Signal Processing 25 (1991) 203 213
Elsevicr

203

A systolic algorithm for QSVD updating

Marc Moonen

FESAT Katholieke Universiteit Lewven, K. Mercierlaan 94, 3001 Heverlee, Belgnm

Paul Van Dooren

University of Hlinois at Urbana-Champain, Department of Electrical and Computer Fugmecrimg, 1101 West Springfield

Avenue, Urbana, 11 61801 USA

Joos Vandewalle

ESAT Katholicke Universiteit Leuven, K. Mercierlaan 94, 3001 Heverlee, Belgium

Received 13 June 1991

Abstract. In earlier reports. a Jacobi-type algorithm for SVD updating has been developed and implemented on a systolic
array. Here, this is extended to a generalized decomposition for a matrix pair. viz the quotient singular value decomposition
(QSVD). Updating problems are considered where new rows are appended to cither one or both of the matrices involved.
Systolic arrays as well as square root free implementations are described.

Zusammenfassung. In vorausgehenden Berichten wurde ein Jacobi-dhnlicher Algornthmus sur fortlaufenden Aktualisierung
der SVD eciner Matrix und die zugehorige Realisierung auf cinem systolischen Array vorgestellt. In diesem Beitrag wird cine
Erweiterung auf die verallgemeinerte Zerlegung eines Matrizenpaares. die sogenannten Quotient SVD (QSVD), behandelt. Es
werden Aufgabenstellungen betrachtet, bei denen entweder nur cine oder heide beteihigten Matrizen durch Hinzunahme neuer
Zeilen aktualisiert werden. Aullerdem werden wurzelfreic Realisierungen sowie svstohische Arravs beschrieben.

Résumé. Un algorithme dc type Jacobi pour la mise a jour de la décomposition en valeurs singulieres (SVD) a ét¢ développé
et implanté sur un réseau systolique dans des articles antérieurs. Nous I'¢tendons 101 a L decomposition généralisée pour une
paire de matrices. ¢'est a dire pour la décomposition en valeurs singuliéres quotient (QSVD)1 Nous considérons les problemes
de mise a jour impliqués par I'ajout de nouvelles lignes a une ou aux deux matrices considerees, Nous décrivons des implanta-

tions sur réseau systolique et des tmplantations sans calcul de racine carrée.

Keywords. Singular value decomposition. parallcl algorithms, recursive algorithms

1. Introduction

The problem of continuously updating matrix
decompositions as new rows are appended, fre-
quently occurs in signal processing applications
such as adaptive beamforming, direction finding
and spectral analysis. An efficient technique for
updating the singular value decomposition (SVD),
amenable to systolic implementation, has been
developed in [10, 11]. In the present paper, this
approach is extended to a generalized decomposi-
tion for a matrix pair, viz. the quotient singular

value decomposition (QSVD).! We consider
updating problems where new rows are appended
to either one or both ot the matrices involved. As
far as we know. these problems had not been
looked at so far.

The approach 1o SV updating consists in com-
bining QR-updating with a Jacobi-type algorithm
for the SVD. applied to the triangular factor. In
each step. only O'n"* operations are performed.

1 N - .
Formerly known as generalized singular value decomposi-
tion. See [1] for a standardized nomenclature.

0165-1684,91/503.50 . 1991 Elsevier Science Publishers B.V. All rights reserved

204 M. Moonen et al. | QSVD updating

where #n is the problem size. The outcome is a seem-
ingly non-iterative algorithm that at any time step
produces an approximate decomposition com-
puted from a previous approximation, with a
tracking error of the order of magnitude of the
time variation in O{n} time steps [10]. In [11], it
is shown how to combine the different operations
on one and the same systolic array with O{n’}
processors. The obtained throughput is O{n’}, i.e.
independent of the problem size. The idea of com-
bining different computational steps on the same
array — with intermingled computational fronts
and a small computational overhead for an
increased throughput - is apparently new here.

For the QSVD updating problem one can simi-
larly combine QR-updating with a Jacobi-type
QSVD algorithm. Here we focus on such an updat-
ing algorithm and its parallel implementation. The
performance and error analysis results for SVD
updating [10] thereby largely carry over to the
QSVD case, and are left out for the sake of brevity.
In Section 2 the QSVD updating algorithm is
derived. Its systolic implementation is developed in
Section 3, and in Section 4 it is shown how to
obtain a square root free updating algorithm.

