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A SINGULAR VALUE DECOMPOSITION UPDATING ALGORITHM
FOR SUBSPACE TRACKING*

MARC MOONEN'S PAUL VAN DOOREN?!, AND JOOS VANDEWALLE!

Abstract. In this paper, the well-known QR updating scheme is extended to a similar but more
versatile and generally applicable scheme for updating the singular value decomposition (SVD). This
is done by supplementing the QR updating with a Jacobi-type SVD procedure, where apparently
only a few SVD steps after each QR update suffice in order to restore an acceptable approximation
for the SVD. This then results in a reduced computational cost, comparable to the cost for merely
QR updating.

The usefulness of such an approximate updating scheme when applied to subspace tracking is
examined. It is shown how an O(n?) SVD updating algorithm can restore an acceptable approxi-
mation at every stage, with a fairly small tracking error of approximately the time variation in O(n)
time steps.

Finally, an error analysis is performed, proving that the algorithm 1s stable, when supplemented
with a Jacobi-type reorthogonali zation procedure, which can easily be incorporated into the updating
scheme.
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1. Introduction. In many signal processing applications. it is necessary to con-
tinuously update matrix decompositions as new measurement vectors are appended as
additional rows. Such problems frequently occur in beam forming. direction finding,
spectral analysis, etc. [21]. Efficient updating techniques have long been known for
the QR decomposition (8], while the more difficult problem of updating the (ordinary)
singular value decomposition (SVD) has only recently been addressed [1], [2], [4], [9],
[20].

Previously described techniques for row updating of the SVD mostly reduce to
computing the rank-one modification of the corresponding syminetric eigenvalue prob-
lem [1], [2], [9]. A major drawback is the necessary knowledge of the exact eigenstruc-
ture of the original matrix in order to compute the updated eigenstructure. For
real-time applications, where in each time step an exact updating is thus to be per-
formed, this results in an unacceptably heavy computational load, viz., O(n®) per
update. Moreover, round-off errors due to the use of finite precision arithmetic are
likely to accumulate unboundedly.

In this paper, we derive a fast SVD updating technique as a combination of QR
updating on the one hand and a Jacobi-type SVD procedure on the other hand. The
updating scheme provides only an approximate decomposition after each update. It
has a low computational complexity—O(n?) per update -and it is particularly suited
to parallel implementation [18].
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When combined with exponential weighting, such an algorithm is seen to be highly
applicable to subspace tracking problems. SVD methods are known to be extremely
reliable in this respect, but are considered “too expensive” when it comes to real-time
applications (cf. the O(n3) complexity). Cheaper alternatives usually suffer from poor
numerical properties (see [4] for a survey). We will show how an @(n?) approximate
SVD updating algorithm can restore an acceptable approximation at every stage, with
a fairly small tracking error approximately equal to the time variation in O(n) time
steps.

Finally, an error analysis is performed, proving that the algorithm is stable, when
supplemented with a certain Jacobi-type reorthogonalization procedure, which can
easily be incorporated into the updating scheme.

The SVD updating procedure is developed in §2. In §3 a performance analysis for
subspace tracking (in infinite precision arithmetic) is sketched. Finally, error build-up
issues (finite precision arithmetic) are addressed in $4.

2. An SVD updating algorithm. The SVD of a real matrix A, x. (m > n)

is a factorization of A into a product of three matrices [10)]

A=U.-% . vl
N N

mXxmn mxn nXxXn nxmn
where
Ul U =1TI,n.
VIV =T1,un.

and ¥ is a diagonal matrix, with the singular values along the diagonal

¥ = diag{o1,02, - .0}

oy 202220, 20

Updating the SVD after appending a new row consists of computing the SVD of the
modified matrix

A T
A+={ T}: Uy oy v
a —~ =~
(m+1)xn nXn nxn
by making use of the original SVD of A. In on-line applications, a new updating
often has to be performed after each sampling, and the data matrix at time step £ is
defined in a recursive manner (k > n)

Ark - A T

Ay = { Mol } = Uy " Ty Vg -
e

kxn mnxn nxn
Factor \j) is a weighting factor, and ag; is the measurement vector at time instant
k. For the sake of brevity, we consider only the case where Ay is a constant A,
although everything can easily be recast for the case where it is time-varying. Since
we will consider approximate decompositions below. we use an additional superseript
° here to denote exact decompositions. Finally, in most applications the U[‘,’C]—matrix,
with growing matrix dimensions, need not be computed, and only V[Z] and ka] are
explicitly updated.



SVD UPDATING 1017

2.1. SVD updating, first version. An SVD updating algorithm (for infinite
precision arithmetic) is readily constructed by combining QR updating with a Jacobi-
type SVD diagonalization procedure (Kogbetliantz’s algorithin. modified for triangu-
lar matrices [14], [15]).

Suppose that at a certain time step k—1, the Aj;_)-matrix is reduced to Rjg_1-~
upper triangular and almost diagonal—with corresponding matrices Up_y) and Vig_1:

Ag—1) = Up—1) - Re—y - Vik_1)-

After appending a new row a[Tk], we have a decomposition of the type

Ay =

A Ape_ }
T
%kl

U[k—l] A R[k—l] T
= . L 1
[ 1 ] [ afy Vie-y |

The updating can then be carried out in the following three steps.
1. Matriz-vector multiplication and exponential weighting. The triangular factor
is multiplied by the weighting factor, and the input vector a is transformed to a
by making use of the current Vj;_;j-matrix:
Ry = A Ry,
~T T
Ay = 9y - Vie-1)-
2. QR updating with ay) in order to restore the triangular structure:

[ Uk R, T
A = | U 1][ ET}}V[H;

[ Ulc— ; T
:— (k1] 1]'Q[kl'[ O[lv]}v[k_lJ

[ Upe Lixn | T
= B Qe | T R i

U[k]

The QR updating is done by applying a sequence of Givens rotations (see, e.g., (8]
for details). Note that the QR updating does not alter the V-matrix. The U-matrix
does change, but it does not have to be stored anyway, as we are only interested in R
and V.

