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Abstract 

In this paper we propose a new recursive algorithm for computing the staircase form of a matrix pencil, and implicitly its 
Kronecker structure. The algorithm compares favorably to existing ones in terms of elegance, versatility, and complexity. In 
particular, the algorittun without any modification yields the structural invariants associated with a generalized state-space 
system and its system pencil. Two related geometric aspects are also discussed: we show that an appropriate choice of a set 
of nested spaces related to the pencil leads directly to the staircase form; we extend the notion of deflating subspace to the 
singular pencil case. © 1997 Elsevier Science B.V. 
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1. Introduction 

The paper is organized as follows. In this introduc- 
tory section we briefly recall several notions related 
to matrix pencils [4] and show how one can easily re- 
trieve the staircase form of  an arbitrary pencil [ 11 ] by 
constructing a unitary basis for an appropriate pair of  
sequences of  nested ,;ubspaces. Section 2 is dedicated 
to the natural extension of  the notion of  deflating 
subspace to the singular pencil case. It turns out that 
the deflating subspace contains as special cases both 
the reducing subspace [12] and the proper deflating 
subspace [9, 10] previously introduced in connection 
with various factorization problems [ 13] and singular 
Riccati theory [ 10, 5, 6]. The new algorithm for com- 
puting the staircase form of  a pencil - called the 
sys t em penc i l  s taircase algori thm - is presented in 
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Section 3. In particular, it applies to the computation 
of  the invariants associated to a system in generalized 
state-space form. A brief discussion of  its complexity 
and numerical reliability in comparison with existing 
algorithms is given in Section 4. In Section 5 we 
draw some conclusions. 

Let A - 2 E ,  with A , E  E C m×n be a matrix pencil. 
I f  m = n and d e t ( A -  2E)  ~ 0 the pencil is called 
regular, otherwise it is called singular. Two matrix 
pencils A - )~E and A -  2/~ are (strictly) equivalent if  
there exist two invertible constant matrices Q and Z 
such that 

Q ( A  - ) . E ) Z  = , 4 -  ~,/~. (1) 

A pencil is equivalent to a (unique) Kronecker canon- 
ical form (KCF),  i.e. there exist two matrices Q and 
Z such that the right-hand term in (1) takes the form 

T = diag{L~, . . . . .  L~,r,L~ . . . . .  L , , ,  J - 21, I - )d~l}, 

(2) 
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where Lk denotes the bidiagonal k × (k + 1) pencil 

1 ' .  " .  , 

- 2  1 

More specifically, the ei x ei+l blocks Le,, i = 
1 . . . . .  v~, are the right elementary Kronecker blocks, 
Vr is the number of  right Kronecker blocks and ei >~ 0 
are called the right (or column) Kronecker indices; 
the t/j+l x tlj blocks L y j = 1, v~, are the left 

~/ i  ~ . . . ,  

elementary Kronecker blocks, vF is the number of  left 
Kronecker blocks and tlj >~0 are called the left (or 
row) Kronecker indices; the nf ×nf matrix J is in the 
Jordan canonical form and nf is the number of  
finite eigenvalues; the n ~  × no~ matrix M is a block 
diagonal nilpotent matrix, each block being an ele- 
mentary Jordan block (consisting of  ones placed on 
the first upper diagonal and zeros everywhere else), 
and n ~  is the number of  infinite eigenvalues. The 
Kronecker indices ei and qj completely character- 
ize the singularity of  the pencil. The regular part o f  
the pencil is determined by finite elementary divi- 
sors (the elementary Jordan blocks of  21 - J which 
determine the finite spectrum), also called the fi- 
nite eigenstructure and infinite elementary divisors 
(the elementary nilpotent blocks of  M),  also called 
the infinite eigenstructure. We denote by A(E,A)  
the set o f  finite and infinite eigenvalues of  the pen- 
cil A - 2E and by A(A)  the set of  eigenvalues of  
a square matrix A. With nr := ~ ' ~  ~i and n~ := 
~-~_~ qj we have that the rank of  A - ),E seen as 
a polynomial matrix equals nr + nz + nf + n ~  ~< 
min(m, n). 