Finally, let us mention that a similar updating
algorithm is readily developed for the product SVD
(PSVD) of a matrix pair [1,4]. However, while
QSVD updating definitely has practical relevance,
this cannot be said yet about the PSVD updating
problem. Therefore these results were left out here,
and we refer to [8] for the details.

2. QSVD updating

The QSVD is a simultaneous orthogonal reduc-
tion of two matrices A4 and B to triangular matrices,
the corresponding rows of which are parallel. As
further on we consider the updating problem when
new rows are appended sequentially, we can
assume that the number of rows in 4 and B is
larger than the number of columns. The QSVD

Signal Processing

then reads as follows [14]:

A=U;Z,RO".
M~ S S N~

ntxn mxn nxXn nxn

B =UsXzRQ",
R N g e

[)xﬂ px" nxn nxn
X =diag{a,..... Ui
ZB:diag{ﬂl ~~~~~ ﬂn:

Here R, ., is an upper triangular matrix, the
matrices U, and Uy have orthonormal columns
and Q is an orthogonal matrix.” The pairs {a,, f8,}
are called the quotient singular value pairs of
{A, B}, while a,f, are the quotient singular
values. QSVD applications include generalized
least squares problems associated with the general
Gauss-Markov linear model [12], generalized total
least squares problems [15]. generalized state space
identification [9], etc. Most of the time A is a data
matrix while B corresponds to a known error cova-
riance matrix. In the white noise case, where
B=1,.,. such QSVD methods reduce to corre-
sponding ordinary SVD methods.

Briefly, the QSVD is computed as follows [5, 13].
First, the matrices 4 and B are reduced to triangu-
lar form by preliminary QRDs:

A= Q4R,, B=QsRp,
—— ——’
mxn pon

where R4 and Rjg are square upper triangular, and
Q. and Qg have orthonormal columns. The QSVD
of {4, B! readily follows from the QSVD of
{R4, Rz}. The QSVD of |R,. Rg} is then com-
puted by carrying out an iterative procedure, where
a series of Givens transtormations is applied to R,
and Rz in order to yield triangular factors with
parallel rows X ,R and ZXzR. Each iteration
essentially reduces to a QSVD of a 2 x 2 block on
the main diagonal, parallelizing the rows of
{R4}iir1and {Rg},, . . where { M}, denotes the
2 x 2 matrix on the intersection of rows i, i+ 1 and
columns 7, i+1 of M. We refer to [5, 13] for the

P UNUL=URUR=0"0=1,..

M. Moonen et al. / QSVD updating 205

details. By making wuse of either inner
rotations + permutations or outer rotations, an
elegant pipelined implementation is obtained,
wherewith the pivot index repeatedly takes up all
possible values

=1,2,....n—1.

Again we refer to [5, 6] for the details.

The updating problem considered here consists
in computing the QSVD of the modified matrices,
after appending new rows to 4 and/or B:

AA .
xil = T |7 l_]A ZABQ)

(m+1)yxn (m+1)xn

e —
(ptiyxn (ptl)yxn

We consider constant weighting factors 4, for the
sake of brevity. In on-line applications a new
updating needs to be performed after each sam-
pling, such that Ay, and By, are defined in a recur-
sive manner:

Adp -y ABy 1)
Am:[v | Bw=l 5 |
S| k)

In most cases, the U-matrices - with growing
matrix dimensions! — need not be computed explic-
itly, only R, Q and X 4, X3 are of interest.

New data vectors are worked in as follows. Sup-
pose that at time & — 1, the triangular factors are
reduced to R 1y and Ry — 1y (with approximately
parallel rows, say) and the corresponding Q-matrix
is denoted as Q1

T

A[,\,]]Z UA[k;l]RA[kfl]Q[k—”’
T

Bu— 1= Us- 1R —)Q -1

(Orlly RA[/(* 17> RB[k* 1 and Q[k~ 1) are StOI‘Cd). After
appending new rows a[; and/or bfy, one has a

decomposition of the tvpe

~ T—
LVA[A 1§ N lRA[A'”I] T
Apy= : [Qk-1y-
10} {LapQu-n
.
T
Cae 1y AR~ 1
By = 0 T Ole-11-
LO | LD Q-3
Lo o] [1]]

