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A SYSTOLIC ARRAY FOR SVD UPDATING*
MARC MOONEN', PAUL VAN DOOREN?, AND JOOS VANDEWALLE'

Abstract. In an earlier paper, an approximate SVD updating scheme has been derived as
an interlacing of a QR updating on the one hand and a Jacobi-type SVD procedure on the other
hand, possibly supplemented with a certain re-orthogonalization scheme. This paper maps this
updating algorithm onto a systolic array with O(n?) parallelism for O(n?) complexity, resulting in
an O(nP) throughput. Furthermore, it is shown how a square root-free implementation is obtained
by combining modified Givens rotations with approximate SVD schemes.
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1. Introduction. The problem of continuously updating matrix decompositions
as new rows are appended frequently occurs in signal processing applications. Typi-
cal examples are adaptive beamforming, direction finding, spectral analysis, pattern
recognition, etc. [13].

In [12], it has been shown how an SVD updating algorithm can be derived by
combining QR updating with a Jacobi-type SVD procedure applied to the triangular
factor. In each time step an approzimate decomposition is computed from a previous
approximation at a low computational cost, namely, O(n?) operations. This algorithm
was shown to be particularly suited for subspace tracking problems. The tracking error
at each time step is then found to be bounded by the time variation in O(n) time
steps, which is sufficiently small for applications with slowly time-varying systems.
Furthermore, the updating procedure was proved to be stable when supplemented
with a certain re-orthogonalization scheme, which is elegantly combined with the
updating.

In this paper, we show how this updating algorithm can be mapped onto a systolic
array with O(n?) parallelism, resulting in an O(n°) throughput (similar to the case
for mere QR updating; see [5]). Furthermore, it is shown how a square root-free
implementation is obtained by combining modified Givens rotations with approximate
SVD schemes.

In §2, the updating algorithm is briefly reviewed. A systolic implementation is
described in §3 for the easy case, where corrective re-orthogonalizations are left out.
In §4, it is shown how to incorporate these re-orthogonalizations. Finally, a square
root-free implementation is derived in §5.

2. SVD updating. The singular value decomposition (SVD) of a real matrix
Amxn (> n) is a factorization of A into a product of three matrices

T
Amxn = Umxn - E'n><'n . ann'
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where U has orthonormal columns, V' is an orthogonal matrix, and ¥ is a diagonal
matrix, with the singular values along the diagonal.

Given that we have the SVD of a matrix 4, we may need to calculate the SVD
of a matrix A that is obtained after appending a new row to A.

A 7T
A: [ aT } =Q(m+l)xn 'ann 'Lnxn'

In on-line applications, a new updating is often to be performed after each sampling.
The data matrix at time step k is then defined in a recursive manner (k > n)

Ak) . A(E-D) o ok T
a(k)T ] :Ulgxn‘znx)n'v( ) .

AR = [
Factor A(*) is a weighting factor, and a'® is the measurement vector at time instance
k. For the sake of brevity, we consider only the case where A*) is a constant A,
although everything can easily be recast for the case where it is time varying. Finally,
in most cases the U¥) matrices (of growing size!) need not be computed explicitly,
and only V(*) and =) are explicitly updated.
An adaptive algorithm can be constructed by interlacing a Jacobi-type SVD pro-
cedure {Kogbetliantz’s algorithm [9], modified for triangular matrices [8], [10]) with
repeated QR updates. See [12] for further details.
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Matrices eﬁ’” and <I>§k) represent plane rotations (ith rotation in time step k)
through angles 9§k) and ¢Ek) in the (i,i + 1)-plane. The rotation angles 9§k) and d)Ek)
should be chosen such that the (4,7 + 1) element in R(*) is zeroed, while R**) remains
in upper triangular form. Each iteration thus amounts to solving a 2 x 2 SVD on the
main diagonal. The updating algorithm then reduces to applying sequences of n — 1
rotations, where the pivot indez i repeatedly takes up all the valuesi =1,2,...,n—1 (n
such sequences constitute a pipelined double sweep [14]), interlaced with QR updates.
At each time step, R%) will be “close” to a (block) diagonal matrix, so that in some
sense V(%) is “close” to the exact matrix with right singular vectors; see [12].