3. SVD stepsin order to obtain a diagonal matrix. This diagonalization procedure
consists in applying a sequence of plane rotations as follows (see {14] and [15] for
details):

Ry < Ry
Vi < Vie-1)

forj=1, ---,r
fori=1,--- ,n—-1



1018 M. MOONEN, P. VAN DOOREN, AND JJ. VANDEWALLE

T
Ry <= Op ;54 Biky - Ppay i
Vi = Viky - @)
end

end

The parameter i is called the pivot indez. The matrices O, , ¢ and ®; ; ) represent
rotations in the (i,i+ 1)-plane:

-
i—1
o _ cost; k) Sinb g
(2:3,K] —sinfj jx  cosfp ’
L [77_1_1
I
Ppi gk = COSOLip k] S0 Ol ,
o — S8 Q[; 5k COSP[ k|
L In,-z—l

where I; is an [ x [ identity matrix. The rotation angles 6, ; x and ¢y, ; ) should be
chosen so as to annihilate the (i,7+1) element in Ry;). while preserving Ry in upper
triangular form. Each iteration thus essentially reduces to applying a 2 x 2 SVD on
the main diagonal. The SVD procedure then consists in performing r sequences of
n — 1 such plane rotations, where the pivot index repeatedly takes up all the values
i =1---,n—1 Tt is well known that if use is made of outer rotations (see [23]
and [16]), exactly n such sequences constitute a double sweep for a cyclic ordering
(pipelined forward and backward sweep). Each rotation reduces the off-norm in Ry,
and Ry eventually converges to a diagonal matrix [6]. so that finally we will have

Ry = X,
Vik) = Vig)-

With the above procedure, the diagonal structure of R can be restored after each
update. With 7 = O(n) on the average, the operation count is O(n3) per update. In
practice, however, it generally suffices to keep Ry “close” to a (block) diagonal matrix,
instead of completely reducing it to a diagonal matrix in each time step. In some sense
(see §3) Vi is then “close” to V[i] as well, which. for subspace tracking applications,
for instance (ESPRIT, systems identification, recursive total least squares}, is the only
thing that matters. The number of rotations r(n — 1) in a certain time step can then
be fixed, turning an iterative algorithm into a seeminglv noniterative one. Of course,
the crux is then to show how only a few SVD steps after each QR update can restore
an acceptable approximation at every stage.

From now on, we make a fairly arbitrary choice and set r equal to 1, so that after
each QR update, the pivot index takes up all values » = 1.---.n — 1 only once. In
this case, both the QR updating and the rotations following the update take O(n?)
operations, which, e.g., results in an elegant parallel implementation [18]. It should
be stressed, however, that all of our further results can straightforwardly be recast
for other choices for r. In §3, the problem is addressed of “how closely” the obtained
estimates then approximate the exact decomposition - in particular for the subspace
tracking problem—and for this particular choice for r.
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For the time being, the updating procedure is thus summarized as follows (with
n — 1 rotations after each update).
Initialization

V[O] <~ Inxna
R[O] <~ Onxn

Loop
fork=1, - ,0
1. input new measurement vector aj
4k <= afy - Vie-1)
R[k—l] = )\ 4 R[k—l]
2. QR updating

R Ri_
e )

ajy

Ry < Ry,
Vik) < Vik-1)
3. SVD steps
fori=1,--- ,n-1

Riy < O 4y Rixy - Bpikys
Vik) <= Vik) - ®rik)

end
end

2.2. Version 2, including reorthogonalizations. In view of round-off accu-
mulation (finite precision arithmetic), the above updating algorithm has one short-
coming. The stored matrix V is iteratively updated by orthogonal column transfor-
mations according to

Vik) < Vi) - @ik

While Vg, is orthogonal through the initialization, V) (k > 1) is probably not, due to
round-off. The deviation from orthogonality apparently grows linearly with k, as can
be verified experimentally. Keeping V|4 close to orthogonal is crucial, however, for the
overall error propagation stability (see §4). Including some kind of reorthogonalization
procedure is therefore indispensable. An efficient procedure that elegantly combines
with the updating scheme (e.g., on a systolic array [18]) can be constructed as follows.
Suppose two vectors z, and z, are almost orthonormal, in the sense that

llzpllz = 1+ O(e),
||$q||2 =1+ 0OC(e),

:vg ~zq = O(€),
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TABLE 1

Number of sweeps H HXT - X - g :l

1.7335e--01
2.0767e- 03
1.5657e--06
0.6442e- 13

| WO DO =

where € is a small number. We can easily verify that a (symmetrized) Gram—Schmidt-
like transformation

T
1 1, Ty
TN :
* * _ 3
[ap g ]=Ta 2] LT
_ Ty Ty 1
2 flegll

yields two new vectors, which satisfy

Hz;Hz =1+ O(€?).
HIZH2 =14+ O(€).

Note that an exact Gram-Schmidt orthogonalization is computationally somewhat
more involved, while on the other hand it yields only marginally better results.
For an n x n close-to-orthogonal matrix

X:[.’El ZIo Zl'n;.

we can straightforwardly apply the 2 x 2 transformations in a cyclic manner. One
(forward) sweep consists in computing transformations as tollows.