First, the triangular tactors are restored by per-
forming QR factorizations, or more specifically a
QR updating [}] with the transformed input

~T _ 1 T __ 1T .
vectors Ay _¢1|A|Q[A j and b[k]*b[k]Q[kflb

U A It ~ T
A= Qe Ra1Q ik - 1)

o 0[]

ok

Uue

.
i

pik

QB[/(]RB[/(]Q{TA’fl]'

Here Quuy and Qg are (n+ 1) X n matrices with
othogonal columns, which need not be computed
explicitly. The QR updatings do not alter the
matrix Q1. New rows are thus worked in by
performing matrix vector multiplications and QR
updates. After each such update the QSVD process
1s resumed. Similar to the SVD updating procedure
[10], a QSVD updating procedure can then be
devised as follows. with after each QR update a
fixed number of QSVD steps, say r. We make an
arbitrary choice and set r equal to n—1, so that
after each QR update the pivot index takes up all
values i=1,. . .. n -1 only once. In this case, both
the QR updating and the rotations following the
update take O !n’| operations, which in particular
results in an elegant parallel implementation, see

Vol. 25. No. 2, November 1991

206 M. Moonen et al. ;| QSVD updaiing

Section 3. All of our further results are straightfor-
wardly recast for other choices for r. The tracking
error of course largely depends on the choice for r,
sec [10].

Initialization
<=1,
R,<=0,.,
Re<=0, .,

Loop

for k=1,....,x
input new measurement vectors dp. b
1. matrix--vector multiplications

Ay =aQ
by =bQ
2. QR updates

3. QSVD steps
fori=1,....n—1

T

Ry<= @A[A.i]RA Q[k,i]
T

Rp<= @H[A-.f]RBQ[A»_f]

Q=00

end
end

Here time indices are sometimes omitted for
brevity. Matrices O 4. Oppy and Q. are
embeddings of plane rotations, in the {ii+1}
plane, corresponding to the ith iteration in time
step k.

NOTE. adual QSVD updating problem. So far, we
considered the updating problem where new rows

Signal Processing

are appended to the matrices A4 and/or B.
Alternatively, one could also append columns to A
and B, and try to devise a similar updating algo-
rithm. However, this dual QSVD updating prob-
lem seems to be much more difficult to solve. The
updating problem now consists in computing the
modified QSVD

A=[AA4 a]=U X ,RO".
B:[lB b= LBZHRQI

by making use ot the origimal QSVD of 4 and B.
This time Uy, Uy. ¥,. ¥ and R are important.
The matrix Q has growing dimensions and is not
computed explicitly. Suppose that 4 and B are
stored in triangular torm The main difficulty
appears to be the QR updating of the triangular
factors R, and Ry after appending new columns.
As the orthogonal updating transformation to the
right necessarily has to be the same for both R,
and R (Q-matrix!). this updating actually requires
both left and right transtormations. The available
approximations for (', and (s can then change
significantly, or in other words the approximate
collinearity of R, and Ry can get lost, so that many
more QSVD steps are needed afterwards in order
to restore the approximation

Fortunately. any updating algorithm of this kind
would apparently be of hittle use in practice. In
general, the QSVD for two matrices 4,,«, and
B,.,, with more columns than rows (n>p, m)
looks as follows:

] -
A=U; X, [Ji \—~}Qr.
S S S| bk Aok

mxan <o h

R R(L«J 0.

A~k LSRIVTINY

B :L/r,q ZH
e
pxn pxp pxAh

where k=rank{4'.B''". It 4 and B contain
measured data, with a signal-to-noise ratio of 100
say, then - due to the noisc 4 and B as well as
[4" B'"] generically have tull row rank, k =m+p.