Transformations Ti(k) correspond to approximate re-orthogonalizations of row vec-
tors of V(%) These should be included in order to avoid round-off error buildup, if
the algorithm is supposed to run for, say, thousands of time steps (see [12]). For the
sake of clarity, the re-orthogonalizations are left out for a while, and are dealt with
only in §4.

In the sequel, the time index k is often dropped for the sake of conciseness.

3. A systolic array for SVD updating. The above SVD updating algorithm—
for the time being without re-orthogonalizations—can be mapped elegantly onto a
systolic array, by combining systolic implementations for the matrix-vector product,
the QR updating, and the SVD. In particular, with n—1 SVD iterations after each QR
update,! an efficient parallel implementation is conceivable with (J(n?) parallelism for
O(n?) complexity. The SVD updating is then performed at a speed comparable to
the speed of merely QR updating.

The SVD updating array is similar to the triangular SVD array in [10], where
the SVD diagonalization and a preliminary QR factorization are performed on the
same array. As for the SVD updating algorithm, the diagonalization process and the
QR updating are interlaced, so that the array must be modified accordingly. Also,
from the algorithmic description, it follows that the V-matrix should be stored as
well. Hence, we have to provide for an additional square array, which furthermore
performs the matrix-vector products al - V. It is shown how the the matrix-vector
product, the QR updating, and the SVD can be pipelined perfectly at the cost of
little computational overhead. Finally, it is briefly shown how. e.g., a total least
squares solution can be generated at each time step, with only very few additional
computations.

Figure 1 gives an overview of the array. New data vectors are continuously fed
into the left-hand side of the array. The matrix-vector product is computed in the
square part, and the resulting vector is passed on to the triangular array that performs
the QR updating and the SVD diagonalization. Output vectors are flushed upwards
in the triangular array and become available at the right-hand side of the square
array. All these operations can be carried out simultaneously. as 1s detailed next. The
correctness of the array has also been verified by software simulation.

We first briefly review the SVD array of [10], and then modify the Gentleman—
Kung QR updating array accordingly. Next, we show how to interlace the matrix-
vector products, the QR updates, and the SVD process, and additionally generate
(total least squares) output vectors.

3.1. SVD array. Figure 2 shows the SVD array of [10]. Processors on the main
diagonal perform 2 x 2 SVDs, annihilating the available off-diagonal elements. Row

1 If the number of rotations after each QR update is, for instance. halved or doubled, the array
can easily be modified accordingly.
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F1c. 2. SVD array.

transformation parameters are passed on to the right. while column transformation
parameters are passed on upwards. Off-diagonal processors only apply and propagate
these transformations to the next blocks outward. Column transformations are also
propagated through the upper square part, containing the V-matrix (V’s first row in
the top row, etc.).

In this parallel implementation, off-diagonal elements with odd and even row
numbers are being zeroed in an alternating fashion (odd-even ordering). However,
it can easily be verified that an odd-even ordering corresponds to a cyclic-by-row
or -column ordering, apart from a different start-up phase [11], [14]. The 2 x 2
SVDs that are performed in parallel on the main diagonal can indeed be thought of
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F1G. 3. Modified Gentleman-Kung array.

as corresponding to different pipelined sequences of n — 1 rotations, where in each
sequence the pivot index successively takes up the values i = 1....,n — 1. A series
of n such sequences is known to correspond to a double sweep (pipelined forward +
backward) in a cyclic-by-rows ordering. In Fig. 2, one such sequence is indicated with
double frames (for ¢ = 1,...,7), starting in Fig. 2(a). In a similar fashion, the next
sequence starts off from the top left corner in Fig. 2(e). As pointed out in §2, the QR
updatings should be inserted in between two such sequences.

3.2. A modified Gentleman—Kung QR updating array. A QR updating
is performed by applying a sequence of orthogonal transformations ( Givens rotations)
[6]. Gentleman and Kung have shown how pipelined sequences of Givens rotations
can be implemented on a systolic array (see [5]). This array should now be matched
to the SVD array, such that both can be combined.