Loop
forp=1--- ,n—-1
forg=p+1, -+, n
L _IT'Iq
[ 2
[2p 2 ][z 24 ] ‘rzll, .
T T
end
end

The above algorithm is seen to be a one-sided Jacobi-tvpe procedure with nonuni-
tary transformations, or two-sided if we consider the effect on X7 - X. Furthermore,
if |XT - X —1I|lp = O(e) for some small €, the 2 x 2 transformations are € close
to Ioxg. By making use of this, we can easily prove that the procedure converges
quadratically, in other words, that [ X7 - X — I)|p = O(€?) after one sweep. It suffices
to copy Wilkinson's proof [24] with appropriate substitutions. In Table 1 we show
the effect of the procedure on a random 10 x 10 X-matrix (i.e., not even close to an
orthogonal one).
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Let us now return to the SVD updating algorithm. If we choose
X=V

and interlace the above reorthogonalization with the updating procedure, the former
no longer converges quadratically, due to the updating transformations X < X - ®y; y
that clearly change X7 - X as well and thus interfere with the reorthogonalization.
However, if we choose

X=vT

in other words, if we apply the reorthogonalization scheme onto the rows of V, the
updating transformations do not change X7 - X, at least not for (local) infinite pre-
cision arithmetic (X7 - ®y; - <I>[7;k] - X = XT . X), so that apparently both processes
do not interfere. In finite precision, these processes of course do interfere. Both the
updating transformations and the reorthogonalization steps introduce new round-off
errors, which have to be annihilated by the reorthogonalization itself. On the other
hand, the reorthogonalization (slightly) changes the V};) matrix in an abitrary manner
with respect to the data. These issues will be analyzed in detail in §4.

The updating and the reorthogonalization can now be interlaced. For instance,
we could alternately perform one updating rotation, one reorthogonalization step, etc.
The body of the inner “for”-loop in the updating algorithm then becomes

3. SVD steps and reorthogonalization
fori=1, - ,n-1

Ry < O 4y - Ry - Ppogy
Vik < Thik) - Vik) - Pl

end

where Tj; k) is a reorthogonalization in the (p[,;,k],q[i,k])-plane. Here the number of
pairwise reorthogonalizations per update equals the number of updating transfor-
mations. Again, this is an arbitrary choice, which in some cases might be overly
conservative. Further results on the obtained accuracy can however easily be recast
for other choices. Furthermore, e.g., in a systolic array implementation [18] with a
separate V-array and R-array, the above additional reorthogonalizations do not in-
troduce any computational overhead, but rather a load balancing between the two
arrays, so that there is no point in reducing the number of reorthogonalizations.
Finally, in view of efficient (parallel) implementation (see also [18]), the cyclic
reorthogonalization can of course be reordered, by making use of additional permu-
tations (outer transformations) and a pipelining of the forward and backward sweep
(so that pj; k) = 4 and qp; %) = i + 1). For the time being, however, we do not pursue
this, as it would considerably complicate our notation in the subsequent analysis.

3. Subspace tracking. In this section, we analyze the performance of the SVD
updating scheme, when applied to subspace tracking. We assume that all computa-
tions are performed with infinite precision, so that the reorthogonalization is super-
fluous. Round-off errors introduce second-order effects, which for the time being are
left out for the sake of simplicity.
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First of all, a data model is put forward, which applies to popular signal processing
applications, such as direction finding (ESPRIT. MUSIC) and system identification
[17]. For such applications, an SVD step is used to separate a signal subspace from
a noise subspace (see below), corresponding to certain submatrices of V[Z] Further
information (e.g., the angles of arrival for ESPRIT) can then be computed from the
knowledge of these submatrices only. As for an approximate SVD with an approxi-
mately (block) diagonal triangular factor R, the corresponding subspace separation
error is shown to be related to the norm of some off-diagonal block of cross terms in
the triangular factor. The effect of the SVD procedure on this norm is investigated
and finally, all these are applied to the updating problem.

3.1. Data model. The data model we consider only assumes that at each time
step k the data matrix Ay, as defined in §2 has a fixed number d of large singular
values

O'i[k], i= 1,---.d
and a remaining number of small singular values
Tiyr t=d+1---.n

The ratio

Tdjx

SNy =
W=

can be interpreted as a signal-to-noise ratio, and is assumed to be large, e.g., at least
10 or 100, and lower bounded by a constant SN

SN[k] > SN.

The corresponding submatrices Vs, and Vag,) in V{7, define the signal subspace R(stk])
and the noise subspace R(ank])., orthogonal to R(stk,} ).

As we consider time-varying systems, we need to define a measure of time variation
one way or another. In view of the applications at hand. it is indicated to make use
of the canonical angles 8; between R(stk_l]) and R(stﬂ). the cosines of which are
the singular values of a corresponding matrix product [10]

T
cosf; = ai{Vs‘[’kkl] - stk] }.
We then define the time variation from time step k& - 1 to time step k (for a

prespecified choice for d) as the distance between the corresponding signal subspaces,
which in turn can be defined in terms of the above canonical angles as follows:

def .. o o
TVipimpg = dist{R(Vs,_ ). R(Vs')))

The reason for this will become clear in what follows.
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3.2. Tracking error. The adaptive SVD algorithm of §2 at each time step stores
a triangular factor Rj) of the data matrix Ay, as well as an approximation V} for
the matrix of right singular vectors. Suppose that at a certain time step k, Ry and
Vix) can be split up as follows:

_ RS[k] Rsn[k]
R[k] B [ 0 Rn[k} ’

Vi = [ Vs Vg ] -

where ||Rny|| and || Rsny|| are “small.” For the time being, we thus assume that at
time instant k, the large diagonal elements in R occupy adjacent positions, as this
considerably simplifies our further analysis. We return to this in Remark 2, below.