From a numerical viewpoint, the computation of  
the KCF (1) is untractable [ 1 ] and one aims to com- 
pute, by using unitary transformations Q and Z, a 
quasi-canonical Kronecker form from which all the 
relevant structural information contained in the KCF 

can be retrieved. The main step of  an algorithm for 
computing the Kronecker-like form is to bring the pen- 
cil to the so-called staircase form [11]. We show be- 
low how one can retrieve the staircase form by using a 
particular sequence of  nested spaces defined in terms 
of  image and preimage of  A and E. 

For an arbitrary (possibly singular) pencil A - 2E 
consider the following sequence of  spaces: 

~o = {0} f ~ - = E  12`i_, ( i =  1 ) (3) 
2 ` 0  = { 0 }  l 2`i = A~ei 

Here by E - l  we denote the preimage of  E. We 
first prove that these spaces are nested and re- 
main invariant after a finite number of  steps, 
more specifically, {0} = ~o C Yl C ~¢'2 C ' ' "  C 2~¢k 
= ~(k+l, {0} = 2`0 C 2`1 C 2`2 C " "  C 2`k = 2`k+l. The 
proof  is by induction. By definition we have ~0 c ~1 
and 2.o C 2`1. Now, since ~2 = E - 1  ~1 and ~1 = E-12`o 
we have ~1 C ~2. Since 2`2 = A~2 and 2`! = AYl 
we also have 2`1 C 2`2, and so on. This proves the 
nesting of  the ~ spaces and 2`~ spaces• Let k be 
the smallest index for which d im~k  = dim~k+l  
or also ~k = ~k+l.  Then, for all i>~k, the spaces 
~} and 2`~ are equal. For i < k, the ~i  dimensions 
strictly increase and hence k must obviously be 
a finite number, k ~< n. Notice that the first equal- 
ity 2`k' = 2`k'+! may occur for U = k -  1 or for 
k '  = k. Define now the index sets si := dim 2i - 
d im2 i - l , t i  := d i m ~ i  - dim ~ i - l  (i = 1 . . . . .  k) and 

s~+i := m -  ~,~_, si, tk+, := n -  ~-,~-1 ti. Construct 
the tmitary matrices Q = [Ql [ Q2[. . .  ] Qk ] Qk+l], 
Z=[Z~ IZ2]. . .  [Zk ]Zk+,] such that 2`i G 2i_~ = 
ImQi,  Zri @ ~}-1 = I m  Zi (i = 1 . . . . .  k) and C" @ 2`k 
= I m  Qk+l, C ~ @ ~ k  = ImZk+l.  

Proposit ion 1. ( a ) I n  the new coordinate system 
defined by Q and Z the pencil A - 2E is in the 
staircase form 

Q*(A - 2 E ) Z  = [ A';'~ - )°E 0 . . . .  At , ,  - x ] 2Eu, q 

J 
A i l  AI2 - )~EI2 " "  

i A22 "" • 

O • *" 

O . . .  

Y 
tl t2 

Al,k -- 2El,k Al,k+l -- 2El,k+1 1 }s, 

A24 - 2Ez, k A2,k+l 2E2,k+l _1 }s2 

Ak, k A~,,+I 2Ek, k+l }s~ 
O Ak+l 2Ek+l }s~+, 

v 
tk tk+l 

(4) 
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with Ak+ 1 -- 2Ek+l : :  Afq  - 2Ef, o and where 
(a l )  the blocks Aii have fu l l  row rank si (i = 

1 . . . . .  k ) ,  

(a2) the blocks Ei-l , i  have fu l l  column rank ti ( i=  
2, . . .  ,k) ,  

(a3) Ek+l has fu l l  column rank. 
(b) The dimension increments st, ti (i = 1 . . . . .  k )  

satisfy tl >is1 >/t2 >is2 >/ "'" tk >~sk >~0. 
(c) The index ::ets {si} and {t~} (i = 1 . . . . .  k) 

completely determine the column Kronecker indices 
and infinite elemeni~ary divisors o f  the penci l  

Proof. (a) To show the block structure of (4) it is 
enough to prove that 

Q(*i+l)+AZi_ = 0 (i = 1 . . . .  , k )  (5) 

and 

QLEZi_  = 0 (i =: 1 . . . . .  k ) ,  ( 6 )  

where Qi+ := [Qi. . .Qk+l] and Zi-  := [Z1 ...Zi]. 
Since Im Q(i+1)+ = . ~ ,  Im Qi+ = d~-I we have with 
(3) that ImAZi_  = A ~ / =  ~i, Im EZi_ = E ~ r / =  Qi- l ,  
from which (5) and (6) follow immediately. 