Figure 3 shows a modified QR updating array. While all operations remain un-
altered, the pipelining is somewhat different, so that the data vectors are now prop-
agated through the array in a slightly different manner. The data vectors are fed
into the array in a skewed fashion, as indicated, and are propagated downwards while
being changed by successive row transformations. On the main diagonal, elementary
orthogonal row transformations are generated. Rotation parameters are propagated
to the right, while the transformed data vector components are passed on downwards.
Note that each 2 x 2 block combines its first row with the available data vector com-
ponents and pushes the resulting data vector components one step downwards. The
first update starts off in Fig. 3(a) (large, filled boxes), the second in Fig. 3(e) (smaller,
filled boxes), etc. Furthermore, each update is seen to correspond to a sequence of
rotations where the pivot index takes up the values i = 1....,n. Both the processor’s
configuration and the pipelining turn out to be the sanme as for the SVD array.

3.3. Matrix-vector product. The matrix-vector product a’ -V can be com-
bined with the SVD steps, as depicted in Figs. 4(a)-(g). The data vectors aT are
fed into the array in a skewed fashion, as indicated, and are propagated to the right,
in between two rotation fronts corresponding to the SVD diagonalization (frames).
Each processor receives a-components from its left neighbor, and intermediate results
from its lower neighbor. The intermediate results are then updated and passed on to
the upper neighbor, while the a-component is passed on to the right. The resulting



358 MARC MOONEN, PAUL VAN DOOREN, AND JOOS VANDEWALLE

Fi1G. 4. SVD updating array.

matrix-vector product becomes available at the top end of the square array.

It should be stressed that a consistent matrix-vector product a - V' can only be
formed in between two SVD rotation fronts. That is a restriction, and it is worthwhile
analyzing its implications.

—First, the propagation of the SVD rotation fronts dictates the direction in
which a matrix-vector product can be formed. The resulting vector a, thus inevitably
becomes available at the top end of the square array. while it should be fed into the
triangular array at the bottom for the subsequent QR update. The a,-components
therefore have to be reflected at the top end and propagated downwards, towards
the triangular array (Figs. 4(e)—(p)). The downward propagation of an a,-vector
is then carried out in exactly the same manner as the propagation in the modified
Gentleman-Kung array (see also Fig. 3).

—Second, the V-matrix that is used for computing a” - V is in fact some older
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version of V, which we term V(¥ 2 For a specific input vector a'*'. this V{® equals
V=1 up to a number of column transformations, such that

k-1 _ ), q)(h),
where ®® denotes the accumulated column transformations. In order to obtain aik),
it is necessary to apply ® to the computed matrix-vector product

alF) — g7 Ly =1) — (BT ) )
e —

T
al®

These additional transformations represent a computational overhead, which is the
penalty for pipelining the matrix-vector products with the SVD steps on the same

2 One can check that it is not possible to substitute a specific time index for the “4.”
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array. Notice, however, that at the same time. the throughput improves greatly.
Waiting until V(*~1) is formed completely before calculating the matrix-vector prod-
uct would induce O(n) time lags and likewise result in an O(n~?) throughput. With
the additional computations, the throughput is O(n').

Let us now focus on the transformations in ®®) and the way these can be pro-
cessed. One of these transformations is, e.g., <I>(1k‘5) {see §2 for notation), which
is computed on the main diagonal in Fig. 4(a) (double frame). While propagating

T
downwards, the a®” vector crosses the upgoing rotation <I>(1k75) in Fig. 4(e). At this

point, this transformation can straightforwardly be applied to the available a(*h)T—
components. Similarly, one can verify that <I>(1k'74), <I>§k’3', <I)(1k_2), and <I>(1k‘1) are
applied in Figs. 4(h), 4(k), 4(n), and 4(q), respectively. The transformations in the
other columns can be traced similarly. In conclusion. each frame in the square array
now corresponds to a column transformation that is applied to a 2 x 2 block of the
V-matrix and to the two available components of an a'¥-vector. These components
are propagated one step downwards next. A complete description for a 2 x 2 block in
the V-matrix is presented in Display 1. Notation is slightly modified for conciseness,

and o and ¢ represent memory cells that are filled by the updated elements of the

aﬁb) -vector.