It is now clear that Vs provides an approximate basis for the signal subspace.
We can then define the tracking error at time step k as follows:

def . o
TEp E dist{R(Vsw), R(Vsi))}-

Our aim is 1o derive a useful estimate for the tracking error TE' in terms of the time
variation T'V. In order to obtain this, we can make use of a well-known property,
relating the tracking error to the distance of Ry from a (block} diagonal matrix, as
follows. If € denotes the Frobenius norm of the matrix with cross terms

€ = || RsnyllF
and ¢ is the gap between the singular values of Rsj) and Rnyy.
6 = Omin{ B[} — Omax{ By}
and furthermore if
2e < b,

then it is has been shown [3], [22] that
€
TE 2-.
(k] < 25%

In other words, the tracking error is proportional to the norm of the block of cross
terms in R

3.3. Kogbetliantz’s algorithm. Suppose we would now perform a few sweeps
of Kogbetliantz’s SVD algorithm (without any QR updates!) and then again check the
norm of the cross terms. Classical convergence results for Kogbetliantz’s algorithm
turn out to be useless in this respect. Linear convergence hounds are extremely
conservative [5], [6], [11], [13], while ultimate quadratic convergence results do not
apply to the initial convergence, where the off-diagonal elements in Rsj; can be very
large {3], [19], [24]. Jacobi-type algorithms are considered extremely fast. but for
the general case no estimates are available whatsoever for the speed of the initial
convergence. For our specific subspace separation problem. however, it is possible
to derive a useful estimate for the reduction of the cross terms in each sweep. In
Appendix A, the following rule of thumb is obtained.

If the cross terms are small compared to the gap and the large diagonal elements
are grouped, each double sweep in Kogbetliantz’s SVD algorithm reduces the cross
terms by a factor 1/SN2.
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TABLE 2
[ Number of sweeps H € ‘}
2.3145e—02
2 0.7311e—06
4 0.6931e—10
6 0.7499e—14

Our derivation relies on a few simplifying assumptions. in order to avoid tedious
mathematics and overly conservative results. Our results, however, are practical, and
easy to verify by experiments.

FEzample 1. For a triangular factor R =

3.7047 0.4920 0.4312 1.1988 0.8095 —0.0051 -0.0032 0.0009 —0.0019 —0.0014
3.0436 1.0955 1.1852 2.5027 0.0089 —-0.0018 (.0038 —0.0093 —0.0061

2.8701 1.3763 0.6623 0.0050 0.0026 0.0024 0.0013 —0.0020

1.4314 1.1373 0.0080 0.0027 (0.0058 0.0055 0.0008

2.5905 0.0017 —0.0006 -0.0021 0.0070 0.0042

0.0133 0.0028 0.0031 0.0003 0.0072

0.0130 0.0011 0.0027 0.0004
0.0057 0.0031 0.0035

0.0089 0.0047

0.0056

with singular values

o = 5.4467,3.5381, 2.7569. 1.9772. 1.1424,
0.0173,0.0126, 0.0104, 0.0051. 0.0043.

SN is approximately equal to 100. If the SVD procedure were carried out as such, the
cross terms would be reduced much faster than could be predicted with the above rule
of thumb. As the convergence soon turns into (much faster) quadratic convergence. the
1/SN? reduction of the cross terms will not be visible. Therefore, it is more instructive
to see what happens if in each sweep only the cross terms are being annihilated, while
all other rotations are skipped (corresponding to Part (b) in Appendix A). Now the
1/SN? reduction is much more clearly displayed (Table 2). Note, however, that in
our updating algorithm, all the rotations are performed. such that the cross-term
reduction is indeed much faster. The point is that no (sharper) bound is available for
this faster convergence. Also, as far as our algorithmic description is concerned, the
sizes of the subblocks thus need not be identified whatsoever (see also Remark 2).

From the above rule of thumb, we can straightforwardly infer an estimate for the
reduction of the subspace separation error. As this latter is bounded by the norm of
the cross terms || Rsnyllp, we can conclude that each double sweep in Kogbetliantz's
SVD algorithm reduces the subspace separation error dist{R(Vs[k]),R(stk])} by a
factor (1/SN?).

Ezample 2. Similar to the experiment in Example 1. we checked the reduction of
the subspace separation error per double sweep (for three successive double sweeps),
for different triangular matrices. The matrix dimension n ranges from 10 through 50,
while the singular value spectra were chosen to be
= F_’E_l’....zl.

2°2
1 -1 1
SN’ %Z-SN*

a

N3

[T
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for SN = 10 and SN = 100. For all cases, the reduction factor is seen to be ap-
proximately equal to 1/SN?. Apparently, the matrix dimension has little influence
on this.

3.4. Subspace tracking. Let us now return to the SVD updating algorithm,
applied to subspace tracking. In the adaptive algorithm, a pipelined double sweep
(n x n — 1 rotations) is interlaced with n QR updates, one after each series of n — 1
rotations. If all these QR updates were performed after the double sweep, we would
end up with the following inequality:

dlSt{R(Vs[k+n} ),\ R(stk+n] )}

1 . o . o 70

The “<” sign is due to the fact that the different terms in the right-hand side can
partially eliminate each other. The first term corresponds to the reduction of the sub-
space separation error in a double sweep (n time steps). The second term corresponds
to the time variation from time instant k to time instant k& + n.

If the QR updates are interlaced in the double sweep. the subspace separation
error is expected to be even smaller, as time variations can then immediately be taken
into account and corrected correspondingly. Although we can easily think of set-ups
where the above statement does not even hold, in general it is confirmed by simulations
(see below for an example). The above inequality can therefore be assumed to provide
a reasonable estimate for the SVD updating scheme as well.

Furthermore, as we assumed that SN is fairly large (e.g.. 100). it follows that

dist{R(Vsjk+n)), R(Vsjkynp) } < dist{R(Vsjey). RAVsly o))}

"~

TE(k1n| TVik| ek +n

In other words, we can conclude that the tracking error is bounded by the time
variation in n time steps.