We prove now the rank properties (a l )  and (a2). Let 
m0=0, m i : =  Z~=I Sj, and ni := ~-]j=l tj, for 1 <~i<<,k. 
From (3) we get with (4) that 

I m [ l ;  ' ]  = I m A [ I ; ]  

for which the mi × ni leading diagonal matrix of e{ 
should be of full row rank. By induction (i = 1 . . . . .  k) 
we get that each A~i is of full row rank and (al)  is 
proved. Analogously, for (a2) we get 

I m [ l ; ]  = E - l l m  [/mo-~ ] = K e r [ O  lm-m,_,]lE 

from which we get that the right bottom (m - mi-  1 ) × 
(n - ni) matrix in J~ should be of full column rank. 
Making successively, i = k, . . . .  1 we obtain (a2). 

Finally, (a3) follows from the fact that the nesting 
of spaces (3) stops ,exactly after k steps. 

(b) Follows from the rank conditions proved at (a). 
(c) Follows from [11] by using the particular prop- 

erties ( a l ) - ( a3 )  of the pencil in the new coordinate 
system. [] 

Remark 2. (a) It is important to notice from (4) that 
we have separated in the pencil A - 2E those elements 
for which the coefficient matrix of 2 has defective 

column rank. Defining the sequences of spaces 

~'~0 = cm f *-~i : E ~ i - i  (i = 1 ) 
~0 = cn  [ ~" = A - l  ~i 

one can get analogously a form dual to (4) called 
the dual staircase f o rm  from which one retrieves the 
complete information about the row Kronecker indices 
and infinite elementary divisors. 

(b) Notice that for the matrix case (A = 1, and E 
square) the two nested sequences (3) satisfy 

~ i = ~ . / = K e r ( E  i) ( i = 0  . . . .  ). (7) 

It is well-known [7, 2] that by constructing a uni- 
tary basis for the nested kernels of the powers of 
E one can compute in a numerically sound way the 
Jordan structure at a certain (known or computed) 
eigenvalue of E. Therefore, the nesting (3) can be seen 
as a generalization to the pencil case of the nesting of 
the kernels (7). 

2. Deflating subspaces 

We introduce now a novel characterization of de- 
flating subspace o f  a matr ix  pencil  which covers as 
well the singular case. Moreover, it generalizes in 
a natural way the notion of invariant subspace of a 
square matrix. Let 

C ~--- Cl  U C 2 (8 )  

be a partition of the closed complex plane in two dis- 
joint sets (however, we admit also the partition C U 0 
or 0 u C ) .  

Definition 1. A subspace ~ c C n of dimension r is 
called a right deflating subspaee if 

EVS = A VT (9) 

where V E C ~xr is any basis matrix for ~//~, and S, T E 
C ~x~ are two appropriate matrices such that the pencil 
S - 2T is regular. The subspace V is called a C1 right 
deflating subspace if in addition A ( T , S ) C  C t. Dual 
definitions hold for left deflating subspaces. 

Since all the results for left or right deflating sub- 
spaces are similar, we only treat hereafter the case of 
right deflating subspaces and call them briefly deflat- 
ing subspaces. 

Remark 3. (a) For the matrix case, i.e. E = I  and A 
square, (9) reduces to VS = A VT. In this case one can 
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easily prove that since S - 2 T  is re,gular, T is invertible 
and (9) can be written as A V = VS, where S :=  ST - l ,  
which is precisely the definition o f  invariant subspace 
o f  a matrix A. In this case we have A(S)  C A(A). 

(b) For the regular pencil case, i.e. det(A - 2E) 
0, one can prove that automatically A(T, S) c A(E,A). 

The following proposition gives a complete charac- 
terization of  deflating subspaces. 