By the end of Fig. 4(p), the first a.-vector leaves the square array in a form
directly amenable to the (modified Gentleman-Kung) triangular array.

3.4. Interlaced QR updating and SVD diagonalization. Finally, the mod-
ified Gentleman-Kung array and the triangular SVD array are easily combined (Fig.
4(q)—(x)). In each frame, column and row transformations corresponding to the SVD
diagonalization are performed first (see also Fig. 2). while in a second step, only row
transformations are performed corresponding to the modified QR updating (affecting
the a,-components and the upper part of the 2 x 2 -blocks (see also Fig. 3). Again,
column transformations in the first step should be applied to the a,-components as
well. Boundary cells and internal cells are described in Displays 2 and 3.

Without disturbing the array operations, it is possible to output particular sin-
gular vectors (e.g., total least squares solutions {15]) at regular time intervals. This is
easily done by performing matrix-vector multiplications V"¢, where ¢ is a vector with
all its components equal to zero, except for one component equal to 1, and which is
generated on the main diagonal. The t-vector is propagated upwards to the square
array, where the matrix-vector product V -t is performed. which singles out the ap-
propriate right singular vector. While ¢ is propagated upwards, intermediate results
are propagated to the right, such that the resulting vector becomes available at the
right-hand side of the array. These solution vectors can be generated at the same
rate as the input data vectors are fed in, and both processes can run simultaneously
without interference.

4. Including re-orthogonalizations. In [12]. it was shown how additional re-
orthogonalizations stabilize the overall round-off error propagation in the updating
scheme. In the algorithmic description of §2, Tl(k) is an approximate re-orthogona-
lization and normalization of rows p and ¢ in the V-matrix. The row indices p and
q are chosen as functions of k and ¢, in a cyclic manner. Furthermore, the re-ortho-
gonalization scheme was shown to converge quadratically. In view of efficient parallel
implementation, we first reorganize this re-orthogonalization scheme. The modified
scheme is then easily mapped onto the systolic array. The computational overhead
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turns out to be negligible, as the square part of the array (V-matrix) so far remained
underloaded, compared to the triangular part (see below for figures).

First of all, as the re-orthogonalization scheme cyclicly adjusts the row vectors in
the V-matrix, it is straightforward to introduce additional row permutations in the
square part of the array. The 2 x 2 blocks in the square part then correspond to
column transformations (SVD scheme) and row permutations (re-orthogonalization
scheme). Orthogonal column transformations clearly do not affect the norms and
inner products of the rows, except for local rounding errors assumed smaller than the
accumulated errors. Hence, the column transformations are assurned not to interfere
with the re-orthogonalization and thus need not be considered anymore. As for the
row permutations, subsequent positions for the elements in the first column of V are
indicated in Fig. 5, for a (fairly) arbitrary initial row numbering (as an example, the
2 x 2 block in the upper-left corner in Fig. 5(a) interchanges elements 4 and 5, etc.).

Let us now focus on one single row (row 1) and see how it can (approximately)
be normalized and orthogonalized with respect to all other rows Later, we will use
this in an overall procedure.

1. In a first step, the norm (squared) and inner products are computed as a
matrix-vector product
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where v] is the ith row in V. On the systolic array, where v; initially resides in the
bottom row, it suffices to propagate the v;-components upwards, and accumulate the
inner products from the left to the right (Figs. 5(a) -(h), where pq is shorthand for
€pq)- The resulting z;-vector components run out at the right-hand side.

2. In a second step, this z;-vector is back-propagated to the left (Figs 5(e)—(t)).
Due to the permutations along the way, the r;-components reach the left-hand side
of the array at the right time and in the right place, such that
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3. in a third step, a correction vector can be computed as a matrix-vector product

~ - -
[
def oT
yl:e [%(511_1) &2 ... Eln]- ‘:] .
.
L i

where the term (&1, — 1) corresponds to the first-order term in the Taylor series
expansion for the normalization of v;. The y;-vector components are accumulated
from the bottom to the top, while z; is again being propagated to the right (Fig. 5(q)-
(w)). Finally,
4. in a fourth step, vy, which meanwhile moved on to the top row of the array, is
adjusted with y;:
v} —v1 —y1-

These operations are performed in the top row of the array (Figs. 5(t)—(w)). One can
check that if

v v =14+ 0(e),

vy - vp = O(e), p=2,...,n

for some small € < 1, then

i -vf =1+ 0(€),
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F1G. 5. Re-orthogonalizations.

v} v, = O(€?), p=2..... n.