A few remarks on the above derivations and results are as follows.

Remark 1. The above results were derived for the case where only one sequence
of n — 1 SVD rotations is performed after each QR update (r = 1 in §2). For other
choices for r, we would obviously end up with

TEp+2) < TV s 2

as one double sweep is then performed in Z time steps. In other words, the tracking
error is inversely proportional to r.

Remark 2. Throughout the computations (in Appendix A). we have assumed
that the small diagonal elements in the triangular factor occupy (circularly) adjacent
positions (cf. the configurations in Appendix A after each sequence of rotations). Note
that a similar assumption had to be made for the proof of the quadratic convergence for
matrices with pathologically close or repeated singular values [3]. {24]. In an adaptive
scheme, obtaining such a set-up is sometimes merely a matter of careful initialization
(once the small elements are grouped, they do not change their “affiliation,” at least
not for slowly time-varying systems). Furthermore, it is observed (by performing
simulations) that even when the large and small diagonal elements are not grouped,
the tracking error is still bounded by the time variation in n time steps. In other
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TABLE 3
[ i n =10 [ n =20 ! n=50 |

2.8100e — 02 2.0356¢ - 02 1.8847¢ — 02

SN = 10 8.2947¢ — 05 8.6065¢ — 05 5.8207e — 05

- 3.4249¢ — 07 5.6355¢ - 07 4.2585¢ — 07
1.4534e — 09 3.7391e — 09 3.5933¢ — 09

2.0213e — 02 2.01087 — 02 1.9357e — 02

4.7201e — 07 5.8845¢ — 07 %.9264e — 07

SN =100 2.3465¢ — 11 3.5926e — 11 7.4129¢ — 11
1.1801e — 15 2.6241e — 15 6.9677¢ — 15

words, this latter bound seems to be conservative enough. so that it applies to the
(disadvantageous) “nongrouped” case as well.

Remark 3. The above derivation particularly applies to cases where the signal-
to-noise ratio is fairly large (e.g., 100 or more). In practice. however, it is observed
that the obtained rules of thumb deliver fairly reasonable estimates for even smaller
values of SN (e.g., 10; see also Table 3).

Remark 4. For large values of the matrix dimension. it can be expected that
the performance slightly declines, much like it has been observed that the number
of necessary sweeps in a classical SVD procedure is slightly larger for large matrices
(e.g., n > 100). In these cases, we can easily double or triple the number of rotations
after each QR update accordingly. Strictly speaking. the computational complexity
of the updating algorithm could then become O(n?T*). where « is (much) smaller
than 1.

The following example from systems theory illustrates the above results.

Ezample 3 (adaptive system identification). Suppose we are given a simple first-
order time-varying system, with state space equations

27
.’[[k-+1] = .8-cos mk . J‘[k] + ll[k.].
Yk = Tik)»

where u]. Y[x), and x[x) are the input, output. and state at time instant k. For every
arbitrary input sequence, the output can be computed accordingly, by making use of
the state space equations. Conversely, the state space model at a time instant k can
(approximately) be computed from the input-output data. by making use of various
system identification techniques. In [17], it has been shown how a state space model
can be computed from the following exponentially weighted block Hankel matrix:

A1) (2] cea
2[2) 2[3] “[r+1)
2[3] 2[4) <h+2]
Ay = Wiy : : o
Zlk—i]  Rlk—i+l] 7 Tik-1]
L 2lk—i+1)  Ze—i+2] 0 Fk

= uw v |
Wik = diag{\" =/, AF 71 AL\

For a good choice of A, the “signal” rank (i.e.. the number of singular values larger
than the noise level) of this weighted block Hankel matrix equals i+ 1 (¢ is the number
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Fic. 1. (a) Tracking error (lower curve) and time variation {upper curve) versus time (A =
1 —-275%). (b) Original pole (solid line) and identified poles (dashed and dotted lines) versus time
(A=1-275),

of columns with input data, 1 is the system order). The state space model at time
instant k can then essentially be computed from the (i+1)-dimensional space ’R(Vs‘[’k])
(see [17] for further details). So, first, the aim is to track the signal subspace of Ay.
where in each time step a new row is appended. An adaptive svstem identification
can be performed, by making use of either an exact SVD scheme (in other words.
with a complete computation of the SVD at each time instance). or an adaptive SVD
scheme with, e.g., n — 1 rotations after each QR update. The parameter i was set
equal to 5, so that the matrix size equals 10, with a six-dimensional signal subspace.

Figure 1(b) shows the original system pole 0.8 - cos((27/2000}k). solid line, to-
gether with the identified pole both for the exact scheme (dashed line} and the adap-
tive scheme (dotted line almost coinciding with the dashed line). The exponential
weighting factor A was set equal to 1 — 27°. Figure 1(a) shows the time variation in
n = 10 time steps TV[x)—~[k410] (solid line), together with the tracking error at each
time instant TEy) (dashed line). Clearly, the latter generallv remains smaller than
the former, confirming the above rule of thumb. Finally. note that the time variation
of the data nicely reflects the time variation of the underlyving svstem. viz., the system
pole.

In Fig. 2, the same quantities have been plotted for a different choice for the
weighting factor A = 1 — 278 A different choice for A is seen to hardly influence the
time variation and the approximation error. As for the identified pole. the exponential
weighting is seen to introduce a kind of time delay, which increases when A approaches
1. The adaptive scheme, however, still delivers quite the same svstem pole as the exact
scheme.