Proposition 4. Let A( E,A ) = A1UA2 be a split o f  the 
spectrum o f  the pencil according to (8), i.e. A 1 C C1 
and A2 C C2. Let nl and n2 be the number o f  ele- 
ments (multiplicity counted) in A1 and A2, respec- 
tively. Then: 

(a) The dimension o f  a C1 deflating subspace 
satisfies 

dim ~U ~< nr + Vr + nl =:  rc, .  (lO) 

(b) C1 deflating subspaces are closed under addi- 
tion and there exists a unique maximal Cl deflating 
subspace o f  dimension rc~. 

(c) For a maximal Cj deflating subspace A(T, S) 
is such that nl elements coincide with the elements 
o f  A1 and the rest o f  Vr + n~ elements can assume 
arbitrary values (in C1 ). 

The proof  strongly relies on a technical lemma 
given below. 

Lemma 5. Consider the equality 

EVS -- AVT, (11) 

where S - 2T is regular. 
(a) I f  A - 2E is regular and A ( E , A ) A A ( T , S )  = 0 

then (11 ) has only the trivial solution V = O. 
(b) I f  A - 2 E  :=  S - 2 T  then (11 ) has an invertible 

solution V. 
(c) Suppose A - 2E is right invertible for  all 

2 c C, i.e. the Kronecker structure o f  the pencil 
A - 2E consists only o f  right elementary Kronecker 
blocks• Then S - 2T can be chosen to be regular with 
all eigenvalues at one point (finite or infinite) and 
such that (11 ) is satisfied for  an invertible matrix V. 

(a) Since A - 2E and S - 2T have disjoint spec- 
tra, not both can have infinite eigenvalues and there- 
fore we assume hereafter that S - 2T has no infinite 
eigenvalues. Then (11 ) reduces to 

[: °1 E::I °1 [::1 
where A(Js) N A(JA) = (3 and M is nilpotent. From 
the first equation in (12) we get automatically V1 = 0 
while the second can be written explicitly as 

MV2Js = V2. (13) 

From (13) we shall deduce that V2 = 0. For this pur- 
pose remember that M is nilpotent and let k E ~ such 
that M k = 0. Multiplying ( 13 ) to the left with M k- 1, it 
follows that M k- 1 V2 = 0. Iterating this we end with 
MV2 = 0 and (13) gives V2 = 0. Thus 

V =  V2 

and the proof of  (a) ends• 
(b) Since now 

we get that (11) is satisfied for the invertible matrix 
V = I .  

(c) We shall deal separately with the cases where 
S - 2 T  has all the eigenvalues at a finite or at an infinite 
point. 

Infinite eigenvalues: Since A - 2E has only right 
Kronecker blocks it takes the form A - 2E = 

• v r  , i  Ar - ),Er = dlag{L,:,}i= l where L~ are the right 
elementary Kronecker blocks• Choose S - 2T :=  

• ~ ' r  dlag{Mi}i=l where Mi :=  L:,+l + 2J~:,+l and J~,+l is 
a Jordan block of  dimension (ei + 1 ) × (ei + 1 ). A 
direct check shows that (11) is satisfied for the in- 
vertible matrix V = diag{L:,+l) where [, denotes an 
n × n matrix with units placed on the antidiagonal 
and zeros in the rest. 

Finite eigenvalues: It can be easily seen that by left 
and right invertible transformations A - 2E can be put 
in the form 

ProoL Without restricting generality we assume that 
both pencils A - 2E and S - 2T in (11 ) are in the 
Kronecker canonical form. This can be achieved by 
multiplying (11 ) on the left and right with invertible 
transformations and an appropriate update o f  V. 

A -  )~E= [ . ~ -  2I B I 

where the pair (A,/~) is controllable. Thus, there ex- 
ists a feedback matrix F such that Av : = / 1  + / ~ F  has 
all the eigenvalues at a certain prescribed point 20. 
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Therefore, without restricting generality, we may as- 
sume that A - 2E takes the form 

A - 2E = [ AF - 21B  ] . 