The above procedure for v; should now be repeated for rows 2, 3, etc., and
furthermore, everything should be pipelined. Obviously. one could start a similar
procedure for vz in Fig. 5(e), for v in Fig. 5(i), etc. The pipelining of such a scheme
would be remarkably simple, but unfortunately there is something wrong with it. A
slight modification is needed to make things work properly.

As for the processing of va, one easily checks that the computed inner product
€21 equals v - V1 = vy -vg = €12, while it should equal v5 - v]. A similar problem occurs
with £3; and &30, etc. In general, problems occur when computing inner products with
ascending rows, which still have to be adjusted in the top row of the array before the
relevant inner product can be computed. This problem is readily solved as follows.
Instead of computing inner products with all other rows, we only take descending
rows into account. This is easily done by assigning tags to the rows, where, e.g., a
O-tag indicates an ascending row, and a 1-tag indicates a descending row. Tags are
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FiG. 5 (continued).

reset at the top and the bottom of the array. Computing an x, vector is then done as
follows:

| TAGWT .
| TGt ||

def o TAGyv] def | &2

Vi =

un

TAGvT

L .

For the 8 x 8 example of Fig. 5, one can check that the result of this is that v; is
orthogonalized onto vg,v3,v4, and vs (£16 = &7 = &18 = 0, because rows 6, 7, and
8 are ascending rows at that time, i.e., TAGg = TAG7; = TAGg = 0). Similarly, v,
is orthogonalized onto v3,v4,vs, and vg (€27 = &28 = &1 = 0). etc. The resulting
ordering is recast as follows (pp refers to the normalization of row p, whereas pg for
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TABLE 1

| [ SVD updating | Re-orthog. [[ Total |

Internal cell 16 x 8 x 24 x
V-matrix 10+ 8+ 18+
Internal cell 28x 28x
R-matrix 14+ 14+
Diagonal cell 25x 25x
R-matrix 13+ 13+
9: 9-
4./ 4/

p # q refers to the orthogonalization of row p onto row q)

11 12 13 14 15
22 23 24 25 26
33 34 35 36 37
44 45 46 47 48
55 56 57 58 5l
66 67 68 61 62
77T 78 71 T2 73
88 81 K82 83 84

In such a sweep, each combination appears at least once (wherewith 4 = 3 combi-

nations appear twice, e.g., 15 (51), etc.}. In the general case, the rows are cyclicly
normalized and orthogonalized onto the § succeeding rows. One can easily prove that
if |[VVT —I||p = O(e) before a particular sweep, then ||VV7T — I||p = O(€?) after the
sweep. In other words, the quadratic convergence rate is maintained. On the other
hand, it is seen that one single sweep takes twice the computation time for a sweep
in a “normal” cyclic by rows or odd—even ordering. This is hardly an objection, as
the re-orthogonalization is only meant to keep V reasonably close to orthogonal. The
error analysis in [12] thus still applies (with slightly adjusted constant coefficients).

Complete processor descriptions are left out for the sake of brevity. Let it suffice
to give an operation count for different kinds of processors. See Table 1, from which
it follows that the re-orthogonalizations do not increase the load of the critical cells.

Finally, as the rows of V continuously interchange, each input vector a in Fig. 1
should be permuted accordingly, before multiplication (see §2, at -V = (a* - P?)-
(P-V), where P is a permutation matrix). One can straightforwardly design a kind
of “preprocessor” for a, which outputs the right components of a at the right time.
For the sake of brevity, we will not go into details here.