4. Error analysis. In the previous section, we analyzed the performance of
the updating algorithm in infinite precision arithmetic. resulting in an upper bound
for the distance between Vsy) and Vsok,]‘ In finite precision arithmetic, there are a
few sources of additional error. Apart from round-off. of course. there is also the
reorthogonalization scheme. Both processes change the V'-matrix in an arbitrary
manner with respect to the original data. As we are onlyv interested in the right
singular vectors, together with the singular values, we can definc a relevant error
matrix in this respect as follows:

Ay = Afyy - Ay = (Bpeg - Vi)™ - (Bpg - Vi)
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Fi1G. 2. (a) Tracking error (lower curve) and time variation (upper curve) versus time (A =
1-—278). (b) Original pole (solid line) and identified poles (dashed and dotted lines) versus time
(A=1-278%).

This error matrix tells how far the information stored in Ry, - VkT_ has drifted off from
the original data. If Ay is small, the singular values of Ry w11f be close to those of
Alg). Furthermore, for large values of SN, the signal subspace of Ry - V[Z] will then
be close to the signal subspace of Af;.

In the sequel, upper bounds for the propagation of Ay, are derived, resulting in
a first-order difference equation

Apy =2 Ay + 0By

where ) is the exponential weighting factor (A < 1). As long as V} is close to an
orthogonal matrix, 8 E}y) contains only bounded local errors. independent of Ap_yj.
In other words, the norm

ALl F def Vi - Vil = Il e

(where I is the identity matrix) should be kept small. in order to guarantee stability
of the error propagation. Therefore, we first derive an estimate for the above norm
by investigating the reorthogonalization scheme of §2. By making use of this, we
then derive the above error propagation formula, showing that the overall updating
procedure is stable.

4.1. An estimate for ||V} - V[{] — Il|p. In finite precision arithmetic both the
updating and the reorthogonalization steps introduce new errors in the stored V-
matrix. On the other hand, the reorthogonalization itself annihilates accumulated
errors up to machine precision. If the number of reorthogonalizations in the updating
scheme is chosen to be equal to the number of SVD rotations, one double sweep in
the reorthogonalization procedure is performed after each n time steps. If we let ®(a¢)
and Tjac) denote the accumulated right and left transformations applied to V' in time
steps k through k +n — 1, we have

Vik+n-1) = Bl(Tjac) - Vie-1 - Pfacy)
= Tiac) - Vik-1) - @lac) + #Viac),

where 6Vac] is an input of local errors in these time steps. and fl(-) refers to the com-
puter result after a sequence of transformations (in the right order). For a first-order
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analysis, the reorthogonalizations can be considered as orthogonal transformations,
so that Gentleman’s analysis [7] applies. The double sweep {with SVD steps and re-
orthogonalizations) then consists of 4n —4 different “stages.” Each such stage consists
of the stmultaneous application of disjoint transformations. This then results in an
approximate upper bound for the local errors on V in one double sweep [7):

[6Viacl[F < (4n —4) kv e (1 +kve)™ ™" | Vilp
~4n-ky € [|[V]F,
where € is the largest number such that fi(1 + €) = 1 (relative machine precision)
and ky is a constant depending on the specific implementation of both the Givens
rotations and the reorthogonalizations.
From the formula for Vjz., 1), we can derive a formal description for the error
build-up process as follows:
Viesn-11* Vieen-1 = Ttac) Vie-11 Plac) - Plac) Vi) - Tag
+Tiac) Vie-1) - @pac) - ¢Viae
+5V[ac] : ‘I’[I;LCJ ’ V[L 1 T]fl(
+0O(€?),

WViksen—11 - Vigan_1 = IllF < 1 Trac) - Vie—1y - Vik 1y Thae) — Ille

|AIx g n-1)llF nac; 1A k-l r
+2- |8Vig llr + Ole?).

where 7a¢] is a factor describing the effect of the reorthogonalization steps.

As long as || Aljx_y|lF is small (< €!/*), it is reduced to machine precision by the
double sweep in the reorthogonalization scheme. The input of local errors, however,
interferes with this reorthogonalization, and this introduces additional errors of the
same order of magnitude. In conclusion, we end up with

1AL sn-1llF < macy  1AIk—1)llr +2 - |6Viag I + OL€?)

O(n€)
~ O(ne)+8n-ky € ||Vir
~ O(ne) + 8nyn - ky - €
~k;-nyn-e,
which is then a bound for [|Aljyllr for all values of k. The reorthogonalization

procedure thus keeps the stored V-matrix close to an orthogonal one.
4.2. Error propagation formulas. First of all, for the sake of conciseness, let
us assume that there exists an upper bound ||R||r such that for all k.
IR llr < VnllRpglla < IRl e
127 < vrll Bl < [ BHE
\/H||a[k]||2 < |RF.

The error matrix at time step k, viz. Ay, can then be computed from the error
matrix A1) at time step k — 1 as follows.
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In a first step, appending a new row together with an exponential weighting
(weighting factor A\) can be described as

ARy ViEy

0
Vikep + ;
a%;] k=1, [ _a[j;c] RAVIES) }

1
6E[k]

where 6E1k, is an “algorithmic” error due to Vj;_;) not being orthogonal. Here we can
use the upper bound for A of the previous section:

H5E[lk]ll2 < NATk—yllz - lagllz < krnvne - llagll2 < krne - ||R||F.

In a second step, additional round-off errors are introduced by the explicit com-
putation of

Ry 1]=ﬂ{/\'R[k 0} =X Ry_yy + dRpe_y),
a[k] —ﬂ{a[k] ‘/[k 1]}—-0. ‘/[k 1) +(5(1 (k]*

Substituting this in the above equation, we obtain

A R 1 [k 1]
(l
(k]
R —6R_ ) 0
:[ L } Vik- 11+5E[k1+[ g }'V!Lu*{ _8aT } Vi)
k) [k] y
53, 453,

with first-order upper bounds (see [25])
|'5E2k]||2 < ||6E[2k]||F Se- ||R[k 1]HF <e-||R[F.
6B ll2 < ne- llagllz - IVik-ylle < nv/ne - lapll2 + O(€®) ~ nel(R| r.