Take 

S - 2 T : =  Aj O I ' 

where A 1 has all the eigenvalues at 2o. A direct check 
shows that (11) is tiflfilled for the invertible matrix 
V = I  and the proof  ends. [] 

Proof of Proposition 4. It is easy to see that by ap- 
propriate row and column permutations we can bring 
a pencil which is in the KCF to look like 

A - 2E = diag {[Ar - 2Ir B],A1 - 2El, 

- 21 

where (Ar, B) is a reachable pair, A(E1,AI)CA1, 
A(E2,Az)CA2, and (C,A:) is an observable pair. 
Without restricting generality we assume directly 
that A -  2E is in l:he form (14). From (9), with 
V =  [V~ V2 T V~ V4 T IT]  T partitioned accordingly to 
(14) we get an almost decoupled system of  equations 
in unknowns Vi (i =: 1 , . . . ,5 ) ,  from which using (a) 
of  Lemma 5 and the observability of  the pair (C,A:) 
we get V4 = 0 and V5 = 0 and (a) is proved. 

For (b) and (c), we show first the existence of  a C1 
deflating subspace UM of  maximal dimension re. 
which coincides with 

ImI'; ] 
This follows directly from (b) and (c) of  Lemma 5. It 
turns out that any C~ deflating subspace is included in 
~/~M from where (b) tbllows. Finally, (c) follows from 
the construction perfbrmed at (b). [] 

Remark 6. (a) Notice the two extreme cases: (i) 
C1 : 0 and nl : 0 ,  (ii) C1 : C and nl : nf + n ~ .  

(b) Let ~ be a maximal Ci deflating subspaces 
and define Y' : :  ~ and ~ : = E g f + A ~ .  One can prove 
that (5~', o y )  is the (unique) pair of  reducing subspaces 
(for  reducing subspaces see [ 12]) that induce the split 
Al tO A2 in the spectrum ofA - 2E. Notice that in the 
two extreme cases irtdicated at (a) one gets the mini- 
mal and maximal reducing subspace, respectively. 

(c) In particular, for T = I and imposing the addi- 
tional constraint to EV to be of  full column rank one 
retrieves for Y/ = Im V the definition of  C l proper de- 
flating subspace [9] that plays an instrumental role in 
the singular Riccati theory [10, 5, 6]. In this case one 
can easily see that not even the maximal C 1 proper de- 
flating subspace ~UM is unique, yet E~/:M is. In fact, one 
shows (see [10]) that UM C Y and EY/~M = Y/, where 
(5~', ~ )  is the (unique) pair of  reducing subspaces that 
induce split A1 U A 2 in the spectrum of  the pencil. 

(d) Deflating subspaces defined for a non-disjoint 
split o f  the closed plane can be studied in a similar 
way, and contain as a particular case reducing sub- 
spaces which are non-unique and split the spectrum 
of  the pencil in two non-disjoint sets. 

3. The system-pencil staircase algorithm 

In this section we describe the new system-pencil 
staircase algorithm which efficiently reduces an arbi- 
trary pencil to the staircase form (4). Our starting pen- 
cil is a system pencil 

S ( ) o ) : = A _ 2 E =  IAll  A~2-2Etz l}PE 
A21 A22 }m-pz 

(15) 

where El2 is square and invertible. However, our al- 
gorithm applies as well for a general system pencil 
(where El2 is not invertible but A12 - 2E12 is regular 
[8]), or even to an arbitrary pencil A0 - 2E0 which 
is first brought to the form (15) by a two-sided rank 
revealing decomposition of  E0, such that the result- 
ing El2 is square and invertible. As was proved in 
[8], there is a one-to-one correspondence between dif- 
ferent structural invariants of  a system in generalized 
state-space form and the Kronecker structure of  the 
system pencil (or some of  the subpencils in the system 
pencil). Therefore, we focus hereafter on construct- 
ing the staircase form of  a system pencil from which 
the information about the Kronecker structure can be 
retrieved. 