5. Square root-free algorithms. The throughput in the parallel SVD updat-
ing array is essentially determined by the computation times for the processors on
the main diagonal to calculate the rotation angles both for the QR updatings and the
SVD steps. In general, these computations require. respectively, one and three square
roots, which appears to be the main computational bottleneck. Gentleman developed
a square root-free procedure for QR updating [1], [4]. [7] where use is made of a (one-
sided) factorization of the R-matrix. The SVD schemes as such, however, de not lend
themselves to square root-free implementation. Still, in [3] a few alternative SVD
schemes have been investigated based on approzimate formulas for the computation
of either tan§ or tan ¢. When combined with a (generalized) Gentleman procedure
with a two-sided factorization of the R-factor, these schemes eventually yield square
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root-free SVD updating algorithms. Implementation on a systolic array hardly im-
poses any changes when compared to the conventional algorithm. Furthermore, as the
approximate formulas for the rotation angles are in fact (at least) first-order approxi-
mations, the (first-order) performance analysis in [12] still applies. In other words, the
same upper bounds for the tracking error are valid, even when approximate formulas
are used.

5.1. Square root-free SVD computations. The SVD procedure is seen to
reduce to solving elementary 2x2 SVDs on the main diagonal (§2). For an approzimate
SVD computation, the relevant transformation formula becomes

[ e Thin ] _ [ —sinf cosé } [ Tii  Tiitl } { —sing cos¢ ]

(U cosf siné 0 7rit1441 cos¢p sing

where r; ;11 is only being approximately annihilated (|7}, ;| < [r,,+1]). In particular,
the following approximate schemes from [3] turn out to be very useful for our purpose.
(For details, refer to [3].)

if 74| 2 riv1ieal

Tit1,i4+17T4,i+1

g =
2 2 2
T~ Titli+1 T Tiig1
approximation 1: tanf = o
. . . g
approximation 2: tanf = %5

Tiyli+1tanf +r, 4
Ti,i

)

tan ¢ =

if frog] < riv1e41

Ti,iTi,i+1

ag =
2 2 3
Tivli+l — Tii T Tiig1

approximation 1: tan¢ = o
approximation 2: tan¢ = Tf?f

riitang —r; i

Ti+l,i+1

tanf =

In the sequel, we consider only |r; ;| > |ri41,i+1], as the derived formulas can straight-

forwardly be adapted for the other case. These approximate schemes still require two
square roots for the computation of cos ¢ and cos .

The above approximate formulas can, however, be combined with a (generalized)

Gentleman procedure, where use is made of a two-sided factorization of the R-matrix

1 _ 1

R=D?y -R-D2,

and where only R, Dy, and D, are stored (in the sequel, an overbar always refers
to a factorization).
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Let us first rewrite the first approximate formula for tan 6:

1‘2 1 T
1, a+1
tanf = 5 5 Flot 5 NS .
Tii ~Tirnir1 T Tier1 ) Tislatl
Ny

—

p

As p contains only squared values, it can be computed from the factorization of R as
well:

row Jcol ,,—,2
412417441041

p= row Jcol =2 row cv 2 row Afcol
diodi Ty — dESY S Ty i O] di% 72

Obviously, a similar formula for p can be derived from the second approximate formula
for tané (which has better convergence properties; see [3]). Applying Gentleman’s
procedure to the row transformation then gives

dso* 0

0 \Jd,

—sinf cosf | | /d[°¥ 0 | Tee o T )
cosf siné 0 Vay 0 714
o
/T cos 6 0 | T 9\/:*2': !
0 \/d7°% cos 6
R deo! 0
. Tii Tii+1 . ?
(T e } R

I

f-nw

drew
1 tan @ dﬂ,w

Tit1,i+1
- =0 ) {
0 d;9y Tt Titlasl 0 asey
With

g . VA
an ‘p'f_——'mT*
Ti+1l,i414/ Q1

this leads to row transformation formulas

T ‘+1d
=0 =0 — . _._L__L_~ — —
T Tiitl } _ p Tir1,41d07 l ) [ Tii  Tiitl }
o _o = _
Tivti Titlitl 1 p- %1;—‘— 0 Tiyr441

with scale factor updating (notice the implicit row permutation)
d7ov" = d7%% cos? 6,
TowT = @l cos® 6,