In a third step, orthogonal row transformations are performed for the QR update,
introducing a round-off error 6 Rjxj. The rotation angles are chosen such that the last
row of the computer result transforms to zero:

R Ry Ry ;
(oo [ i [ ]t

By making use of this, we obtain

/\'Rk',— -VT_ . T
=1 Vie-a) | Q) <Q[7;c]' [ s D Vi + 0By + 0Efy + 0Ef,

Lk)

= R[kl SEL + 6E2 4+ 6E3

=Qmw- | Vi) + 0Bl + 0 Efy (k)
—Quy - 6Ryy - Vii_y,

4
6E[k]
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Following the error analysis in [7],
NEGll2 < BB liF < kae-n(l+ kae)" - | Ruyllr ~ kee-n- | Rl r,

where k¢ is a constant (depending on the specific immplementation of the Givens ro-
tations), and n is the number of different stages for one single QR update.

Finally, in a fourth step (SVD steps + reorthogonalizationsj. a sequence of left
and right transformations is applied. If we summarize these into left transformations
Ok and T, and a right transformation @, we can proceed as follows (introducing
round-off errors 6 Ry and 6Vj;):

R[k] — ﬁ{@[j,;] . k]} = J (I)rky + »R"\
Vm=ﬁUM'W~w¢M}:ﬂHW%4r?H*“M
= Vie—y - @) + (T = 1) - Vik-y - iy~ 8V
and
O - (Ofy - By @
0
+8E} + 83 + 6B} + 0E},

O - Rik —04 #Ry
:Qw.<[ H011}+[ M [1})

T Ty
(Wm—éW] %HW n(Te = 2007
1 4

:Q[k]'[ Ik'J)} (@4 Vii_y)

O - Ry
”:Qikl'[ []0 H]V[E
1 2 3 4
+OE Gy + 0Ey + 6Ey + 0 Ey,

— O -8R .
+Qm‘[ Ch [H}Ahh

5
5E(H

O - R ,
+ Q- [ [k]o [k] J oVl

éEE’H
—O - Ry o
+QM'[ “ []}QM‘HiuWﬂM—UT

SET,
+0(€?).
Again applying the error analysis in [7] results in
16Efyll2 < 16EG I
~ kge - (2n — 2)(1 + kge)™ ™ Ry | ¢
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~ kge - (2n — 2)||R| F,
16EGll2 < 6B lIF
~ kge- (2n — 2)(1 +kae)™ =% - Vi llr - || R ll2
~ kge - (2n - 2)v/n - | Ryl
~ kge - (2n - 2)||R||F-

The number of stages in the upper bounds for 6E[5k] and (SEFjCi equals 2n —2,asn—1
rotations are applied both to the left and to the right.
As for 6E[7k], we can estimate an upper bound as follows:

||5E[7k]||2 < Ty — Il F - | Ry ll2-

Note that 6 7k represents an additional error which is introduced by the reorthogona-
lization scheme. The reorthogonalization indeed changes the V-matrix in an arbitrary
manner with respect to the original data, and therefore contributes to Af;. We can
easily check that [|Tjx) — || r must have an upper bound similar to ||Vig V) — Il|F, so
that finally

||5E[7k}||2 < kr -nyne - [[Ryg 2
< kr - ne||R||F.

Adding all the above upper bounds, we obtain

A B - Vii_y

a[k]

o
:Q[k].[ 2N 1}.%

1 2 3 4 5 6 7

8E.T
with
I8E4 " l2 < (ky-n+ ko)e - || R g
Multiplying the left- and right-hand sides with their transpose now results in
A (R - Vi)™ (Ri—) - V1) + e - ayy = (R - Vi)™ - (B - Vi) + 6B,

where
= Ou - R T
8By = (8B5")" - <Q[k1' { oy } '%)
O - R r
+ (Q[kl' [ ["]0 (k] ] V@) (OERTT) + O(€%)

with an upper bound

16 By | 7 2= 20| Ryl 7 - OB 2
2 (k1 -n+ ko)e - | R||%-
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Substituting the definition of A, results in

A Ay Aoy = X% By +app - afy = (Bpg - Vil - (R - Vi) + 6B,
Afyy - Ay = A%+ Aoy = (R - Vi) " (g - Vi) + 6B,

and finally
A[k] =2 A[kAl] + (5E[k].
or if we use norms,
1Ak llF < A Ak-1)llF + 16Ew | 7
<A Aoy llF + 20k -+ ka)e - |[R1E

The first term, A? - A,_1), represents the error propagation. which is stable as
A < 1. The second term is an upper bound for local errors. If we assume that the
weighting factor is constant, we finally obtain (for all values of k)

2(ky - n + ka)

Rl e

AR lF <

or alternatively (a kind of relative error formulation),

(R - Vi)™ (R - Vi) — (R - Vi)™ - (Rpsg - Vil lie _ 2k n+ k)
| R||% 1=

In conclusion, the overall SVD updating scheme is found to be stable, if an expo-
nential weighting is applied, with weighting factor A < 1. and if a reorthogonalization
procedure is included, which keeps the stored V-matrix close to orthogonal. The ob-
tained upper bound for the error [[Ap||F is clearly overly conservative, as it consists
of an accumulation of several worst-case upper bounds.

5. Conclusion. An SVD updating procedure was constructed as a combination
of QR updating and a Jacobi-type SVD algorithm applied to a triangular matrix. As
for subspace tracking problems, it was shown how only verv few SVD steps after each
QR updating can restore an acceptable approximation. Furthermore. the updating is
shown to be stable when supplemented with a Jacobi-type reorthogonalization scheme.
A systolic array for this updating algorithm is developed in [18!.

