1 3 5
2 4

1 3 .
2 .

1

Note that in order to avoid fill-ins, tranformations and per-
mutations should be interchanged. The iteration formulas
then read

L<— HA'L'Lk'Hk
E«Ilk'zkl 'I)"C';] 'Hk

U<« II;- Uy U' II,.

As a result of this, L and U are upper resp. lower triangular
matrices. The LDU decomposition of 4 is then determined
as
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[-D-U 1-4-11
OLI-ODI - 1T - 1.
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One can verify that with both algorithms, exactly the same
operations are performed. Onlv the presentation is different.

5. The above algorithms require roughly 2# steps. similar
to the QRD algorithm. When several /.DU decompositions
have to be computed. one can alternately use forward and
backward sweeps. As these can be pipelined, see, e.g., [6].
the marginal cost for each additional /.DU is then only n
steps. For comparison. the algorithms in {3] and [ 1] require
respectively 4n and 3# time steps tor one single .U/ decom-
position. Similarly the algorithm in {1} requires # time steps
per decomposition when difierent decompositions can be
pipelined. In conclusion. the Jacobi-type algorithm thus
compares favorably with existing methods.
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