M. Moonen et al.

with a fairly small condition number of approxi-
mately 100. The QSVD then follows somewhat tri-
vially from an RQ factorization:

A_ T
Y e

mtp Xt p
which can be written in a QSVD form

A= T [I 0]RQ',
—

mxm

B= 110 [I]RO".
N~
])x/)

For practical applications e.g. systems identifica-
tion from measured I/0-data — the most valuable
information that can be drawn from such a QSVD
would be the intersection of the row spaces of A4
and B [9]. Due to the noise, this intersection is
immediately lost. The QSVD is clearly not able to
point out an ‘approximate intersection’, but
becomes trivial instead. A one stage QSVD proce-
dure thus turns out to be useless for these types of
problems. Alternatively, one can make use of a two
stage QSVD algorithm, like in [14]. In a first step,
the SVD of [4" B"]" is computed, and in a second
step, the QSVD follows from the CS-decomposi-
tion of certain submatrices computed in the first
step. The difference between these methods turns
out to be an intermediate rank decision after the
first SVD in the latter approach, that e.g. fixes the
dimension of the approximate intersection, by
implicitly setting the smaller singular values of
[4" B"]" equal to zero. Although this - possibly
difficult intermediate rank decision has been a
main motive for developing a one stage QSVD
algorithm [13], in practice it 1s apparently
inevitable.

3. Systolic implementation

The QSVD array in [S] is quite similar to the
SVD array of [6]. The triangular part contains two
triangular factors instead of one. The processors
on the main diagonal perform 2 x 2 QSVDs instead

OSVD updaring 207

Input - -
a, b - [] . Q [] .—»
N\
Rp

Fig. 1 Outhine QSVD updating array.

of SVDs, and the off-diagonal processors apply
transformations to hoth Ry-elements and Rpa-
elements.’ Similar to the SVD updating array in
[11], one can therefore straightforwardly design a
QSVD updating arrav. as displayed in Fig. 1. It
consists of a sguuare part containing the Q
matrix ~ which also computes the matrix-vector
products, and a triangular part - containing the
triangular factors that performs the QR updating
and the QSVD reduction, All these operations are
carried out simultaneously as is detailed next. The
correctness of the array has been verified by
software simulation.

The array operations are as follows, Fig. 2. Pro-
cessors on the main diagonal perform 2 x 2 QSVDs
[5]. Row transtormation parameters are passed on
to the right. while column transformation para-
meters are passed on upwards. Off-diagonal pro-
cessors only apply and propagate these
transformations to the blocks next outward.
Column transtormations are also propagated
through the upper square part, containing the Q
matrix (Q’s first row in the top row, etc.). The 2 x 2
QSVDs that arc performed in parallel on the main
diagonal different pipelined
sequences of x -1 rotations, where in each
sequence the pivot index successively takes up the
values i=1.....n - I. Each such sequence corre-
sponds to a time update. As pointed out in the
algorithmic description. the QR updatings should

correspond to

* Note that the row transformations applied to R, and R
arc different.

Vol. 25. No. 2. November 1991

208 M. Moonen et al. / QSVD updating

T & '
e, B

B

(1) __J ()

(k) _] (1}

Fig. 2. Array operations (24 snapshots).

be inserted in between two such sequences. For
clarity, the location of some of the column trans-
formations is indicated explicitly in Fig. 2.

If both R, and Ry have to be updated with new
rows, the filled boxes in Fig. 2 actually represent
two data vectors, viz. a and b. The ay, and by are
indicated with the W’s, while subsequent vectors
are indicated with the m’s. The data vectors @ and
b are fed in a skewed fashion as indicated, and are
propagated to the right, in between two rotation
fronts corresponding to the QSVD reduction
(frames). Meanwhile, the matrix-vector products
are accumulated from bottom to top in the usual
way. Each processor in the square array receives
a, b-components from its left neighbour, and

Signal Processing

intermediate products from its lower neighbour.
The intermediate products are then updated and
passed on to the upper neighbour, while the a, b-
components are passed on to the right. The result-
ing matrix-vector products become available at the
top end of the square array. and are then reflected
and propagated downwards. towards the triangu-
lar array. The obtained matrix-vector products
equal dyg. by up to a number of transformations
Q| .1, as clearly some older version of Q has been
used for computing the products. While going
downwards, the 8’s cross these upgoing rotations
Or. .1, which are then applied not only to the O
matrix, but also to the B's, in order to obtain
consistent results, see [I1]. As an example,

M. Moonen et al. / QSVD updating 209

0w

By

(m) __J

: (n)

TR N A

(0) T

". L ijl_.] Pk
0 ‘. " Q[k—1 1]“
fk—1.1] -

S 4 L I) e e

(q) _.] (r)

-1-a

G S

. --- Qlk' 141]‘:‘: N

- [T'..‘..E ‘.[-_:'-..

a s nqu]
C oy EpEE

Fig. 2. Continued.