Below we show how we can efficiently determine 
unitary left and right transformations such that the 
staircase form (4) is recursively constructed and at 
each step the system pencil form (15) is preserved. As 
was indicated in [8], preserving at each step the form 
(15) is instrumental for keeping the algorithm com- 
plexity to (:(n 3). More precisely, we indicate below 
how the unitary matrices Q and Z can be efficiently 
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constructed such that (we reuse block names) 

Q*S(2)Z 

t All A12-2EI2 AI3-2EI3  

= [ O A22 A23-/~E23 

L o I A32 A33 
n--pE p~ 

P ' % I  

I m _ p q o  I 

(16) 

where A11 is row compressed, El2 is full column rank, 
E23 is upper triangular and invertible and 

rank[ 2:] 
in (15). Notice the new block row partition o f  the 
pencil in (1 6) and the fact that the resulting subpencil 
in (16), 

FA22 A23 - )~E23 ] 
A2 - )~E2 "= LA32 A33 

exhibits the same structure and the constitutive blocks 
have the same properties as the starting pencil S(2). 
The algorithm continues further on the subpencil 
A2 - 2E2. The transformations Q and Z are con- 
structed such that the first n - PE columns of  A 
in (15) are row compressed while keeping Ej2 up- 
per trapezoidal in an economical manner. This is 
explained in detail below. The novelty of  our stair- 
case algorithm consists in the efficient reduction of  
a pencil of  form (15) to (16) and we shall describe 
this reduction - called the basic step reduction - 
only. Notice that at each step i (i = 1 , . . . , k )  one 
retrieves a pair of  indices si, ti and basis matrices 
for the spaces .~ and ~ i  are implicitly constructed. 
For example, after the first step has been performed 
we have from the pencil in (16) that sl = PA.~ and 
tl  = n - -  PE .  

Before going into fine details, we state the following 
lemma that will be used further on. 

Lemma 7. Let M be a square matrix partitioned as 
follows: 

[ ] M = Mll MI2 }n2 

M21 O }n, 

/11 /12 

with Ml2 and M21 invertible, and let U be an invertible 
transformation which compresses the first n l columns 
of  M. Then 

(a) 

M22 }n2 

t/I  n 2 

and ~lll and ~122 are invertible, too. 
(b) I f  M21 and Ml2 are upper triangular U can be 

efficiently constructed as a seq.uence of  Givens rota- 
tions such that the resulting Mjl  and 21)22 are upper 
triangular. This is described below. 

Proof. (a) Trivial. 
(b) We illustrate by means of  an example how U 

can be efficiently constructed such that M11 and M22 
are upper triangular. Let nl = 3, n2 = 4. Then M takes 
the form 

X 

@4 
@3 

@2 

®1 

X X X X X 

X X X X 

X X X 
X X 

X X 

X X 

X 

X 

X 

X 

x (17) 

The bold "x" denotes nonzero entries. Clearly, ®1 is 
nonzero as well. We determine first a sequence of  
Givens rotations Gj+l,j between adjacent rows j and 
j + l  ( j  = 4 . . . . .  1) suchthat elements ®i (i = 1 . . . . .  4) 
are successively annihilated in the first column of  M. 
For Q~ :=  G21Gs2G43G54 we get 

Q~,M = 

"X X X X X X 

X X X X X 

X X X X 

X X X 

X X 

X X 

X 

X 

X 

X 

X 

X 
(18) 

Notice that the non-singularity of  M guarantees that 
the bold entries in (18) are nonzero. We proceed 
similarly with columns j = 2, 3, finally obtaining after 
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accumulating in Q~ all Givens rotations 

Q~M x} 
X nl 

x 

x 
X n2 

3[ 

Notice that this is in fact equivalent to updating the 
QR decomposition of a matrix whose columns have 
been permuted [3]. [] 

X X X X X X 

X X X X X 

X X X X 

X X X 

X X 

X 

3.1. The basic reduction step 

In order to perfo~:m a reduction of the pencil (15) 
to the form (16) three steps are taken. 

Step a. We compress by rows A2t (using for ex- 
ample a QR algorithm with column pivoting) by con- 
structing unitary Qa and permutation P~ such that 

QaA2'P"=[Ao' A21] , (19) 

where A~l is square, upper triangular and invertible. 
Defining 

we get at the end of this step 

Aa - 2E~ := Q*(A -- )~E)Z 

All 

PA2 i 

where F 2] 
A~2 := QjA22 

_ _  A~I A 1 2  - } ~ E I 2  

A '2 
O A22 

PE 

PA21 

and [All A~, ] :=A,,Pa 

have been adequately partitioned. Notice that at this 
step the subpencil A 12 -- )tEl2 is not affected. 