Appendix A. Let us assume that the initial configuration is as follows (we con-
sider a small 6 x 6 example, from which the results for the general case obviously
follow):

-
_ | Ry Rsng
R[k] - L 0 Rn[k}
i Tfl Tf2 ng |€14| |€15 Llr.‘
rgz Tézg |€24 | |€25 } (Ezﬁ ‘
_ o (G [on) [Fu)
7‘?4 rfn 7"47%
7"5?5 r{lr
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Time indices are omitted for brevity. We assume that
£ Kb,
where
e = | Rsmpl
is the Frobenius norm of the matrix with cross terms. and
6 = Omin{ Rk} } — Omax{ Bnye) }

is the gap between the singular values of Rsy) and Rny). As these are then known
to be (e2/6)-close to the singular values of R [3], we end up with

8 =~ Omin{ Ry} for SN > 1.

The aim is to investigate the effect on ¢ of one cvclic-by-rows sweep in Kog-
betliantz’s SVD algorithm (modified for triangular matrices) This essentially consists
of a number of 2 x 2 SVDs on the main diagonal, where the pivot index takes up the
values (see [15] and [23] for details)

i=1,2,3,4,5
1,2,3,4
1,2,3
1,2
1.

As a reminder, each 2 x 2 SVD can be described as

Tii 0 - siné cos @ Tid T4 sin ¢ cos ¢

0 7Tit1,i+1 cosf —sinf 0 7iv1a41 cos¢p —sing |’
where

2741541 " Tiasl

tan 20 = 5 5 .
T T Tiklitl T Tias

tang = Titl,i41 - tand + 1,4

4,5

(for the sake of clarity, we prefer to use inner rotations + permutations, instead of
outer rotations).
First of all, we can slightly reorder the 2 x 2 transformations as follows:

Part (a){ LT 1’2
i = .,.3,4)5
Part (b) 52,3,4
1,2.3

Part (c){i -
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Part (a) corresponds to rotations within the (approximate) signal subspace, re-
ducing the off-norm in Rspy;. Both ¢ and é remain unchanged. so that for the time
being, these transformations are irrelevant.

Part (b) corresponds to annihilations of cross terms. and needs further investi-
gation. Referring to the initial configuration (which is basically not changed in Part
(a)), let us first remark that the diagonal entries in Rspy) satisfv

o > Omin{ Rsj}

1 —

(as Rsp) is triangular), while on the other hand the diagonal entries in Rng,) obviously

satisfy
rlt < Omax{ B}

i =

We easily verify that the above upper and lower bounds remain valid throughout the
computations in Part (b) (rS elements always increase: r' elements decrease).
The first series of transformations, where the pivot index takes up the values

i=..345
turns the initial configuration into
o
S
n n n 5311
T3z Tag T3 =

n N
T4q T45 54@

8
rée |

(iteration indices are left out for the sake of clarity: subscripts 7 refer to row and
column numberings in the full R-matrix).

When i = 3, the pivot element €34 is e-small, from which we can estimate the
rotation angles as follows:

. Umax{Rn[k]}
f~tanf ~ ——————— . Ofe).
o=y Ry O
sin ¢ ~ tan ¢ ! O(=)
>~ ny >~ ————— - £
Umin{RS[k]}

From the fact that 6 (row transformation) is particularly small. it follows that the
pivot for i = 4 is e-small as well:
n . Tmax { K o }
€35 €088 —ry5 -sind ~ O(e) + omax{ Ry} - — 5 7 Ole)
a Rv“‘[k-}}

nin {

~ O(e).

Finally, from a similar reasoning it follows that the pivot for ; = 5 is also e-small.
The estimates for tan § and tan ¢ therefore hold for i = 3 as well as for i = 4,5.

From the estimates for the rotation angles, we can estimate the magnitude of r/’.
€15, €;; after the first series of transformations.
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Elements TZ} remain omax{ Rnj }-small, which follows from

n.
tj

Omax{ Bk} 9
— . O(e
ol {RS[k]} ( )

min

r;; - cosf + E,?j -sin @ ~ O(omax{ Ry }) +

=~ O(Omax{ Rny })-
Cross terms e}; are (¢/SN)-small, which follows from

* n s
€5 = E T, - Sing

k
~ Omax {Rn[k] }
" Omin{ Rsji}

0 ()

C'ross terms €,; remain e-small, which follows from

-Olg)

S .
€i5 = €45 +ZT“° - 8In ¢
k

Ol Rspillof)

~QO() +
( ) Umin{RS[k]}

~ O(e),

Of¢)

where we made an opportunist (but mostly fair) assumption, namely, that rj, =
O(|Rsik)lloff) < Omin{Rsp}. This corresponds to a certain degree of convergence
within Rsj, brought about by Part (a).

We can now repeat this reasoning for the second and the third series of transfor-
mations in Part (b)

i=.2,3,4
1,2,3.

in turn transforming the triangular factor into

n n n

Ta2 T23 T24 :
n n

33 T34 €35 |

-

™
™
v
m
N
o

L Te6 .

and

n * - - |
T22  T23 €24 €25 €26 |
n S
733 * " x o
€34 €35 €36
s
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where all cross terms €, are seen to remain (¢/SN)-small.

Finally, subsequent transformations in Part {¢) do not alter the norm of the

submatrix with cross terms.

As a main conclusion, we can state that the matrix with cross terms is (e/SN)-

small after the forward sweep. The backward sweep, returning the triangular matrix to
the original configuration, again reduces this norm by a factor 1/SV (where this time
the column transformations are particularly small). A double sweep thus corresponds
to a reduction by a factor (1/SN)Z2.
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