. —A R Nl o
Tt = o= i 4

* PR JEapl
el L
ol ;

Qe U

(u)

transformations Qu—si;, Qu-a1}> Qu-3.1)»

O 211, Que—1.1) and Qpe 1y are seen to be applied
to the W’s in Fig. 2(e, h, k, n, q). The complete
matrix-vector products are thus computed in sev-
eral stages. This represents a computational over-
head, but on the other hand it allows for a perfect
pipelining of the different operations, such that the
obtained throughput is O{n’} instead of O{n""}.

Finally, the QR updating is similarly interlaced
with the QSVD steps in the triangular array (start-
ing in Fig. 2(q)). In each frame, column and row
transformations corresponding to the QSVD
reduction are performed first, while in a second
step, only row transformations are performed
corresponding to the QR updating (affecting the

W -components and the upper part of the 2 x2-
blocks). Again, column transformations in the first
step should be applied to the E-components as
well (overhead). For more details, we refer to [11].

The QSVD is an efficient tool for computing e.g.
the generalized total least squares (GTLS) solution
for systems of linear equations, when the covari-
ance matrix of errors in the rows is known up to a
scale factor [15]. Here only one triangular factor,
R, say, is updated with new data vectors. The
second one corresponds to the Cholesky factor of
the error covariance matrix A =R4R,, which is
assumed fixed. Although the QSVD updating itself
is straightforward, generating e.g. GTLS solution
vectors i1s somewhat more involved. We consider

Vol. 25, No. 2, November 1991

210 M. Moonen et al.

only the simpler case where Rz= R, is non-singu-
lar. An approximate GTLS solution is then
obtained as the column(s) of X=QRX' corre-
sponding to the smallest quotient singular value(s)
«,/B;. [t can be extracted from the array as follows.
Supposc we could generate a vector ¢ on the main
diagonal with all its components equal to zero,
except for one component equal to ‘17 at the posi-
tion of the smallest quotient singular value. The
ratios of diagonal elements in R, and R, are esti-
mates for the quotient singular values, so that we
can make use of a threshold function:

=1 iff ry<y.
=0 iff r;>y
. — 4"AA
Fi= T/ Viis

and is assumed to be known a priori.* The output
vector then equals x= QR 3 't, the computation of
which thus requires a triangular backsolve, fol-
lowed by a matrix-vector multiplication. The back-
substitution necessarily starts off at the bottom of
the array, with intermediate results being propa-
gated upwards, unlike the QR updates that run in
precisely the opposite direciton. This particularly
seems to rule out an elegant implementation.

The crucial observation here is that, as for the
R4 matrix - which is only affected by the QSVD
steps -, the QSVD transformations can be viewed
as pipelined sequences of n— 1 rotations, starting
at the lower right corner and propagated upwards

* Alternatively, one can at the same time outpul a// columns
of X that have a corresponding r, smaller (or greater) than a
predefined threshold y. A r-vector with more than one non-zero
component is then looked upon as a concatenation of different
vectors £, f. ..., and the matrix—vector products Xt,, X1-, . ..

are computed accordingly.

Signal Processing

QSVD updating

along the diagonal. In other words, the original
sequence of transformations acting upon R4, viz.

for k=1,2... .. s
fori=12,.... n—1
Ry<= @/l[AJIR.\Q[A i
end
end

can implicitly be rearranged mto

for k=12..... ¥
fori=n—1,n—2... .. I
Ri<= @A[A - ,_,]R,\QM 1]
end

end

which is an equivalent ordering {7]. except for a
different start-up phase. Backsubstitutions are then
readily inserted, as detailed next. Note that with a
sequential algorithm, one would obtain a column
of QuR a4y as a solution at time k. For the parallel
implementation the obtained solution corresponds
to an intermediate version QR % . This latter
equals Q[k]R,{[A'] up to a limited number of (col-
umn) transformations. As we consider slowly time-
varying systems, the error 15 assumed reasonably
small. This has also been verified by software
simulation.