Step b. We focus now on the subpencil 

A12 -- )~E12 ] }ps 

where A211 and El2 are square, upper triangular and 
invertible. We construct a unitary left transformation 
Qb as a sequence of row Givens rotations such that 
the first block column of As is row compressed while 
As is preserved in upper trapezoidal form. We obtain 
(after reusing block names) 

[ 01 O~(As - 2Ss) = A~2 2e12 J }ps ' 

where All and E~2 are invertible and also upper tri- 
angular. Qb is constructed according to Lemma 7, 
where we take 

LA,',I o J 
At the end of this step we obtain (after reusing block 
names) 

Ab --  2Eb = Q*(A - )~E) 

All A21 A,z-  2EIz ] }p~2~ 

= [~0 A21 A~z-2E12 }pE 
0 A22 }m--pE--P,421 

PAN 

where now All and E~2 are upper triangular and 
invertible. 

Step c. We compress by rows A~l while keeping 
E~2 in upper triangular form. This is done by using an 
appropriate sequence of row and column Givens ro- 
tations. At this step we focus only on transformations 
of the blocks A21 and E12 and track therefore the ma- 
trix N := [A~, ]E~2 ] where E~2 is invertible and up- 
per triangular. We demonstrate again the algorithm by 
means of an illustrative example for which N outlines 
the following structure, i.e. 

X X X X X X 

N z  X X X X X 

X X X X 

x x x 

We first compress by rows the first column by using 
Givens rotations Gi--l , i  between adjacent rows i + 1 
and i (i = 3 . . . . .  1 ) such that 

I X 

x x x 
G 2 1 G 3 2 G 4 3 N  = @2 x X 

x 01 x 
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(a permutation Pc of columns in A221 is implicitly 
assumed in order to increase the reliability of rank 
decisions). 

The elements ®i introduced by the row Givens 
rotations are now annihilated by using a sequence 
of column Givens rotations, i.e. we determine G/,j+I 

( j  = 5 . . . . .  3), to annihilate successively elements ®j 
( j  = 3 . . . . .  1 ). We proceed similarly on next columns 
of A~l. If the rank of A21 is lower than its number of 
columns the procedure terminates earlier but remains 
essentially the same. All row and column Givens ro- 
tations are accumulated in Qc and Zc, respectively. 

Overall, we conclude that A~l can be row com- 
pressed while keeping E212 in upper triangular form in 
an economical manner. Set 

[ ' ]  I' l Q + - Q  Qc , z =  P~. . 
i K. 

At the end of this last step we get (after reusing block 
names) the pencil 

Ac - 2Ec := Q*(A - 2 B ) Z  

A12 - zE12 AI 1 A11 A12 _ )~E12 2 ^ 2 

O 2 1 1 2 ~ 2 A21 A22 - 2E22 A22 - zE22 

A22 --  AE22 O A42 3 ~ 3 

O A~2 A62 

(20) 

where AI, and A21 are row compressed, E212 and E232 
are square, invertible and upper triangular. 

By comparing (20) with (16) it is easy to see that 
our basic reduction step produces the desired effect 
and this is done in an efficient way. The operation 
count for this algorithm shows that its complexity is 
(~C(n 3 ). The details are omitted for brevity. 

Remark 8. (a) The algorithm stops when at a certain 
step j = k + 1 the resulting subpencil to be further 
reduced has a matrix E of full column rank. In the 
resulting staircase form (4)the subpencil Ak+l --2E~+1 
then has the form 

Ak+j - 2Bk+j = A2 ' (21) 

where E1 is square, upper triangular, and invertible. 

(b) Notice that at each step the relevant subpencils 
outline a "generalized state-space system representa- 
tion" form. More specifically, if we denote the parti- 
tioned pencil (15), 

we get that S(2) is the transmission matrix (or pencil) 
of a system in generalized state-space representation 

2 E x  = A x  + Bu,  
(22) 

y = Cx  + Du,  

where moreover E is invertible. Here 2 stands for the 
differential operator or for the unit shift. 