1
cos? 6 = —

1+p 11+1 lrau

1+l 1+ 1 l+l

Note that due to the 1’s in the first transformation formula, a 50 percent saving in
the number of multiplications is obtained in the off-diagonal processors.
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The column transformation should then annihilate 7, , ; in order to preserve the
triangular structure. With

col
1,+1 i+1 ds i+1
/ jcol
1,+1 i d

we can again apply Gentleman’s procedure as follows:

Vi 0 ) Foi Foitl . \/‘F 0 . |— —sing cos¢
0 \/d:rl” Tit1,i Titlisl 0 \ /dfi‘l iL cos¢ sing
_| v o I ome Fa ]
0 VY Tirli  Tiklit1 |
dcul

-t 1
an @ dfix | Vs coso 0
0 \/de cos ¢

| Afdrer” 0 | e Fhia HIRVA: 0
0 Vdiey” 0 Tirrie 0 NLT R
which then leads to column transformation formulas

=k =% =0 =0 —‘—’“—H'l 11l 1
[ Tii  Tiit1 ] _ [ Tii Tii+1 ] il ‘
= _ . co

Pt o] =0 d
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tan ¢ =

col

d
1 tan¢ d‘j,;‘

with scale factor updating

dcol _ dcol1 COS2 ¢’

col® __ col
d;yy = cos? ¢,

1
2
cos’ ¢ = g —.

1+ Tig1 1+1d;+1
702 col
1+1 :dt

5.2. Square root-free SVD updating. The above approximate SVD schemes
straightforwardly combine with the square root-free QR updating procedure into a
square root-free SVD updating procedure. At a certain time step, the data matrix is
reduced to R, which is stored in factorized form

1
R=D2, -R. p?

col’

Furthermore, the same column scaling is applied to the V-matrix

V=V.D?

col?

where V is stored instead of V. The reason for this is twofold. First, the column
rotations to be applied to the V-matrix are computed as modified Givens rotations.
Explicitly applying these transformations to an unfactorized V' would then necessarily
require square roots. Second, a new row vector a’ to be updated immediately gets
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TABLE 2

| [[ SVD updating | Re-orthog. ]| Total ]

Internal cell 10x 12x 22

V-matrix 10+ 8+ 18+

Internal cell 14 x 14 x

R-matrix 14+ 14+

Diagonal cell 35x 35x

R-matrix 17+ 17+
9: 9:

the correct column scaling from the matrix-vector product a7 - V, so that the QR
updating can then be carried out as if there were no column scaling at all. The
updating can indeed be described as follows:

Al_[vu o] [ Dz R DE, T
al |70 1 aT-(V-D%)

col

_[U o Din 0 R } T
[ 4] o ] Tt ot

= etc.

The factor in the midst of this expression can then be reduced to a triangular factor
by QR updating, making use of modified Givens rotations. The further reduction of
the resulting triangular factor can be carried out next. as detailed in the previous
section.

From the above explanation, it follows that on a systolic array, a square root-free
updating algorithm imposes hardly any changes. The diagonal matrices D, and
D.,; are obviously stored in the processor elements on the main diagonal, and R and
V are stored instead of R and V. The matrix-vector product I = a7 -V is computed
in the square part, and the R-factor is updated with a! next, much like the R-factor
was updated with a7 = a7 - V in the original algorithm. All other operations are
carried out much the same way, albeit that modified rotations are used throughout.
When re-orthogonalizations are included, it is necessary to propagate the scale factors
to the square array, along with the column transformation, such that the norms and
inner products can be computed consistently. The rest 1s straightforward.

Finally, an operation count for a square root-free implementation is exhibited in
Table 2. Note that the operation count for the diagonal processors depends heavily
on the specific implementation. We refer to the literature for various (more efficient)
implementations [1], [7]. The operation count for V-processors remains unchanged
(as compared to Table 1), while the computational load for the diagonal processors is
reduced to roughly the same level, apart from the divisions. The internal R-processors
are seen to be underloaded this time, due to the reduction in the number of multipli-
cations.

6. Conclusion. An approximate SVD updating procedure was mapped onto a
systolic array with O(n?) parallelism for O(n?) complexity. By combining modified
Givens rotations with approximate schemes for the computation of rotation angles in
the SVD steps, all square roots can be avoided. In this way, a main computational
bottleneck for the array implementation can be overcome.
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