Figure 3 shows how successive output vectors
x=QR 't are generated. The backsubstitution is
performed in the triangular part, the multiplication
with Q is performed n the square part. On the
main diagonal, components of * =R 3 't are gener-
ated - see below which are propagated upwards.
Off-diagonal processors in both the triangular part
and the square part receive such components from
their lower neighbours. and intermediate results
from their right neighbours. The products 7/g,
(square part) or ¢*r, (tniangular part) are added
to the intermediate results. The adjusted intermedi-
ate results are then passed on to the left neighbour.
while the r*-components are passed on upwards.

et ul. - QSVD updating

Moonen

(20 snapshots)

ration

Fig. 3. Output vector gene

212 M. Moonen et al. | QSVD updating

In this way, the ith diagonal processor receives the
product

n

Z l“,’-"rf/‘-

J=i+1

that is used to compute the next *-component

n
=l $oaifon

J=i+1

where ; is generated by applying the aforemen-
tioned threshold function. Notice that row trans-
formations applied to R, in the QSVD steps
(moving from the left to the right), should be
applied to intermediate results as well (moving
from the right to the left). Again this is a computa-
tional overhead, introduced whenever different
computational fronts cross.

The output vectors run out at the left-hand side
of the array in a skewed fashion as indicated in
Fig. 3. If necessary, they can be bounced back into
the array, and propagated to the right in order to
make them available at the right-hand side - as
was indicated in Fig. 1. Again, it should be stressed
that all operations - viz. the QSVD updating and
the output vector generation including the triangu-
lar backsolve - are carried out continuously and
simultaneously.

4. Square root free implementation

A major computational bottle-neck for the
above QSVD updating array appears to be the
computation of the rotation parameters in the
boundary processors, with explicit computation of
a number of square roots. A square root free imple-
mentation can be obtained by combining modified
Givens rotations with approximate SVD schemes.
This is an extension of the well known square root
free QR updating [2]. In [11], it has been shown
how a generalized Gentleman procedure with a
two-sided factorization of the triangular factor can
be combined with approximate SVD schemes in

Signal Processing

order to obtain a square root free SVD updating
algorithm, with an additional saving in the number
of multiplications. The derivation of a square root
free QSVD updating algorithm proceeds along the
same lines.

At a certain time step. the triangular factors are
reduced to R, and Rp, with almost parallel rows,
and both are stored in factorized form

— 1/2 p L2
DA_DI"OWARADCtﬂ .

5

_nl2 5 12
RB =D rowBRBD cot

(only R4, Rg and Dypy,. Drow,. Deo are stored).
Note that the column scaling is the same for R,
and Rp. In a systolic array, the diagonal matrices
Diow,s Drows and De, are obviously stored in the
processor elements on the main diagonal. The
square part of the array contains a scaled version
QO of the orthogonal matrix Q

1/2

Q=0Dli.

The only real difference compared to the SVD case
of course concerns the 2 x 2 QSVDs on the main
diagonal. Tn a first step an SVD of
{Ra}ii+1adj{Rg} ..y 1s computed, while the
second step consists in applying the same Givens
rotation (column transformation) to both matrices
[13]. As for the first SVD) one immediately sees that

{RA}i,i+ladj{RB}z.1+l

deC DT w1 fa e
_ DI’Z (R 1 § 12, d'D12)
_{ rowA}i.f+ll A+ 1y col ;u+la J{ col fii+1
D RN 2
X ad_]{RB}I.I*Idd_][Dr(YW’H}l.l*l
_ 1/2 D | S ALl D
- {DrowA}l',i+l{R,411.l< ldd_]lRB}i,H—l

2

: 1.2 |
X adJ{DrowB} e+ lde[{ Du)l }r.r+|

boils down to an SVD with a 2-sided factorization,
which can be computed approximately without
square roots, as was detailed in [11].