(c) If a dual version of the new staircase algo- 
rithm is applied to the resulting subpencil (21) one 
retrieves the row Kronecker structure of the original 
pencil and at the end of this reduction the resulting sub- 
pencil (21) will be square (will have a void matrix 

A2), regular, with invertible/~1 matrix. Notice that for 
this dual staircase algorithm applied to (21) at each 
basic reduction step only substep (c) is needed. 

4. Numerical aspects 

In this section we discuss aspects of complexity and 
numerical reliability and compare our algorithm with 
existing ones. 

There are mainly two other methods for perform- 
ing a reduction step leading to an overall Cc(n 3) 
complexity algorithm for computing the Kronecker- 
like form. The first C(n 3) complexity algorithm, 
called the echelon staircase alqori thm,  which com- 
putes precisely the staircase form (4) was proposed 
in [1]. For this algorithm, E is first compressed 
to a column echelon form that is preserved during 
further steps. As noted in [8], the main drawback 
of this algorithm is the alternative rank decision 
made at each step on both the intervening E and 
A matrices, one of which without pivoting leading 
thus to a potential unreliable algorithm. Moreover, 
the algorithm in [1] does not preserve a gener- 
alized state-space-like form at each step making 
the analysis of the structural invariants of  general- 
ized state-space systems somehow more intricate. 
More recently, an algorithm performing a decom- 
position from which the structural invariants of  a 
generalized state-space system can be retrieved and 
which could be applied as well for computing the 
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Kronecker structure of  an arbitrary pencil was 
proposed in [8]. The main difference between this 
algorithm and ours is that the first one uses at each 
reduction step a column and a row compression with 
pivoting of  the intervening A matrix while keeping 
E in upper triangular form. This algorithm preserves 
also at each reduc, tion step a system-pencil-like form 
leading to an ove::all C(n 3) algorithm. However, this 
algorithm lacks symmetry in revealing the structure 
at infinity (it needs inelegant extra reduction steps 
for computing the, infinite elementary divisors), does 
not compute exactly the staircase like form (and 
therefore handles with difficulty the computation of  
deflating subspaces), and has the same complexity for 
the further reduction of  the subpencil (21) (see also 
Remark 8c). Actually, the present new staircase al- 
gorithm combines the advantages o f  the two methods 
in [1, 8]. 

It is importanl: to point out here that all three 
algorithms are irL fact backward stable, since they 
perform only stable (orthogonal) transformations 
directly on the original pencil (see the detailed anal- 
ysis in [1]). On the other hand, this does not  im- 
ply that all rank decisions are made in a reliable 
manner. It is well known that the singular values 

of  a matrix are the most reliable measure to deter- 
mine its rank. However, the subblocks whose ranks 
have to be determined depend here on transforma- 
tions (i.e. singular vectors)  computed in previous 
steps of  the algorithm, and this is inherent to the 
recursivity of  any staircase reduction. A small nu- 
merical example where the effect is apparent, is 
given in [2]. When small singular values (or piv- 
ots) are obtained in one step, it will affect later 
blocks and furtlaer rank decisions become very 
delicate. 

Nevertheless, it is clear that rank decisions based on 
singular values are most reliable and therefore in our 
algorithm one could use the singular value decompo- 
sition on the matrices A21 and A221 of  steps (a) and (c), 
respectively. This would slightly increase the com- 
plexity of  the overall algorithm but would still keep it 
(~'(n3). 

5. Conclusions 

A new algorithm for computing the staircase 
form of  a pencil, which preserves at each step a 
system-pencil-lik, e form, was proposed. The algorithm 
combines advantages of  previously proposed staircase- 

like algorithms. The concept o f  deflating subspace of  
a singular pencil which unifies the notions o f  reducing 
and proper deflating subspaces has been introduced. 
Our characterization of  deflating subspaces - and in 
particular o f  the reduction subspaces - in terms of  
associated basis matrices is effective both from a 
theoretical and numerical viewpoint. The proposed 
algorithm in conjunction with a pole placement algo- 
rithm for systems in generalized state-space form [ 14] 
can be used for computing deflating subspaces with 
specified spectrum [9]. Interpretations of  different 
geometric spaces associated to a generalized state- 
space system in terms of  deflating subspaces of  the 
associated system pencil will be discussed in a future 
paper. 
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