M. Moonen et al. / QSVD updating 213

In an unfactored form, this approximate SVD
reads as follows:

l:si.i Sii+1 J
O Sit INE|

. A
[cos 6, —sin 9,{' [1’,-,,~ rie }
all 4
sin @, cos 8, 0 riviin

VO] i+ 1 AR Ak 1T i 1
B B .
< adi {[r,w, Fiiel }}[cos Op sin 93}
B - ?
0 riidl—sin @5 cos Oy
{Rk 1))+ {OFuti)

from which it then follows that the second rows in
{@;[k]RA[k\ l]}i.i+1 and {@E[k]RB[kf 1]}i.i+1 dare
parallel, so that again one column rotation Q) can
upper-triangularize both matrices at the same time.
For this Givens transformation, it suffices to simply
apply Gentleman’s square root free procedure. For
details we refer to [11]. Again, it follows that on a
systolic array, a square root free QSVD updating
algorithm imposes hardly any changes compared
to the original procedure.

5. Conclusions

It has been shown how a previously developed
SVD updating technique can be extended to a
generalized SVD updating problem, viz. QSVD
updating where new rows are appended to either
one or both of the matrices involved. A systolic
implementation has been devised as well, with an
additional possibility of continuously generating
output vectors such as generalized total least
squares solutions. Finally, it has briefly been shown
how to obtain a square root free algorithm, by
making use of approximate SVD schemes and a
generalized Gentleman-procedure.

Acknowledgment

This work was sponsored in part by the BRA
3280 project of the European Commission. Marc

Moonen is a senior research assistant with the
N.F.W.0O. (Belgian National Fund for Scientific
Research).

References

[1] B. De Moor and G.H Golub, Generalized singular value
decompositions A proposal for a standardized nomencla-
ture, Internal Report. Dept. Comp. Sci.. Stanford Univer-
sity. 1989.

[2] W.M. Gentleman. "I east squares computations by Givens
transformations without square roots™. J. Inst. Math.
Appl.. Vol. 12,1973, pp. 329 336.

[3] P.E. Gill. G.H. Golub. W. Murray and M.A. Saunders,
“Methods for modifving matrix factorizations™, Math.
Comp.. Vol. 28. No 126, 1974, pp. 505 535,

[4] M.T. Heath. AJ. Laub. C.C. Paige and R.C. Ward,
“Computing the singular value decomposition of a pro-
duct of two matrices™. ST4AM J. Sci. Starist. Compur.. Vol.
7. No. 4, 1986, pp. 1147 1159.

[5] F.T. Luk. " A paraliel method for computing the GSVD™,
Internat. J. Parallel Distr Comp., Vol. 2. 1985, pp. 250-
260.

[6] F.T. Luk. "A triangular processor array for computing
singular values™. lwmecar Algebra Appl.. Vol. 77, 1986,
pp. 259 273

[7] F.T. Luk and H. Park. ~“On parallel Jacobi orderings™.
SIAM J. Sci. Stanist Comput., Vol. 10, No. 1, 1989,
pp. 18 26.

[8] M. Moonen. Jacobi-tvpe updating algorithms for signal
processing. svstems identitication and control, PhD Thesis.,
Kath. Univ. Leuven. Dept. El. Eng., 1990.

[9] M. Moonen and J. Vandewalle, *A QSVD approach to
on- and off-line state space identification”, Internat. J. con-
trol, Vol. S1. No. 5. 1990. pp. 1133-1146.

[10] M. Moonen. P. Van Dooren and J. Vandewalle, “*An SVD
updating algonithm ftor subspace tracking™, S/I4AM J.
Matrix Anal. Appl.. to appear (also ESAT-SISTA report
89-13a).

[11] M. Moonen. P. Van Dooren and J. Vandewalle. A systolic
array for SVD updating, ESAT-SISTA report 89-13b,
K.U. Leuven. E E. Dept. (submitted).

[12] C.C. Paige. " The general linear model and the generalized
singular value decomposition™, Linear Algebra Appl.. Vol.
70, 1985. pp. 269 &4

[13] C.C. Paige. “Compuning the generalized singular value
decomposition™. ST4M J. Sci. Statist. Comput.. Vol. 7.
1986, pp. 1126 1146

{14] C.C. Paige and M. Saunders, “Towards a generalized
singular value decomposition™, STAM J. Numer. Anal..
Vol. 18. No. 3, 19¥1. pp. 398-405.

[15] S. Van Huffel. "~Analysis and properties of the generalized
total least squares problem AX =z B when some or all
columns 1n 4 are subject to error”, SIAM J. Matrix
Anal. Appl.. Vol. 10. No. 3, 1989, pp. 294-315.

Vol. 25, No. 2, November 1991

